Enhancing Soy Yogurt with Microencapsulated Limosilactobacillus reuteri: Viability and Sensory Acceptability
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximal Analysis and Physicochemical Properties of Soymilk
2.3. Lim. reuteri Encapsulation
2.4. Soy Yogurt Preparation and Analysis During Fermentation
2.5. Microbial Quality of Probiotic Peach Soy Yogurt After Manufacturing
2.6. Viability of Lim. reuteri During the Refrigerated Storage of PPSY
2.7. pH and Titratable Acidity of Probiotic Peach Soy Yogurt During Storage
2.8. Probiotic Peach Soy Yogurt Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Soymilk Characterization
3.2. Soymilk Fermentation
3.3. Probiotic Beads Characterization
3.4. pH and TA of PPSY During the Storage
3.5. Lim. reuteri Viability During the Storage Incorporated into PPSY
3.6. Sensory Evaluation of PPSY
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, E.M.F.; Soutelino, M.E.M.; Silva, A.C.D.O.; Pinto, U.M.; Todorov, S.D.; Rocha, R.D.S. Current Updates on Limosilactobacillus Reuteri: Brief History, Health Benefits, Antimicrobial Properties, and Challenging Applications in Dairy Products. Dairy 2025, 6, 11. [Google Scholar] [CrossRef]
- Wang, L.; Ren, B.; Wu, S.; Song, H.; Xiong, L.; Wang, F.; Shen, X. Current Research Progress, Opportunities, and Challenges of Limosillactobacillus Reuteri-Based Probiotic Dietary Strategies. Crit. Rev. Food Sci. Nutr. 2024, 65, 3607–3627. [Google Scholar] [CrossRef] [PubMed]
- Abuqwider, J.; Altamimi, M.; Mauriello, G. Limosilactobacillus Reuteri in Health and Disease. Microorganisms 2022, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.M.; Chourasia, R.; Phukon, L.C.; Sarkar, P.; Ray, R.C.; Singh, S.P.; Rai, A.K. Lactic Acid Bacteria in the Functional Food Industry: Biotechnological Properties and Potential Applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10730–10748. [Google Scholar] [CrossRef] [PubMed]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A Review of the Microencapsulation Techniques for the Incorporation of Probiotic Bacteria in Functional Foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef] [PubMed]
- Naklong, K.; Therdtatha, P.; Sumonsiri, N.; Leksawasdi, N.; Techapun, C.; Rachtanapun, P.; Taesuwan, S.; Nunta, R.; Khemacheewakul, J. Microencapsulation of Bifidobacterium Breve to Enhance Microbial Cell Viability in Green Soybean Yogurt. Fermentation 2023, 9, 296. [Google Scholar] [CrossRef]
- Fu, W.; Liu, C.; Meng, X.; Tao, S.; Xue, W. Co-Culture Fermentation of Pediococcus Acidilactici XZ31 and Yeast for Enhanced Degradation of Wheat Allergens. Int. J. Food Microbiol. 2021, 347, 109190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tang, P.; Li, S.; Wang, X.; Zong, W. Sodium Alginate-Based Wall Materials Microencapsulated Lactobacillus Plantarum CICC 20022: Characteristics and Survivability Study. Food Sci. Biotechnol. 2022, 31, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a Useful Natural Polymer for Microencapsulation and Therapeutic Applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Lai, J.; Azad, A.K.; Sulaiman, W.M.A.W.; Kumarasamy, V.; Subramaniyan, V.; Alshehade, S.A. Alginate-Based Encapsulation Fabrication Technique for Drug Delivery: An Updated Review of Particle Type, Formulation Technique, Pharmaceutical Ingredient, and Targeted Delivery System. Pharmaceutics 2024, 16, 370. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.Y.; How, Y.H.; Pui, L.P. Microencapsulation of bifidobacterium lactis bi-07 with galactooligosaccharides using co-extrusion technique. J. Microb. Biotech. Food Sci. 2022, 11, e2416. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Tarapoulouzi, M.; Varzakas, T.; Jafari, S.M. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023, 11, 2896. [Google Scholar] [CrossRef] [PubMed]
- Chandramouli, V.; Kailasapathy, K.; Peiris, P.; Jones, M. An Improved Method of Microencapsulation and Its Evaluation to Protect Lactobacillus Spp. in Simulated Gastric Conditions. J. Microbiol. Methods 2004, 56, 27–35. [Google Scholar] [CrossRef] [PubMed]
- García-Ceja, A.; Mani-López, E.; Palou, E.; López-Malo, A. Viability during Refrigerated Storage in Selected Food Products and during Simulated Gastrointestinal Conditions of Individual and Combined Lactobacilli Encapsulated in Alginate or Alginate-Chitosan. LWT-Food Sci. Technol. 2015, 63, 482–489. [Google Scholar] [CrossRef]
- Vaziri, A.S.; Alemzadeh, I.; Vossoughi, M. Improving Survivability of Lactobacillus Plantarum in Alginate-Chitosan Beads Reinforced by Na-Tripolyphosphate Dual Cross-Linking. LWT 2018, 97, 440–447. [Google Scholar] [CrossRef]
- Do Prado, F.G.; Pagnoncelli, M.G.B.; De Melo Pereira, G.V.; Karp, S.G.; Soccol, C.R. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Rev. Int. 2023, 39, 2320–2351. [Google Scholar] [CrossRef]
- Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.-S. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021, 10, 636. [Google Scholar] [CrossRef] [PubMed]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation Methods of Soybean Trypsin Inhibitor—A Review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Peruzzolo, M.; Ceni, G.C.; Junges, A.; Zeni, J.; Cansian, R.L.; Backes, G.T. Probiotics: Health Benefits, Microencapsulation, and Viability, Combination with Natural Compounds, and Applications in Foods. Food Biosci. 2025, 66, 106253. [Google Scholar] [CrossRef]
- Champagne, C.P.; Green-Johnson, J.; Raymond, Y.; Barrette, J.; Buckley, N. Selection of Probiotic Bacteria for the Fermentation of a Soy Beverage in Combination with Streptococcus Thermophilus. Food Res. Int. 2009, 42, 612–621. [Google Scholar] [CrossRef]
- Gu, Q.; Zhang, C.; Song, D.; Li, P.; Zhu, X. Enhancing Vitamin B12 Content in Soy-Yogurt by Lactobacillus Reuteri. Int. J. Food Microbiol. 2015, 206, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Rheological Properties and Sensory Characteristics of Set-Type Soy Yogurt. J. Agric. Food Chem. 2007, 55, 9868–9876. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yan, L.; Wang, J.; Zhang, Q.; Zhou, Q.; Sun, T.; Chen, W.; Zhang, H. Fermentation Characteristics of Six Probiotic Strains in Soymilk. Ann. Microbiol. 2012, 62, 1473–1483. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, S.N.; Singh, D. Impact of Banana Puree on Viability of Probiotic Soy Yoghurt During Storage. J. Pure Appl. Microbiol. 2014, 8, 2433–2439. [Google Scholar] [CrossRef]
- Abdelghani, D.Y.; Gad, A.I.; Orabi, M.M.; Abou-Taleb, K.A.; Mahmoud, E.A.; Al Amoudi, S.A.; Zari, A.; Althubaiti, E.H.; Edris, S.; Amin, S.A. Bioactivity of Organic Fermented Soymilk as Next-Generation Prebiotic/Probiotics Mixture. Fermentation 2022, 8, 513. [Google Scholar] [CrossRef]
- Okur, H.H.; Yıldırım, H.K.; Yousefvand, A.; Saris, P.E.J. Production of Fermented Soy and Soy/Cow Milk Products with Probiotic Lacticaseibacillus Rhamnosus GG Strain. Food Bioprocess Technol. 2025, 18, 5736–5748. [Google Scholar] [CrossRef]
- Jiang, W.; Han, S.; Wang, L.; Li, X. The Effects of Compound Starter Culture, Sugar, and Soy Milk on the Quality and Probiotic Activity of Milk–Soy Mixed Yogurt. J. AOAC Int. 2025, 108, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Nanyondo, J.; Byakika, S.; Mukisa, I.M. Production of a Probiotic Soy-Soursop Yogurt Containing Lactobacillus Rhamnosus Yoba 2012. Eur. J. Agric. Food Sci. 2023, 5, 60–64. [Google Scholar] [CrossRef]
- Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus Reuteri in Human Health and Diseases. Front. Microbiol. 2018, 9, 757. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, J.; Liu, Y.; Meng, Q.; Liu, H.; Yao, Q.; Song, W.; Ren, X.; Chen, X. The Role of Potential Probiotic Strains Lactobacillus Reuteri in Various Intestinal Diseases: New Roles for an Old Player. Front. Microbiol. 2023, 14, 1095555. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ma, Y.; Luo, Z.; Jiang, Y.; Xu, Z.; Yu, R. Lactobacillus Reuteri in Digestive System Diseases: Focus on Clinical Trials and Mechanisms. Front. Cell. Infect. Microbiol. 2023, 13, 1254198. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, M.; Gottardi, D.; Parolin, C.; Glicerina, V.T.; Vitali, B.; Lanciotti, R.; Patrignani, F. Development and Characterization of Fermented Soy Beverages Containing Encapsulated or Non-Encapsulated Vaginal Probiotics. LWT 2023, 180, 114713. [Google Scholar] [CrossRef]
- Alexandre, J.D.B.; Silva, L.C.D.; Castelo, R.M.; Freire, G.A.; Barroso, T.L.C.T.; Miranda, K.W.E.; Bruno, L.M.; Furtado, R.F.; Cheng, H.N.; Biswas, A. Probiotics-Encapsulated Soy Beverage Spheres: Functional and Technological Characteristics. Food Sci. Technol. (Camp.) 2025, 45, 1–8. [Google Scholar] [CrossRef]
- Karim, A.; Osse, E.F.; Khalloufi, S. Innovative Strategies for Valorization of Byproducts from Soybean Industry: A Review on Status, Challenges, and Sustainable Approaches towards Zero-Waste Processing Systems. Heliyon 2025, 11, e42118. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019; Volume 3, ISBN 978-0-935584-89-9. [Google Scholar]
- Her, J.-Y.; Cho, H.; Kim, M.K.; Lee, K.-G. Organic Acids as a Freshness Indicator for Tofu (Soybean Curd). J. Food Sci. Technol. 2017, 54, 3443–3450. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.J.; Mani-López, E.; Ramírez-Corona, N.; López-Malo, A. Postharvest Mold Growth Control in Raspberries and Blackberries Using Cinnamon Essential Oil-Loaded Alginate Beads. ACS Food Sci. Technol. 2025, 5, 127–136. [Google Scholar] [CrossRef]
- Norma Oficila Mexicana NOM-113-SSA1-1994; Bienes y Servicios. Método para la Determinación de Coliformes Totales en Placas. Secretaría de Salud: MéxicoCity, Mexico, 1994. Available online: https://platiica.economia.gob.mx/wp-content/uploads/sites/2/PDF_Normas_Publicas/113-ssa1.pdf (accessed on 10 May 2025).
- Norma Oficial Mexicana NOM-111-SSA1-1994; Bienes y Servicios. Método Para La Cuenta de Mohos y Levaduras En Alimentos. Secretaría de Salud: Mexico City, Mexico, 1994; Volume 6, pp. 1–10.
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic Viability and Storage Stability of Yogurts and Fermented Milks Prepared with Several Mixtures of Lactic Acid Bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [PubMed]
- Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023, 12, 2665. [Google Scholar] [CrossRef] [PubMed]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wang, T.; Luo, Y. A Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Taeger, M.; Thiele, S. Replacement of Milk and Dairy Products with Soy-Based Alternatives–How to Avoid Nutrient Deficiencies in a Milk-Free Diet? J. Nutr. 2024, 154, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.W. Functional Soy Products. In Functional Foods; Elsevier: Amsterdam, The Netherlands, 2011; pp. 534–556. ISBN 978-1-84569-690-0. [Google Scholar] [CrossRef]
- Kesika, P.; Sivamaruthi, B.S.; Chaiyasut, C. A Review on the Functional Properties of Fermented Soymilk. Food Sci. Technol. 2022, 42, e10721. [Google Scholar] [CrossRef]
- Singh, P.; Bilyeu, L.; Krishnaswamy, K. Improving Process Sustainability by Optimizing Spray Drying Parameters: High Oleic Soymilk Using Response Surface Methodology. Food Bioprocess Technol. 2022, 15, 833–851. [Google Scholar] [CrossRef]
- Mehany, T.; Siddiqui, S.A.; Olawoye, B.; Olabisi Popoola, O.; Hassoun, A.; Manzoor, M.F.; Punia Bangar, S. Recent Innovations and Emerging Technological Advances Used to Improve Quality and Process of Plant-Based Milk Analogs. Crit. Rev. Food Sci. Nutr. 2024, 64, 7237–7267. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.K.; Mangaraj, S. Processing Influences on Composition and Quality Attributes of Soymilk and Its Powder. Food Eng. Rev. 2012, 4, 149–164. [Google Scholar] [CrossRef]
- Han, H.; Choi, J.K.; Park, J.; Im, H.C.; Han, J.H.; Huh, M.H.; Lee, Y.-B. Recent Innovations in Processing Technologies for Improvement of Nutritional Quality of Soymilk. CyTA–J. Food 2021, 19, 287–303. [Google Scholar] [CrossRef]
- Basharat, S.; Ijaz, A.; Tufail, T.; Ain, H.B.U.; Azhar, S.; Sharif, M.K.; Iftikhar, F.; Nisar, T.; Sikander, S. Nutritional and Physicochemical Characterization of Soymilk. Food Nutr. Sci. 2020, 14, 256–264. [Google Scholar]
- Ziarno, M.; Zaręba, D.; Ścibisz, I.; Kozłowska, M. Comprehensive Studies on the Stability of Yogurt-Type Fermented Soy Beverages during Refrigerated Storage Using Dairy Starter Cultures. Front. Microbiol. 2023, 14, 1230025. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Taneja, N.K.; Raposo, A.; Alarifi, S.N.; Teixeira-Lemos, E.; Lima, M.J.; Gonçalves, J.C.; Dhewa, T. Exploring Prebiotic Properties and Its Probiotic Potential of New Formulations of Soy Milk-Derived Beverages. Front. Microbiol. 2024, 15, 1404907. [Google Scholar] [CrossRef] [PubMed]
- Madjirebaye, P.; Peng, F.; Huang, T.; Liu, Z.; Mueed, A.; Pahane, M.M.; Guan, Q.; Xiao, M.; Du, T.; Wei, B.; et al. Effects of Fermentation Conditions on Bioactive Substances in Lactic Acid Bacteria-Fermented Soymilk and Its Storage Stability Assessment. Food Biosci. 2022, 50, 102207. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Zhang, X.; Zeng, J.; Zou, J.; Zhang, L.; Gong, P. Texture Analysis and Physicochemical Characteristics of Fermented Soymilk Gel by Different Lactic Acid Bacteria. Food Hydrocoll. 2023, 136, 108252. [Google Scholar] [CrossRef]
- Yang, X.; Ke, C.; Li, L. Physicochemical, Rheological and Digestive Characteristics of Soy Protein Isolate Gel Induced by Lactic Acid Bacteria. J. Food Eng. 2021, 292, 110243. [Google Scholar] [CrossRef]
- Hati, S.; Patel, N.; Mandal, S. Comparative Growth Behaviour and Biofunctionality of Lactic Acid Bacteria During Fermentation of Soy Milk and Bovine Milk. Probiotics Antimicro. Prot. 2018, 10, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Kokkiligadda, A.; Dasriya, V.; Naithani, H. Functional Relevance and Health Benefits of Soymilk Fermented by Lactic Acid Bacteria. J. Appl. Microbiol. 2022, 133, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Shum, T.-F.; Chiou, J. Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation. Microorganisms 2021, 9, 2544. [Google Scholar] [CrossRef] [PubMed]
- Harlé, O.; Falentin, H.; Niay, J.; Valence, F.; Courselaud, C.; Chuat, V.; Maillard, M.-B.; Guédon, É.; Deutsch, S.-M.; Thierry, A. Diversity of the Metabolic Profiles of a Broad Range of Lactic Acid Bacteria in Soy Juice Fermentation. Food Microbiol. 2020, 89, 103410. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; Jiménez-Hernández, E.; Palou, E.; López-Malo, A. Viability of Lactobacillus Fermentum Microencapsulated in Flavoured Alginate Beads and Added to a Gelatine Dessert. J. Funct. Foods 2017, 38, 447–453. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Watcharapoka, S. Effect of Addition of Inulin and Galactooligosaccharide on the Survival of Microencapsulated Probiotics in Alginate Beads Coated with Chitosan in Simulated Digestive System, Yogurt and Fruit Juice. LWT–Food Sci. Technol. 2014, 57, 761–766. [Google Scholar] [CrossRef]
- Hasan, M.; Meena, N.L.; Krishnan, V.; Rudra, S.G.; Dahuja, A. Impact of Storage on Probiotic Viability, Nutritional and Sensory Quality of Fermented Soymilk Produced from Different Soybean Varieties. Legume Res. 2023, 46, 721–727. [Google Scholar] [CrossRef]
- Rodklongtan, A.; La-ongkham, O.; Nitisinprasert, S.; Chitprasert, P. Enhancement of Lactobacillus Reuteri KUB-AC5 Survival in Broiler Gastrointestinal Tract by Microencapsulation with Alginate-Chitosan Semi-Interpenetrating Polymer Networks. J. Appl. Microbiol. 2014, 117, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Edo, G.I.; Mafe, A.N.; Razooqi, N.F.; Umelo, E.C.; Gaaz, T.S.; Isoje, E.F.; Igbuku, U.A.; Akpoghelie, P.O.; Opiti, R.A.; Essaghah, A.E.A.; et al. Advances in Bio-Polymer Coatings for Probiotic Microencapsulation: Chitosan and beyond for Enhanced Stability and Controlled Release. Des. Monomers Polym. 2025, 28, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.S.; Grosso, C.R.F.; Gigante, M.L. Effect of Microencapsulation of Lactobacillus Acidophilus LA-5 on Physicochemical, Sensory and Microbiological Characteristics of Stirred Probiotic Yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Do, N.H.N.; Truong, Q.T.; Le, P.K.; Ha, A.C. Recent Developments in Chitosan Hydrogels Carrying Natural Bioactive Compounds. Carbohydr. Polym. 2022, 294, 119726. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Quilaqueo, M.; Morales-Medina, R.; Drusch, S.; Navia, R.; Montillet, A.; Rubilar, M.; Poncelet, D.; Galvez-Jiron, F.; Acevedo, F. Pectin–Chitosan Hydrogel Beads for Delivery of Functional Food Ingredients. Foods 2024, 13, 2885. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Kaushik, B.; Rao, G.K.; Srivastava, C.M.; Vaya, D. Advances and Challenges in the Use of Chitosan and Its Derivatives in Biomedical Fields: A Review. Carbohydr. Polym. Technol. Appl. 2023, 5, 100323. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of Encapsulation Techniques of Probiotics for Yoghurt. Int. Dairy J. 2003, 13, 3–13. [Google Scholar] [CrossRef]
- Abbas, M.S.; Saeed, F.; Afzaal, M.; Jianfeng, L.; Hussain, M.; Ikram, A.; Jabeen, A. Recent Trends in Encapsulation of Probiotics in Dairy and Beverage: A Review. Food Process Preserv. 2022, 46, 1–16. [Google Scholar] [CrossRef]
- Aspri, M.; Papademas, P.; Tsaltas, D. Review on Non-Dairy Probiotics and Their Use in Non-Dairy Based Products. Fermentation 2020, 6, 30. [Google Scholar] [CrossRef]
- Anal, A.K.; Singh, H. Recent Advances in Microencapsulation of Probiotics for Industrial Applications and Targeted Delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Microencapsulation of Probiotics for Gastrointestinal Delivery. J. Control. Release 2012, 162, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Déru, L.; David, G.; Auvergne, R. Chitosan Chemistry Review for Living Organisms Encapsulation. Carbohydr. Polym. 2022, 295, 119877. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, S.; Gandomi, H.; Misaghi, A.; Bokaei, S.; Noori, N. The Effect of Alginate and Chitosan Concentrations on Some Properties of Chitosan-Coated Alginate Beads and Survivability of Encapsulated Lactobacillus Rhamnosus in Simulated Gastrointestinal Conditions and during Heat Processing: Alginate and Chitosan Concentration Effects on Encapsulated L. Rhamnosus Survival. J. Sci. Food Agric. 2014, 94, 2210–2216. [Google Scholar] [CrossRef] [PubMed]
- Erdélyi, L.; Fenyvesi, F.; Gál, B.; Haimhoffer, Á.; Vasvári, G.; Budai, I.; Remenyik, J.; Bereczki, I.; Fehér, P.; Ujhelyi, Z.; et al. Investigation of the Role and Effectiveness of Chitosan Coating on Probiotic Microcapsules. Polymers 2022, 14, 1664. [Google Scholar] [CrossRef] [PubMed]
- Sbehat, M.; Mauriello, G.; Altamimi, M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in Microencapsulation of Probiotics: A Review. Comp. Rev. Food Sci. Food Safe 2020, 19, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.J.; Cedran, M.F.; Pereira, G.A.; Bicas, J.L.; Sato, H.H. Effective Encapsulation of Reuterin-Producing Limosilactobacillus Reuteri in Alginate Beads Prepared with Different Mucilages/Gums. Biotechnol. Rep. 2022, 34, e00737. [Google Scholar] [CrossRef] [PubMed]
- Atta, A.S.; Ali, H.I.; Niamah, A.K. Effect of Encapsulated Bacteria Limosilactobacillus Reuteri on the Physicochemical, Microbial, and Sensory Characteristics of Yogurt Produced from Sheep’s Milk. IOP Conf. Ser. Earth Environ. Sci. 2025, 1487, 012112. [Google Scholar] [CrossRef]
- Roy, D.; Savard, P.; Guertin, N.; Martoni, C.J.; Jones, M.L.; Champagne, C.P. Viability of lactobacillus reuteri ncimb 30242 during storage in fruit juice and soy beverage. J. Microb. Biotech. Food Sci. 2016, 5, 320–325. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef] [PubMed]
- De Prisco, A.; Mauriello, G. Probiotication of Foods: A Focus on Microencapsulation Tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Eratte, D.; McKnight, S.; Gengenbach, T.R.; Dowling, K.; Barrow, C.J.; Adhikari, B.P. Co-Encapsulation and Characterisation of Omega-3 Fatty Acids and Probiotic Bacteria in Whey Protein Isolate–Gum Arabic Complex Coacervates. J. Funct. Foods 2015, 19, 882–892. [Google Scholar] [CrossRef]
- Vijaya Kumar, B.; Vijayendra, S.V.N.; Reddy, O.V.S. Trends in Dairy and Non-Dairy Probiotic Products—A Review. J. Food Sci. Technol. 2015, 52, 6112–6124. [Google Scholar] [CrossRef] [PubMed]
- Krasaekoopt, W.; Tandhanskul, A. Sensory and Acceptance Assessment of Yogurt Containing Probiotic Beads in Thailand. Agric. Nat. Resour. 2008, 42, 99–106. [Google Scholar]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
Encapsulation Combination | Alginate (%) | Chitosan (%) | Bead Size (mm) * |
---|---|---|---|
E1 | 1 | 0 | 1.65 ± 0.04 d |
E2 | 2 | 0 | 2.10 ± 0.05 b |
E3 | 3 | 0 | 2.35 ± 0.09 a |
E4 | 1 | 0.4 | 1.51 ± 0.06 de |
E5 | 2 | 0.4 | 1.91 ± 0.04 c |
E6 | 3 | 0.4 | 2.25 ± 0.03 a |
E7 | 1 | 0.8 | 1.45 ± 0.04 e |
E8 | 2 | 0.8 | 1.85 ± 0.04 c |
E9 | 3 | 0.8 | 2.10 ± 0.05 b |
Control 1 | 0 | 0 | --- |
Parameter/Component | Reconstituted Soymilk |
---|---|
pH | 6.93 ± 0.01 |
Titratable acidity 1 (%) | 0.18 ± 0.06 |
°Brix | 8.51 ± 0.17 |
Moisture (g/100 g) | 89.40 ± 0.25 |
Fat (g/100 g) | 3.65 ± 0.75 |
Protein (g/100 g) | 4.81 ± 0.62 |
Ash (g/100 g) | 0.61 ± 0.04 |
Carbohydrates (g/100 g) | 1.50 ± 0.14 |
Day | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | Free Cells |
---|---|---|---|---|---|---|---|---|---|---|
0 | 8.0 ± 0.2 aB | 8.0 ± 0.2 aB | 8.0 ± 0.2 aB | 7.5 ± 0.2 aC | 7.5 ± 0.2 C | 7.5 ± 0.2 aC | 7.5 ± 0.2 aC | 7.5 ± 0.2 aC | 8.0 ± 0.2 aB | 9.0 ± 0.2 aA |
3 | 7.4 ± 0.1 bcBC | 7.2 ± 0.1 bcC | 7.4 ± 0.1 bcBC | 7.3 ± 0.1 abC | 7.2 ± 0.1 C | 7.2 ± 0.1 abcC | 7.4 ± 0.1 abBC | 7.4 ± 0.1 aBC | 7.8 ± 0.2 aB | 8.9 ± 0.2 aA |
6 | 7.2 ± 0.1 cC | 7.0 ± 0.1 cC | 7.3 ± 0.1 cBC | 7.0 ± 0.1 bcC | 7.4 ± 0.1 aBC | 7.1 ± 0.1 abcdC | 7.0 ± 0.1 bcC | 7.0 ± 0.1 bC | 7.7 ± 0.2 aAB | 8.1 ± 0.2 bA |
9 | 7.7 ± 0.2 abA | 7.6 ± 0.2 abAB | 7.7 ± 0.2 abcA | 7.2 ± 0.1 abBCD | 7.5 ± 0.2 aABC | 7.3 ± 0.1 abABDC | 6.9 ± 0.1 cDE | 6.7 ± 0.1 bcE | 7.0 ± 0.1 bDE | 7.1 ± 0.1 cCDE |
12 | 7.6 ± 0.2 abcAB | 7.8 ± 0.2 aA | 7.6 ± 0.2 abcAB | 6.7 ± 0.1 cdeC | 7.3 ± 0.1 aB | 6.8 ± 0.1 cdeC | 6.8 ± 0.1 cC | 6.4 ± 0.1 cdC | 6.6 ± 0.1 bcC | 6.8 ± 0.1 cC |
15 | 7.6 ± 0.2 abcAB | 7.9 ± 0.2 aA | 7.6 ± 0.2 abcAB | 6.5 ± 0.1 defC | 7.2 ± 0.1 aB | 6.7 ± 0.1 deC | 6.7 ± 0.1 cC | 6.3 ± 0.1 dC | 6.5 ± 0.1 cC | 6.4 ± 0.1 dC |
18 | 7.5 ± 0.2 bcAB | 7.8 ± 0.2 aA | 7.6 ± 0.2 abcAB | 6.3 ± 0.1 fDE | 7.2 ± 0.1 aB | 6.6 ± 0.1 eCD | 6.8 ± 0.1 cC | 6.2 ± 0.1 dE | 6.4 ± 0.1 cDE | 5.7 ± 0.1 eF |
21 | 7.5 ± 0.2 bcAB | 7.8 ± 0.2 aA | 7.7 ± 0.2 abcA | 6.2 ± 0.1 fD | 7.3 ± 0.1 aB | 6.7 ± 0.1 deC | 6.8 ± 0.1 cC | 6.3 ± 0.1 dD | 6.5 ± 0.1 cCD | 5.0 ± 0.1 fE |
24 | 7.6 ± 0.2 abcAB | 7.9 ± 0.2 aA | 7.8 ± 0.2 abAB | 6.4 ± 0.1 efD | 7.5 ± 0.2 aB | 6.9 ± 0.1 bcdeC | 6.9 ± 0.1 cC | 6.2 ± 0.1 dD | 6.5 ± 0.1 cD | 4.8 ± 0.1 fgE |
27 | 7.6 ± 0.2 abcAB | 7.8 ± 0.2 aA | 7.9 ± 0.2 aA | 6.8 ± 0.1 cdCD | 7.4 ± 0.1 aBC | 6.8 ± 0.1 cdeCD | 6.9 ± 0.1 cC | 6.2 ± 0.1 dE | 6.5 ± 0.1 cDE | 4.4 ± 0.1 gF |
Peach Soy Yogurt | Color | Texture | Flavor | Odor | Acceptability |
---|---|---|---|---|---|
Alginate (3%) beads/without chitosan | 7.24 ± 0.35 a | 6.95 ± 0.29 a | 6.88 ± 0.47 a | 6.43 ± 0.34 a | 6.98 ± 0.37 a |
Alginate (2%) beads/with chitosan (0.4%) | 7.38 ± 0.38 a | 6.76 ± 0.35 a | 6.86 ± 0.42 a | 6.33 ± 0.72 a | 7.00 ± 0.39 a |
Without beads | 7.14 ± 0.85 a | 6.96 ± 0.89 a | 6.58 ± 0.37 a,b | 6.53 ± 0.36 a | 6.90 ± 0.31 a |
With free cells | 6.90 ± 0.78 a | 6.06 ± 0.48 a | 5.80 ± 0.45 b | 6.03 ± 0.49 a | 6.01 ± 0.49 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Figueroa, R.H.; Ramírez, Y.D.; López-Malo, A.; Mani-López, E. Enhancing Soy Yogurt with Microencapsulated Limosilactobacillus reuteri: Viability and Sensory Acceptability. Fermentation 2025, 11, 423. https://doi.org/10.3390/fermentation11080423
Hernández-Figueroa RH, Ramírez YD, López-Malo A, Mani-López E. Enhancing Soy Yogurt with Microencapsulated Limosilactobacillus reuteri: Viability and Sensory Acceptability. Fermentation. 2025; 11(8):423. https://doi.org/10.3390/fermentation11080423
Chicago/Turabian StyleHernández-Figueroa, Ricardo H., Yani D. Ramírez, Aurelio López-Malo, and Emma Mani-López. 2025. "Enhancing Soy Yogurt with Microencapsulated Limosilactobacillus reuteri: Viability and Sensory Acceptability" Fermentation 11, no. 8: 423. https://doi.org/10.3390/fermentation11080423
APA StyleHernández-Figueroa, R. H., Ramírez, Y. D., López-Malo, A., & Mani-López, E. (2025). Enhancing Soy Yogurt with Microencapsulated Limosilactobacillus reuteri: Viability and Sensory Acceptability. Fermentation, 11(8), 423. https://doi.org/10.3390/fermentation11080423