Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Chemicals
2.2. Prediction of Genes
2.3. Gene Cloning, Expression, and Protein Purification
2.4. Enzyme Activity Determination
2.5. Effect of Temperature on Lipase Activity and Stability
2.6. Effect of pH on Lipase Activity and Stability
2.7. Effects of Organic Solvents on Lipase Activity
2.8. Effects of Metal Ions and Surfactants on Lipase Activity
2.9. Substrate-Specific Analysis of Lipases
2.10. Selective Specificity Analysis of Lipases
2.11. Nucleotide Sequence Entry Number
3. Results and Discussion
3.1. Gene Cloning, Sequence Analysis, and Molecular Modeling
3.2. Expression and Purification of LipU
3.3. Effect of pH and Temperature on LipU Activity
3.4. Substrate Specificity of LipU
3.5. Effect of Metal Ions on the Activity of Recombinant LipU
3.6. Effects of Surfactants and Organic Solvents on LipU
3.7. Regional Selectivity of LipU
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial Lipases and Their Industrial Applications: A Comprehensive Review. Microb. Cell Factories 2020, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, A.; Palanisamy, A.; Thangavelu, V. Lipase Catalyzed Ester Synthesis for Food Processing Industries. Braz. Arch. Biol. Technol. 2009, 52, 207–219. [Google Scholar] [CrossRef]
- Yang, W.; Cao, H.; Xu, L.; Zhang, H.; Yan, Y. A Novel Eurythermic and Thermostale Lipase LipM from Pseudomonas moraviensis M9 and Its Application in the Partial Hydrolysis of Algal Oil. BMC Biotechnol. 2015, 15, 94. [Google Scholar] [CrossRef]
- Javed, S.; Azeem, F.; Hussain, S.; Rasul, I.; Siddique, M.H.; Riaz, M.; Afzal, M.; Kouser, A.; Nadeem, H. Bacterial Lipases: A Review on Purification and Characterization. Prog. Biophys. Mol. Biol. 2018, 132, 23–34. [Google Scholar] [CrossRef]
- Gricajeva, A.; Bendikienė, V.; Kalėdienė, L. Lipase of Bacillus Stratosphericus L1: Cloning, Expression and Characterization. Int. J. Biol. Macromol. 2016, 92, 96–104. [Google Scholar] [CrossRef]
- Ali, S.; Khan, S.A.; Hamayun, M.; Lee, I.-J. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023, 11, 510. [Google Scholar] [CrossRef]
- Brillard, J.; Jéhanno, I.; Dargaignaratz, C.; Barbosa, I.; Ginies, C.; Carlin, F.; Fedhila, S.; Nguyen-the, C.; Broussolle, V.; Sanchis, V. Identification of Bacillus Cereus Genes Specifically Expressed during Growth at Low Temperatures. Appl. Environ. Microbiol. 2010, 76, 2562–2573. [Google Scholar] [CrossRef] [PubMed]
- Mhetras, N.; Mapare, V.; Gokhale, D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl. Biochem. Biotechnol. 2021, 193, 2245–2266. [Google Scholar] [CrossRef]
- Su, H.; Mai, Z.; Yang, J.; Xiao, Y.; Tian, X.; Zhang, S. Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071. J. Microbiol. Biotechnol. 2016, 26, 1067–1076. [Google Scholar] [CrossRef]
- Abdella, B.; Youssif, A.M.; Sabry, S.A.; Ghozlan, H.A. Production, Purification, and Characterization of Cold-Active Lipase from the Psychrotroph pseudomonas sp. A6. Braz. J. Microbiol. 2023, 54, 1623–1633. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Zhu, Z.-R.; Liu, Q.-G.; An, Y.-T.; Wang, Y.-X.; Zhang, S.-B.; Li, G. Characterization of a Novel Thermostable Alkaline Lipase Derived from a Compost Metagenomic Library and Its Potential Application in the Detergent Industry. Front. Microbiol. 2022, 13, 1088581. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Qin, Y.; Pan, L.; Li, Y.; Liang, G.; Wang, Q. Isolation and Characterization of a Novel Bacterium Burkholderia gladioli Bsp-1 Producing Alkaline Lipase. J. Microbiol. Biotechnol. 2019, 29, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.W.M.; Abd El Latif, H.H.; Ali, S.M. Production of Cold-Active Lipase by Free and Immobilized Marine Bacillus Cereus HSS: Application in Wastewater Treatment. Front. Microbiol. 2018, 9, 2377. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Jaeger, K.E. Bacterial Lipolytic Enzymes: Classification and Properties. Biochem. J. 1999, 343, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Salas-Bruggink, D.; Guzmán, H.; Espina, G.; Blamey, J.M. Recombinant Expression and Characterization of a Novel Thermo-Alkaline Lipase with Increased Solvent Stability from the Antarctic Thermophilic Bacterium Geobacillus sp. ID17. Int. J. Mol. Sci. 2024, 25, 7928. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, J.; Shen, S.; Zhang, B.; Yu, W.W. Magnetic Responsive Thermomyces lanuginosus Lipase for Biodiesel Synthesis. Mater. Today Commun. 2020, 24, 101197. [Google Scholar] [CrossRef]
- de Carvalho Silva, A.K.; Lima, F.J.L.; Borges, K.R.A.; Wolff, L.A.S.; de Andrade, M.S.; de Nazaré Silva Alves, R.; Cordeiro, C.B.; da Silva, M.A.C.N.; do Desterro Soares Brandão Nascimento, M.; da Silva Espósito, T.; et al. Utilization of Fusarium Solani Lipase for Enrichment of Polyunsaturated Omega-3 Fatty Acids. Braz. J. Microbiol. 2024, 55, 2211–2226. [Google Scholar] [CrossRef]
- Li, S.; Luo, F.; Chattha, S.A.; Zhang, C.; Peng, B.; Mu, C. Surfactant-Free Beamhouse Technology of Leather Manufacturing: Removing Constraints for the Breakdown of Natural Fats Catalyzed by Lipase. J. Clean. Prod. 2020, 261, 121187. [Google Scholar] [CrossRef]
- Pounsamy, M.; Somasundaram, S.; Palanivel, S.; Ganesan, S. Removal of Fat Components in High TDS Leather Wastewater by Saline-Tolerant Lipase-Assisted Nanoporous-Activated Carbon. Appl. Biochem. Biotechnol. 2019, 187, 474–492. [Google Scholar] [CrossRef]
- Zheng, X.; Chu, X.; Zhang, W.; Wu, N.; Fan, Y. A Novel Cold-Adapted Lipase from Acinetobacter Sp. XMZ-26: Gene Cloning and Characterisation. Appl. Microbiol. Biotechnol. 2011, 90, 971–980. [Google Scholar] [CrossRef]
- Shuo-shuo, C.; Xue-zheng, L.; Ji-hong, S. Effects of Co-Expression of Molecular Chaperones on Heterologous Soluble Expression of the Cold-Active Lipase Lip-948. Protein Expr. Purif. 2011, 77, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Khurana, J.; Kumar, R.; Kumar, A.; Singh, K.; Singh, R.; Kaur, J. New Insight into Old Bacillus Lipase: Solvent Stable Mesophilic Lipase Demonstrating Enzyme Activity towards Cold. J. Mol. Microbiol. Biotechnol. 2015, 25, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, L.-R.; Xu, G.; Wu, J.-P. Cloning and Characterization of a Novel Lipase from Stenotrophomonas maltophilia GS11: The First Member of a New Bacterial Lipase Family XVI. Appl. Microbiol. Biotechnol. 2016, 228, 30–36. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Qian, Y.-K.; Li, Z.-F.; Wu, Z.-H.; Liu, H.; Li, Y.-Z. A Novel Cold-Adapted Lipase from Sorangium cellulosum Strain So0157-2: Gene Cloning, Expression, and Enzymatic Characterization. Int. J. Mol. Sci. 2018, 12, 6765–6780. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Guo, L.; Dang, H. Gene Cloning, Expression and Characterization of a Cold-Adapted Lipase from a Psychrophilic Deep-Sea Bacterium Psychrobacter sp. C18. World J. Microbiol. Biotechnol. 2011, 12, 431–441. [Google Scholar] [CrossRef]
- Kamarudin, N.H.A.; Rahman, R.N.Z.R.A.; Ali, M.S.M.; Leow, T.C.; Basri, M.; Salleh, A.B. A New Cold-Adapted, Organic Solvent Stable Lipase from Mesophilic Staphylococcus Epidermidis AT2. Protein J. 2014, 33, 296–307. [Google Scholar] [CrossRef]
- Ji, X.; Li, S.; Wang, B.; Zhang, Q.; Lin, L.; Dong, Z.; Wei, Y. Expression, Purification and Characterization of a Functional, Recombinant, Cold-Active Lipase (LipA) from Psychrotrophic Yersinia Enterocolitica. Protein Expr. Purif. 2015, 115, 125–131. [Google Scholar] [CrossRef]
- Yan, Q.; Duan, X.; Liu, Y.; Jiang, Z.; Yang, S. Expression and Characterization of a Novel 1,3-Regioselective Cold-Adapted Lipase from Rhizomucor Endophyticus Suitable for Biodiesel Synthesis. Biotechnol. Biofuels 2016, 9, 86. [Google Scholar] [CrossRef]
- Xu, H.; Lan, D.; Yang, B.; Wang, Y. Biochemical Properties and Structure Analysis of a DAG-Like Lipase from Malassezia Globosa. Int. J. Mol. Sci. 2015, 16, 4865–4879. [Google Scholar] [CrossRef]
- Lan, D.-M.; Yang, N.; Wang, W.-K.; Shen, Y.-F.; Yang, B.; Wang, Y.-H. A Novel Cold-Active Lipase from Candida Albicans: Cloning, Expression and Characterization of the Recombinant Enzyme. Int. J. Mol. Sci. 2011, 12, 3950–3965. [Google Scholar] [CrossRef]
- Cai, Y.; Xing, S.; Zhang, Q.; Zhu, R.; Cheng, K.; Li, C.; Zeng, X.; He, L. Expression, Purification, Properties, and Substrate Specificity Analysis of Aspergillus Niger GZUF36 Lipase in Escherichia Coli. Process Biochem. 2021, 111, 118–127. [Google Scholar] [CrossRef]
- Albayati, S.H.; Masomian, M.; Ishak, S.N.H.; Mohamad Ali, M.S.b.; Thean, A.L.; Mohd Shariff, F.b.; Muhd Noor, N.D.b.; Raja Abd Rahman, R.N.Z. Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts 2020, 10, 747. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; Neto, F.S.; Rafael de Aguiar Falcão, I.; Erick da Silva Souza, J.; de Moura Junior, L.S.; da Silva Sousa, P.; Rocha, T.G.; de Sousa, I.G.; de Lima Gomes, P.H.; de Souza, M.C.M.; et al. Opportunities for Improving Biodiesel Production via Lipase Catalysis. Fuel 2021, 288, 119577. [Google Scholar] [CrossRef]
- Hu, Z.; Jiao, L.; Xie, X.; Xu, L.; Yan, J.; Yang, M.; Yan, Y. Characterization of a New Thermostable and Organic Solution-Tolerant Lipase from Pseudomonas Fluorescens and Its Application in the Enrichment of Polyunsaturated Fatty Acids. Int. J. Mol. Sci. 2023, 24, 8924. [Google Scholar] [CrossRef] [PubMed]
- Guncheva, M.; Zhiryakova, D. Catalytic Properties and Potential Applications of Bacillus Lipases. J. Mol. Catal. B Enzym. 2011, 68, 1–21. [Google Scholar] [CrossRef]
- Lu, J.; Wang, P.; Ke, Z.; Liu, X.; Kang, Q.; Hao, L. Effect of Metal Ions on the Enzymatic Hydrolysis of Hemp Seed Oil by Lipase Candida Sp. 99–125. Int. J. Biol. Macromol. 2018, 114, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, M.; Ali, A. Effect of Metal Ions on the Hydrolytic and Transesterification Activities of Candida Rugosa Lipase. J. Oleo Sci. 2013, 62, 919–924. [Google Scholar] [CrossRef]
- Lee, S.Y.; Rhee, J.S. Production and Partial Purification of a Lipase from Pseudomonas Putida 3SK. Enzyme Microb. Technol. 1993, 15, 617–623. [Google Scholar] [CrossRef]
- Shehata, M.; Timucin, E.; Venturini, A.; Sezerman, O.U. Understanding Thermal and Organic Solvent Stability of Thermoalkalophilic Lipases: Insights from Computational Predictions and Experiments. J. Mol. Model. 2020, 26, 122. [Google Scholar] [CrossRef]
- Diaz, J.C.M.; Cordova, J.; Baratti, J.; Carriere, F.; Abousalham, A. Effect of Nonionic Surfactants on Rhizopus Homothallicus Lipase Activity. Mol. Biotechnol. 2007, 35, 205–214. [Google Scholar] [CrossRef]
- Lai, D.T.; O’Connor, C.J. Synergistic Effects of Surfactants on Kid Pregastric Lipase Catalyzed Hydrolysis Reactions. Langmuir 2000, 16, 115–121. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Ma, C. Enzymology in Surfactant Association Systems. J. Dispers. Sci. Technol. 2000, 21, 409–432. [Google Scholar] [CrossRef]
- Belle, V.; Fournel, A.; Woudstra, M.; Ranaldi, S.; Prieri, F.; Thomé, V.; Currault, J.; Verger, R.; Guigliarelli, B.; Carrière, F. Probing the Opening of the Pancreatic Lipase Lid Using Site-Directed Spin Labeling and EPR Spectroscopy. Biochemistry 2007, 46, 2205–2214. [Google Scholar] [CrossRef]
- Salameh, M.A.; Wiegel, J. Effects of Detergents on Activity, Thermostability and Aggregation of Two Alkalithermophilic Lipases from Thermosyntropha Lipolytica. Open Biochem. J. 2010, 4, 22–28. [Google Scholar] [CrossRef]
- Quyen, D.T.; Schmidt-Dannert, C.; Schmid, R.D. High-Level Expression of a Lipase from Bacillus Thermocatenulatus BTL2 in Pichia Pastoris and Some Properties of the Recombinant Lipase. Protein Expr. Purif. 2003, 28, 102–110. [Google Scholar] [CrossRef]
- Sunna, A.; Hunter, L.; Hutton, C.A.; Bergquist, P.L. Biochemical Characterization of a Recombinant Thermoalkalophilic Lipase and Assessment of Its Substrate Enantioselectivity. Enzym. Microb. Technol. 2002, 31, 472–476. [Google Scholar] [CrossRef]
- Delorme, V.; Dhouib, R.; Canaan, S.; Fotiadu, F.; Carrière, F.; Cavalier, J.-F. Effects of Surfactants on Lipase Structure, Activity, and Inhibition. Pharm. Res. 2011, 28, 1831–1842. [Google Scholar] [CrossRef]
- Sarkar, P.; Yamasaki, S.; Basak, S.; Bera, A.; Bag, P.K. Purification and Characterization of a New Alkali-Thermostable Lipase from Staphylococcus Aureus Isolated from Arachis Hypogaea Rhizosphere. Process Biochem. 2012, 47, 858–866. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.; Xu, Y. Homologous Expression, Purification and Characterization of a Novel High-Alkaline and Thermal Stable Lipase from Burkholderia cepacia ATCC 25416. Enzym. Microb. Technol. 2009, 45, 94–102. [Google Scholar] [CrossRef]
- Masomian, M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Basri, M. A New Thermostable and Organic Solvent-Tolerant Lipase from Aneurinibacillus Thermoaerophilus Strain HZ. Process Biochem. 2013, 48, 169–175. [Google Scholar] [CrossRef]
- Samoylova, Y.V.; Sorokina, K.N.; Romanenko, M.V.; Parmon, V.N. Cloning, Expression and Characterization of the Esterase estUT1 from Ureibacillus Thermosphaericus Which Belongs to a New Lipase Family XVIII. Extremophiles 2018, 22, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.K.; Davidson, W.S.; Sheoran, A.; Giri, B. Purification and Characterization of an Alkaline Thermostable Lipase from Aspergillus Carneus. Process Biochem. 2003, 39, 239–247. [Google Scholar] [CrossRef]
- Liu, G.; Hu, S.; Li, L.; Hou, Y. Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512. Lipids 2015, 50, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Laguerre, M.; Nlandu Mputu, M.; Brïys, B.; Lopez, M.; Villeneuve, P.; Dubreucq, E. Regioselectivity and Fatty Acid Specificity of Crude Lipase Extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa. Eur. J. Lipid Sci. Technol. 2017, 119, 1600302. [Google Scholar] [CrossRef]
- Pratuangdejkul, J.; Dharmsthiti, S. Purification and Characterization of Lipase from Psychrophilic Acinetobacter Calcoaceticus LP009. Microbiol. Res. 2000, 155, 95–100. [Google Scholar] [CrossRef]
Steps | Total Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification (Fold) | Recovery (%) |
---|---|---|---|---|---|
Supernatant | 25.6 | 2576 | 100.625 | 1 | 100 |
Purified LipU | 3.68 | 1334 | 362.5 | 3.602 | 51.78 |
Source Strains | Optimum Temperature (℃) | Optimum pH | References |
---|---|---|---|
Bacillus cereus | 20 | 11.0 | This study |
Acinetobacter sp. XMZ-26 | 15 | 10.0 | [20] |
Psychrobacter sp. G | 35 | 8.0 | [21] |
Bacillus | 35 | 8.0 | [22] |
Stenotrophomonas maltophilia GS11 | 35 | 8.0 | [23] |
Sorangium cellulosum Strain So0157-2 | 30 | 8.0 | [24] |
Psychrobacter sp. C18 | 30 | 8.0 | [25] |
Staphylococcus epidermidis AT2 | 25 | 8.0 | [26] |
psychrotrophic Yersinia enterocolitica | 25 | 7.0 | [27] |
Rhizomucor endophyticus | 40 | 6.0 | [28] |
Malassezia globosa | 15 | 6.0 | [29] |
Candida albicans | 15 | 5.0 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Li, N.; Qin, Y.; Xian, L.; Zhou, J.; Liu, S.; Zhang, J.; Wu, J.; Wang, Q.; Liang, X. Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2. Fermentation 2025, 11, 365. https://doi.org/10.3390/fermentation11070365
He B, Li N, Qin Y, Xian L, Zhou J, Liu S, Zhang J, Wu J, Wang Q, Liang X. Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2. Fermentation. 2025; 11(7):365. https://doi.org/10.3390/fermentation11070365
Chicago/Turabian StyleHe, Baoxiang, Ning Li, Yan Qin, Liang Xian, Jin Zhou, Sijia Liu, Jing Zhang, Jingtao Wu, Qingyan Wang, and Xinquan Liang. 2025. "Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2" Fermentation 11, no. 7: 365. https://doi.org/10.3390/fermentation11070365
APA StyleHe, B., Li, N., Qin, Y., Xian, L., Zhou, J., Liu, S., Zhang, J., Wu, J., Wang, Q., & Liang, X. (2025). Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2. Fermentation, 11(7), 365. https://doi.org/10.3390/fermentation11070365