Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability
Abstract
1. Introduction
2. Dual-Purpose Development of Microbial Metabolites
3. Dual Applications of Synthetic Biology Platforms
4. Extraction of Medicinal Components from Biorefinery Waste
5. Cross-Disciplinary Applications of Nanocatalysts
6. Synergistic Optimization via Computer-Aided Design
7. Co-Development of Extremophiles for Dual Applications
8. Integrated Utilization of Plant Secondary Metabolites
9. Overarching Challenges and Future Prospects for Integrated Co-Production
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustakas, K.; Loizidou, M.; Rehan, M.; Nizami, A.S. A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renew. Sustain. Energy Rev. 2020, 119, 109418. [Google Scholar] [CrossRef]
- Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M.L.; Rodríguez-Padrón, D.; Luque, R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem. Soc. Rev. 2021, 50, 11191–11207. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.A.; Hussein, H.A. Hussein. Integrated algal and oil palm biorefinery as a model system for bioenergy co-generation with bioproducts and biopharmaceuticals. Bioresour. Bioprocess. 2021, 8, 40. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Olaniyan, O.T.; Anani, O.A.; Bodunrinde, R.E.; Osemwegie, O.O.; Ubi, B.E. Chapter 17—Integrated processes for production of pharmaceutical products from agro-wastes. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 439–461. [Google Scholar]
- Kavitha, S.; Ravi, Y.K.; Gunasekaran, M.; Chattopadhyay, I.; Palani, S.; Kumar, V.; Kumar, G.; Jeyakumar, R.B. Development of an Integrated Biorefinery System for Bioconversion of Lignocellulosic Biomass to Polyhydroxyalkanoates and Biohydrogen. ACS Sustain. Chem. Eng. 2023, 11, 4606–4622. [Google Scholar]
- Marzban, N.; Psarianos, M.; Herrmann, C.; Schulz-Nielsen, L.; Olszewska-Widdrat, A.; Arefi, A.; Pecenka, R.; Grundmann, P.; Schlüter, O.K.; Hoffmann, T.; et al. Smart integrated biorefineries in bioeconomy: A concept toward zero-waste, emission reduction, and self-sufficient energy production. Biofuel Res. J. 2025, 12, 2319–2349. [Google Scholar] [CrossRef]
- Tang, D.Y.Y.; Yew, G.Y.; Koyande, A.K.; Chew, K.W.; Vo, D.-V.N.; Show, P.L. Green technology for the industrial production of biofuels and bioproducts from microalgae: A review. Environ. Chem. Lett. 2020, 18, 1967–1985. [Google Scholar] [CrossRef]
- Pérez-Almada, D.; Galán-Martín, Á.; Contreras, M.d.M.; Castro, E. Integrated techno-economic and environmental assessment of biorefineries: Review and future research directions. Sustain. Energy Fuels 2023, 7, 4031–4050. [Google Scholar] [CrossRef]
- Koyande, A.K.; Show, P.L.; Guo, R.; Tang, B.; Ogino, C.; Chang, J.S. Bio-processing of algal bio-refinery: A review on current advances and future perspectives. Bioengineered 2019, 10, 574–592. [Google Scholar] [CrossRef]
- Sari, Y.W.; Kartikasari, K.; Widyarani; Setyaningsih, I.; Lestari, D. Chapter 13—Techno-economic assessment of microalgae for biofuel, chemical, and bioplastic. In Microalgae; Galanakis, C.M., Ed.; Academic Press: London, UK, 2021; pp. 409–432. [Google Scholar]
- Rosero-Chasoy, G.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Buitrón, G.; Chairez, I.; Ruiz, H.A. Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation—An overview. Bioresour. Technol. 2021, 321, 124458. [Google Scholar] [CrossRef]
- Granata, T.; Rattenbacher, B.; Kehl, F.; Egli, M. Microbial factories and exploiting synergies of bioreactor technologies to produce bioproducts. Fermentation 2024, 10, 135. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, A.K.; Pal, P. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. Sci. Total Environ. 2020, 698, 134169. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Flores, F.G.; Martin-Martinez, F.J. Biorefineries: Achievements and challenges for a bio-based economy. Front. Chem. 2022, 10, 973417. [Google Scholar] [CrossRef]
- Costa, G.d.S.; Martinez-Burgos, W.J.; dos Reis, G.A.; Puche, Y.P.; Vega, F.R.; Rodrigues, C.; Serra, J.L.; Campos, S.d.M.; Soccol, C.R. Advances in biomass and microbial lipids production: Trends and prospects. Processes 2024, 12, 2903. [Google Scholar] [CrossRef]
- YousefiPour, M.; Gheibipour, M.; Yousefipour, M.; Gheibipour, F.; Dar, M.A. Chapter 25—Microbial production of biofuels: An insight into cocultivation, challenges, and future prospects. In Biofuels and Sustainability; Zhu, D., Dar, M.A., Shahnawaz, M., Eds.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2025; pp. 423–439. [Google Scholar]
- Tiku, V.; Kew, C.; Kofoed, E.M.; Peng, Y.; Dikic, I.; Tan, M.-W. Acinetobacter baumannii secretes a bioactive lipid that triggers inflammatory signaling and cell death. Front. Microbiol. 2022, 13, 870101. [Google Scholar] [CrossRef]
- Bjerk, T.R.; Severino, P.; Jain, S.; Marques, C.; Silva, A.M.; Pashirova, T.; Souto, E.B. Biosurfactants: Properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering 2021, 8, 115. [Google Scholar] [CrossRef]
- Wang, A.; Meng, D.; Hao, Q.; Xia, R.; Zhang, Q.; Ran, C.; Yang, Y.; Li, D.; Liu, W.; Zhang, Z. Effect of supplementation of solid-state fermentation product of Bacillus subtilis HGcc-1 to high-fat diet on growth, hepatic lipid metabolism, epidermal mucus, gut and liver health and gut microbiota of zebrafish. Aquaculture 2022, 560, 738542. [Google Scholar] [CrossRef]
- Saini, M.; Anu; Rapoport, A.; Tiwari, S.K.; Singh, D.; Malik, V.; Kumar, S.; Singh, B. Bioacetoin production by Bacillus subtilis subsp. subtilis using enzymatic hydrolysate of lignocellulosic biomass. Fermentation 2023, 9, 698. [Google Scholar] [CrossRef]
- Hippler, M.; Khosravitabar, F. Light-Driven H2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. Plants 2024, 13, 2114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Y.; Mo, J.; Wong, T.Y.; Liu, J.; Alessandro, P.; Tang, B.Z.; Wang, W.-X.; Yan, N. Bioprospecting of Chlamydomonas reinhardtii for boosting biofuel-related products production based on novel aggregation-induced emission active extracellular polymeric substances nanoprobes. Bioresour. Technol. 2024, 399, 130636. [Google Scholar] [CrossRef]
- Chen, Y.; Du, H.; Liang, H.; Hong, T.; Li, T. Enhanced Carotenoid Production in Chlamydomonas reinhardtii by Overexpression of Endogenousand Exogenous Beta-Carotene Ketolase (BKT) Genes. Int. J. Mol. Sci. 2023, 24, 11382. [Google Scholar] [CrossRef]
- Nailwal, V.; Mukherjee, T.; Mohan, S.V. Decoupling acidogenic cascade via bio-electrogenic induced ABE pathway for enhanced n-butanol synthesis in Clostridium acetobutylicum ATCC-824: Bioenergetics and gene expression analysis. Chem. Eng. J. 2024, 486, 150015. [Google Scholar] [CrossRef]
- Chang, W.L.; Hou, W.; Xu, M.; Yang, S.T. High-rate continuous n-butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single-pass fibrous-bed bioreactor. Biotechnol. Bioeng. 2022, 119, 3474–3486. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.K.; Agrawal, K.; Verma, P. Microalgae Dunaliella as biofuel feedstock and β-carotene production: An influential step towards environmental sustainability. Energy Convers. Manag. X 2022, 13, 100154. [Google Scholar] [CrossRef]
- Ludwig, K.; Rihko-Struckmann, L.; Brinitzer, G.; Unkelbach, G.; Sundmacher, K. β-Carotene extraction from Dunaliella salina by supercritical CO2. J. Appl. Phycol. 2021, 33, 1435–1445. [Google Scholar] [CrossRef]
- Vitucci, D.; Amoresano, A.; Nunziato, M.; Muoio, S.; Alfieri, A.; Oriani, G.; Scalfi, L.; Frusciante, L.; Rigano, M.M.; Pucci, P.; et al. Nutritional Controlled Preparation and Administration of Different Tomato Purées Indicate Increase of β-Carotene and Lycopene Isoforms, and of Antioxidant Potential in Human Blood Bioavailability: A Pilot Study. Nutrients 2021, 13, 1336. [Google Scholar] [CrossRef]
- Hosseini, A.; Jazini, M.; Mahdieh, M.; Karimi, K. Efficient superantioxidant and biofuel production from microalga Haematococcus pluvialis via a biorefinery approach. Bioresour. Technol. 2020, 306, 123100. [Google Scholar] [CrossRef]
- Zarei, Z.; Zamani, H. Biorefinery approach to stimulate astaxanthin and biofuel generation in microalga Haematococcus pluvialis under different light irradiance. Clean Technol. Environ. Policy 2024, 26, 3333–3347. [Google Scholar] [CrossRef]
- Masoudi, A.; Jorjani, M.; Alizadeh, M.; Mirzamohammadi, S.; Mohammadi, M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Res. Bull. 2021, 177, 324–331. [Google Scholar] [CrossRef]
- Sallet, D.; Ugalde, G.A.; Tres, M.V.; Mazutti, M.A.; Zabot, G.L.; Kuhn, R.C. Oil and Biodiesel Production from Mortierella isabellina Biomass by a Direct Near-Critical Fluid Extraction and Transesterification Method. Biomass 2025, 5, 6. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World J. Microbiol. Biotechnol. 2019, 35, 63. [Google Scholar] [CrossRef]
- Baker, E.J.; Valenzuela, C.A.; van Dooremalen, W.T.; Martínez-Fernández, L.; Yaqoob, P.; Miles, E.A.; Calder, P.C. Gamma-linolenic and pinolenic acids exert anti-inflammatory effects in cultured human endothelial cells through their elongation products. Mol. Nutr. Food Res. 2020, 64, 2000382. [Google Scholar] [CrossRef] [PubMed]
- Mussagy, C.U.; dos Santos, A.; Militão, G.F.; de Oliveira, J.C.S.; Umbuzeiro, G.d.A.; Peixoto, G.; Pessoa Jr, A.; Santos-Ebinuma, V.C. Phaffia rhodozyma biorefinery: A sustainable pathway to obtain natural pigments and production of methane biogas as renewable fuel. Chem. Eng. J. 2023, 473, 145350. [Google Scholar] [CrossRef]
- Lai, J.-X.; Chen, X.; Bu, J.; Hu, B.-B.; Zhu, M.-J. Direct production of astaxanthin from food waste by Phaffia rhodozyma. Process Biochem. 2022, 113, 224–233. [Google Scholar] [CrossRef]
- Jeong, Y.; Cho, S.H.; Lee, H.; Choi, H.K.; Kim, D.M.; Lee, C.G.; Cho, S.; Cho, B.K. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020, 8, 1849. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Alvarez-Rivera, G.; Vendruscolo, R.G.; Voss, M.; da Silva, P.A.; Barin, J.S.; Jacob-Lopes, E.; Zepka, L.Q.; Wagner, R. Green microsaponification-based method for gas chromatography determination of sterol and squalene in cyanobacterial biomass. Talanta 2021, 224, 121793. [Google Scholar] [CrossRef] [PubMed]
- Dash, A.; Banerjee, R. Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production. Energy 2021, 222, 119950. [Google Scholar] [CrossRef]
- Beliaeva, A.; Nianikova, G.; Rostovtseva, P. Chitin-chitosan complex from Rhizopus oryzae obtained on a pea culture medium, and some of its physicochemical properties. E3S Web Conf. 2020, 215, 06001. [Google Scholar] [CrossRef]
- El-Zawawy, N.A.; Ali, S.S.; Nouh, H.S. Exploring the potential of Rhizopus oryzae AUMC14899 as a novel endophytic fungus for the production of l-tyrosine and its biomedical applications. Microb. Cell Fact. 2023, 22, 31. [Google Scholar] [CrossRef]
- Guerfali, M.; Ayadi, I.; Ayadi, W.; Smaoui, S.; Elhadef, K.; Zaghden, H.; Jlaiel, L.; Sahli, E.; Belghith, H.; Gargouri, A. Concomitant production of multifunctional metabolites on biodiesel-derived crude glycerol by the oleaginous yeast Rhodotorula babjevae Y-SL7. Biomass Convers. Biorefin. 2024, 14, 10237–10250. [Google Scholar] [CrossRef]
- Garay, L.A.; Sitepu, I.R.; Cajka, T.; Cathcart, E.; Fiehn, O.; German, J.B.; Block, D.E.; Boundy-Mills, K.L. Simultaneous production of intracellular triacylglycerols and extracellular polyol esters of fatty acids by Rhodotorula babjevae and Rhodotorula aff. paludigena. J. Ind. Microbiol. Biotechnol. 2017, 44, 1397–1413. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Cheng, P.; Yu, G. Rhodotorula mucilaginosa—Alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022, 88, e10888. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sinisterra, A.F.; Ramírez-Castrillón, M. Yeast carotenoids: Production and activity as antimicrobial biomolecule. Arch. Microbiol. 2021, 203, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Byrtusová, D.; Szotkowski, M.; Kurowska, K.; Shapaval, V.; Márová, I. Rhodotorula kratochvilovae CCY 20-2-26—The source of multifunctional metabolites. Microorganisms 2021, 9, 1280. [Google Scholar] [CrossRef]
- Szotkowski, M.; Holub, J.; Šimanský, S.; Hubačová, K.; Sikorová, P.; Mariničová, V.; Němcová, A.; Márová, I. Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms 2021, 9, 1160. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.; Zhang, X.; Liu, S.; Zhao, C. Antitumor effect of soluble β-glucan as an immune stimulant. Int. J. Biol. Macromol. 2021, 179, 116–124. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Gurav, R.; Choi, Y.-K.; Lee, H.-J.; Kim, S.H.; Suh, M.J.; Cho, J.Y.; Ham, S.; Lee, S.H.; Choi, K.-Y. Rhodococcus sp. YHY01 a microbial cell factory for the valorization of waste cooking oil into lipids a feedstock for biodiesel production. Fuel 2021, 301, 121070. [Google Scholar] [CrossRef]
- Maltseva, P.Y.; Plotnitskaya, N.A.; Ivshina, I.B. Transformation of Terpenoids and Steroids Using Actinomycetes of the Genus Rhodococcus. Molecules 2024, 29, 3378. [Google Scholar] [CrossRef]
- Zappaterra, F.; Costa, S.; Summa, D.; Bertolasi, V.; Semeraro, B.; Pedrini, P.; Buzzi, R.; Vertuani, S. Biotransformation of cortisone with Rhodococcus rhodnii: Synthesis of new steroids. Molecules 2021, 26, 1352. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Zare, L.B.; Ghiasi, M. Biodiesel production from Spirulina algae oil over [Cu(H2PDC)(H2O)2] complex using transesterification reaction: Experimental study and DFT approach. Chem. Eng. J. 2022, 430, 132777. [Google Scholar] [CrossRef]
- Li, Y. The bioactivities of phycocyanobilin from spirulina. J. Immunol. Res. 2022, 2022, 4008991. [Google Scholar] [CrossRef]
- Naveira-Pazos, C.; Robles-Iglesias, R.; Fernández-Blanco, C.; Veiga, M.C.; Kennes, C. State-of-the-art in the accumulation of lipids and other bioproducts from sustainable sources by Yarrowia lipolytica. Rev. Environ. Sci. Bio/Technol. 2023, 22, 1131–1158. [Google Scholar] [CrossRef]
- Cao, L.; Yin, M.; Shi, T.-Q.; Lin, L.; Ledesma-Amaro, R.; Ji, X.-J. Engineering Yarrowia lipolytica to produce nutritional fatty acids: Current status and future perspectives. Synth. Syst. Biotechnol. 2022, 7, 1024–1033. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Ye, J.; Qi, Q.; Hou, J. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production. ACS Synth. Biol. 2021, 10, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Marsafari, M.; Koffas, M.; Zhou, J.; Xu, P. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synth. Biol. 2019, 8, 2514–2523. [Google Scholar] [CrossRef]
- Ru, Z.; Liu, M.; Chen, Q.; Li, H.; Ning, Y.; Zeng, W.; Zhou, J. High-Level De Novo Production of (2S)-Naringenin in Yarrowia lipolytica Using Metabolic and Enzyme Engineering. ACS Agric. Sci. Technol. 2025, 5, 784–793. [Google Scholar] [CrossRef]
- da Silva, J.L.; Sales, M.B.; de Castro Bizerra, V.; Nobre, M.M.R.; de Sousa Braz, A.K.; da Silva Sousa, P.; Cavalcante, A.L.; Melo, R.L.; Gonçalves De Sousa Junior, P.; Neto, F.S. Lipase from Yarrowia lipolytica: Prospects as an industrial biocatalyst for biotechnological applications. Fermentation 2023, 9, 581. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z.; et al. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef]
- Lehmann, D.; Radomski, N.; Lütke-Eversloh, T. New insights into the butyric acid metabolism of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 2012, 96, 1325–1339. [Google Scholar] [CrossRef]
- Dwidar, M.; Park, J.Y.; Mitchell, R.J.; Sang, B.I. The future of butyric acid in industry. Sci. World J. 2012, 2012, 471417. [Google Scholar] [CrossRef]
- Jia, J.; Chen, Z.; Li, Q.; Li, F.; Liu, S.; Bao, G. The enhancement of astaxanthin production in Phaffia rhodozyma through a synergistic melatonin treatment and zinc finger transcription factor gene overexpression. Front. Microbiol. 2024, 15, 1367084. [Google Scholar] [CrossRef]
- EElfeky, N.; Elmahmoudy, M.; Zhang, Y.; Guo, J.; Bao, Y. Lipid and Carotenoid Production by Rhodotorula glutinis with a Combined Cultivation Mode of Nitrogen, Sulfur, and Aluminium Stress. Fermentation 2019, 9, 2444. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Y.; Zhang, J.; Cai, Y.; He, Z. Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. J. Microbiol. Biotechnol. 2019, 29, 507–517. [Google Scholar] [CrossRef]
- Russo, N.; Ballotta, M.; Usai, L.; Torre, S.; Giordano, M.; Fais, G.; Casula, M.; Dessì, D.; Nieri, P.; Damergi, E.; et al. Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Mar. Drugs 2024, 22, 381. [Google Scholar] [CrossRef]
- Shayesteh, H.; Laird, D.W.; Hughes, L.J.; Nematollahi, M.A.; Kakhki, A.M.; Moheimani, N.R. Co-Producing Phycocyanin and Bioplastic in Arthrospira platensis Using Carbon-Rich Wastewater. BioTech 2023, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Scranton, M.A.; Ostrand, J.T.; Fields, F.J.; Mayfield, S.P. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 2015, 82, 523–531. [Google Scholar] [CrossRef]
- Park, Y.K.; Nicaud, J.M. Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica. Microorganisms 2020, 8, 1937. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Lu, X.; Liu, T.; Song, Y.; Sang, E.; Ding, S.; Liu, L.; Xue, F.; Xu, P. Engineering the oleaginous yeast Yarrowia lipolytica to produce nutraceuticals: From metabolic design to industrial applications. Food Bioeng. 2023, 2, 62–73. [Google Scholar] [CrossRef]
- Shields-Menard, S.; Amirsadeghi, M.; Sukhbaatar, B.; Revellame, E.; Hernandez, R.; Donaldson, J.; French, T. Lipid accumulation by Rhodococcus rhodochrous grown on glucose. J. Ind. Microbiol. Biotechnol. 2015, 42, 693–699. [Google Scholar] [CrossRef]
- Shalu, S.; Karthikanath, P.K.R.; Vaidyanathan, V.K.; Blank, L.M.; Germer, A.; Balakumaran, P.A. Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry—A Review. Life Sci. 2024, 24, e202400003. [Google Scholar] [CrossRef]
- Koch, M.; Noonan, A.J.C.; Qiu, Y.; Dofher, K.; Kieft, B.; Mottahedeh, S.; Shastri, M.; Hallam, S.J. The survivor strain: Isolation and characterization of Phormidium yuhuli AB48, a filamentous phototactic cyanobacterium with biotechnological potential. Front. Bioeng. Biotechnol. 2022, 10, 932695. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K.; Taherzadeh, M.J.; Zamani, A. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor. Fermentation 2016, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Martien, J.I.; Amador-Noguez, D. Recent applications of metabolomics to advance microbial biofuel production. Curr. Opin. Biotechnol. 2017, 43, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, S.; Cherian, T.; Varghese, T.; Eranhottu, S.; Shahulhameed, F.P.P. Bioprospecting of Microorganisms for Biofuel Production: Metabolic Engineering, Applications, and Challenges. In Catalytic Applications of Biochar for Environmental Remediation: Valorization of Lignocellulosic Waste Biomass into Bioenergy; American Chemical Society: Washington, DC, USA, 2024; Volume 3, pp. 91–107. [Google Scholar]
- Jarboe, L.R.; Zhang, X.; Wang, X.; Moore, J.C.; Shanmugam, K.T.; Ingram, L.O. Metabolic engineering for production of biorenewable fuels and chemicals: Contributions of synthetic biology. J. Biomed. Biotechnol. 2010, 2010, 761042. [Google Scholar] [CrossRef]
- Da Silva, T.L.; Gouveia, L.; Reis, A. Integrated microbial processes for biofuels and high value-added products: The way to improve the cost effectiveness of biofuel production. Appl. Microbiol. Biotechnol. 2014, 98, 1043–1053. [Google Scholar] [CrossRef]
- Colin, V.L.; Rodríguez, A.; Cristóbal, H.A. The role of synthetic biology in the design of microbial cell factories for biofuel production. J. Biomed. Biotechnol. 2011, 2011, 601834. [Google Scholar] [CrossRef]
- Navale, G.R.; Dharne, M.S.; Shinde, S.S. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2021, 105, 457–475. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Jiang, T.; Yan, Y. Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes. Metab. Eng. 2023, 75, 58–67. [Google Scholar] [CrossRef]
- Liu, W.; Peng, J.; Zou, S.; Xu, L.; Cheng, H.; Wang, Y.; Chen, Z.; Zhou, H. Regulation on pathway metabolic fluxes to enhance colanic acid production in Escherichia coli. J. Agric. Food Chem. 2023, 71, 13857–13868. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, T.; Sun, W.; Chen, Y.; Ying, H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: A review. Front. Microbiol. 2024, 15, 1485624. [Google Scholar] [CrossRef]
- Koppolu, V.; Vasigala, V.K. Role of Escherichia coli in Biofuel Production. Microbiol. Insights 2016, 9, 29–35. [Google Scholar] [CrossRef]
- Wang, C.; Chang, D.; Zhang, Q.; Yu, Z. Enhanced bioethanol production by evolved Escherichia coli LGE2-H in a microbial electrolysis cell system. Bioresour. Bioprocess. 2024, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.H.; Sajid, S.; Martuscelli, M.; Aldahmash, W.; Mohsin, M.Z.; Ashraf, K.; Guo, M.; Mohsin, A. Sustainable biosynthesis of lycopene by using evolutionary adaptive recombinant Escherichia coli from orange peel waste. Heliyon 2024, 10, e34567. [Google Scholar] [CrossRef]
- Deepika, B.; Agnishwar, G.; Koyeli, G. Antioxidant and anticancer activity of nano lycopene. Res. J. Biotechnol. 2023, 18, 6. [Google Scholar]
- Zhao, L.; Zhu, Y.; Jia, H.; Han, Y.; Zheng, X.; Wang, M.; Feng, W. From plant to yeast—Advances in biosynthesis of artemisinin. Molecules 2022, 27, 6888. [Google Scholar] [CrossRef]
- Mittermeier, F.; Bäumler, M.; Arulrajah, P.; García Lima, J.J.; Hauke, S.; Stock, A.; Weuster-Botz, D. Artificial microbial consortia for bioproduction processes. Eng. Life Sci. 2023, 23, e2100152. [Google Scholar] [CrossRef]
- Li, X.; Wu, S.; Dong, Y.; Fan, H.; Bai, Z.; Zhuang, X. Engineering microbial consortia towards bioremediation. Water 2021, 13, 2928. [Google Scholar] [CrossRef]
- Meier, A.B.; Oppermann, S.; Drake, H.L.; Schmidt, O. Organic carbon from graminoid roots as a driver of fermentation in a fen. FEMS Microbiol. Ecol. 2021, 97, fiab143. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Meng, X.; Sun, Y.; Huang, R.; Liu, X.; Xie, Z.; Cao, Q. The microbial and functional reconstruction of instable syntrophic propionate-oxidizing methanogenesis by system recovering and injection modes changing. Chem. Eng. J. 2025, 455, 140736. [Google Scholar] [CrossRef]
- Wu, D.; Xie, W.; Li, X.; Cai, G.; Lu, J.; Xie, G. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation. Appl. Microbiol. Biotechnol. 2020, 104, 4435–4444. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Qiu, X.; Chen, M.; Xu, Y.; Li, S.; Li, Q.; Wang, L. CRISPR/Cas9-based iterative multi-copy integration for improved metabolite yields in Saccharomyces cerevisiae. Synth. Syst. Biotechnol. 2025, 10, 629–637. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, P.; Qi, M.; Guo, L.; Gao, C.; Hu, G.; Song, W.; Wu, J.; Chen, X.; Chen, J. Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat. Commun. 2022, 13, 1886. [Google Scholar] [CrossRef]
- Sun, L.; Jin, Y.S. Xylose assimilation for the efficient production of biofuels and chemicals by engineered Saccharomyces cerevisiae. Biotechnol. J. 2021, 16, 2000142. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kell, D.B.; Borodina, I. Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites. Essays Biochem. 2021, 65, 277–291. [Google Scholar] [PubMed]
- Bose, S.K.; Upadhyay, S.; Srivastava, Y. Metabolic Engineering of Microbes for the Production of Plant-Based Compounds. In Microbial Biotechnology: Role in Ecological Sustainability and Research; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 59–73. [Google Scholar]
- Liu, D. Improving Flavonoid Production in Saccharomyces cerevisiae Using Synthetic Biology Tools. Ph.D. Thesis, Chalmers Tekniska Hogskola, Gothenburg, Sweden, 2023. [Google Scholar]
- Patel, V.K.; Das, A.; Kumari, R.; Kajla, S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Res. 2023, 71, 103068. [Google Scholar] [CrossRef]
- Luan, G.; Zhang, S.; Lu, X. Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Curr. Opin. Biotechnol. 2020, 62, 1–6. [Google Scholar] [CrossRef]
- Yao, L.; Shabestary, K.; Björk, S.M.; Asplund-Samuelsson, J.; Joensson, H.N.; Jahn, M.; Hudson, E.P. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp. PCC 6803 for enhanced industrial phenotypes. Nat. Commun. 2020, 11, 1666. [Google Scholar] [CrossRef]
- Yadav, I.; Rautela, A.; Kumar, S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J. Microbiol. Biotechnol. 2021, 37, 201. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.S.; Lindberg, P. Engineering cyanobacteria as host organisms for production of terpenes and terpenoids. In Cyanobacteria Biotechnology; Wiley: Hoboken, NJ, USA, 2021; pp. 267–300. [Google Scholar]
- Sitther, V.; Wyatt, L.; Jones, C.; Yalcin, Y. Bioactive compounds and pigments from cyanobacteria: Applications in the pharmaceutical industry. In Expanding Horizon of Cyanobacterial Biology; Academic Press: London, UK, 2022; pp. 65–90. [Google Scholar]
- Sarnaik, A.; Liu, A.; Nielsen, D.; Varman, A.M. High-throughput screening for efficient microbial biotechnology. Curr. Opin. Biotechnol. 2020, 64, 141–150. [Google Scholar] [CrossRef]
- O’Connor, E.; Micklefield, J.; Cai, Y. Searching for the optimal microbial factory: High-throughput biosensors and analytical techniques for screening small molecules. Curr. Opin. Biotechnol. 2024, 87, 103125. [Google Scholar] [CrossRef]
- Yeom, J.; Park, J.S.; Jung, S.-W.; Lee, S.; Kwon, H.; Yoo, S.M. High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit. Rev. Biotechnol. 2023, 43, 82–99. [Google Scholar] [CrossRef]
- Madzak, C. Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J. Fungi 2021, 7, 548. [Google Scholar] [CrossRef]
- Miranda, S.M.; Belo, I.; Lopes, M. Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source. J. Fungi 2024, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Cao, L.; Wang, K.; Ledesma-Amaro, R.; Ji, X.-J. Engineering Yarrowia lipolytica to produce advanced biofuels: Current status and perspectives. Bioresour. Technol. 2021, 341, 125877. [Google Scholar] [CrossRef]
- Fabiszewska, A.; Paplińska-Goryca, M.; Misiukiewicz-Stępień, P.; Wołoszynowska, M.; Nowak, D.; Zieniuk, B. Expression Profile of Selected Genes Involved in Storage Lipid Synthesis in a Model Oleaginous Yeast Species Yarrowia lipolytica. Int. J. Mol. Sci. 2022, 23, 1041. [Google Scholar] [CrossRef]
- Qin, J.; Liu, N.; Abid, U.; Coleman, S.M.; Wang, Y.; Fu, Q.; Yoon, S.; Alper, H.S.; Xie, D. Metabolic Engineering of Yarrowia lipolytica for Conversion of Waste Cooking Oil into Omega-3 Eicosapentaenoic Acid. ACS Eng. Au 2025, 5, 128–139. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, N.; Greisen, P.; Li, J.; Qiao, K.; Huang, S.; Stephanopoulos, G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nat. Commun. 2022, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Feng, X.; Rasool, A.; Sun, W.; Li, C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol. Adv. 2020, 43, 107555. [Google Scholar] [CrossRef]
- Zeng, B.X.; Yao, M.D.; Wang, Y.; Xiao, W.H.; Yuan, Y.J. Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Dihydroartemisinic Acid Production. Front. Bioeng. Biotechnol. 2020, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.T.; Soares, P.O.; Baptista, S.L.; Costa, C.E.; Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: A review and perspectives on bioethanol production. Bioengineered 2020, 11, 883–903. [Google Scholar] [CrossRef]
- Li, M.; Kildegaard, K.R.; Chen, Y.; Rodriguez, A.; Borodina, I.; Nielsen, J. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 2015, 32, 1–11. [Google Scholar] [CrossRef]
- Berla, B.M.; Saha, R.; Immethun, C.M.; Maranas, C.D.; Moon, T.S.; Pakrasi, H. Synthetic biology of cyanobacteria: Unique challenges and opportunities. Front. Microbiol. 2013, 4, 246. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Jackson, E.N.; Zhu, Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Appl. Microbiol. 2015, 99, 1599–1610. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef]
- Gupta, P.; Sahoo, P.; Sandipam, S.; Gupta, R.P.; Kumar, M. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model. Enzyme Microb. Technol. 2023, 170, 110292. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liang, L.; Zheng, Y.; Han, J.; Xiu, Z. Improvement of 1,3-propanediol production from crude glycerol by co-cultivation of anaerobic and facultative microbes under non-strictly anaerobic conditions. Biotechnol. Biofuels Bioprod. 2022, 15, 40. [Google Scholar] [CrossRef]
- Mehariya, S.; Signorini, A.; Marone, A.; Rosa, S. Simultaneous hydrogen and ethanol production from crude glycerol by a microbial consortium using fed-batch fermentation. Energies 2023, 16, 4490. [Google Scholar] [CrossRef]
- Fan, W.; Huang, X.; Liu, K.; Xu, Y.; Hu, B.; Chi, Z. Nutrition component adjustment of distilled dried grain with Solubles via Aspergillus niger and its change about dynamic physiological metabolism. Fermentation 2022, 8, 264. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, M.; Wang, B.; Zhao, D.; Li, H.; Sun, J. Extraction, identification, and in vitro anti-inflammatory activity of feruloylated oligosaccharides from Baijiu Distillers’ grains. Foods 2024, 13, 1283. [Google Scholar] [CrossRef] [PubMed]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Summo, C.; Caponio, F. Bioactive compounds from vine shoots, grape stalks, and wine lees: Their potential use in agro-food chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Athanasiou, P.E.; Patila, M.; Fotiadou, R.; Chatzikonstantinou, A.V.; Stamatis, H. Valorization of wine lees: Assessment of antioxidant, antimicrobial and enzyme inhibitory activity of wine lees extract and incorporation in chitosan films. Waste Biomass Valorization 2024, 15, 5657–5672. [Google Scholar] [CrossRef]
- Kriisa, M.; Taivosalo, A.; Föste, M.; Kütt, M.-L.; Viirma, M.; Priidik, R.; Korzeniowska, M.; Tian, Y.; Laaksonen, O.; Yang, B. Effect of enzyme-assisted hydrolysis on brewer’s spent grain protein solubilization–peptide composition and sensory properties. Appl. Food Res. 2022, 2, 100108. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Lai, C.; Fan, Y.; Ouyang, J.; Yong, Q. Fungal chitosan production using xylose rich of corn stover prehydrolysate by Rhizopus oryzae. Biotechnol. Biotechnol. Equip. 2017, 31, 1160–1166. [Google Scholar] [CrossRef]
- Resmi, R.; Yoonus, J.; Beena, B. Anticancer and antibacterial activity of chitosan extracted from shrimp shell waste. Mater. Today Proc. 2021, 41, 570–576. [Google Scholar] [CrossRef]
- Sebastian, J.; Rouissi, T.; Brar, S.K.; Hegde, K.; Verma, M. Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydr. Polym. 2019, 219, 431–440. [Google Scholar] [CrossRef]
- Lam, I.L.J.; Mohd Affandy, M.A.; ‘Aqilah, N.M.N.; Vonnie, J.M.; Felicia, W.X.L.; Rovina, K. Physicochemical characterization and antimicrobial analysis of vegetal chitosan extracted from distinct forest fungi species. Polymers 2023, 15, 2328. [Google Scholar] [CrossRef]
- Irbe, I.; Andze, L.; Blumfelde, M.; Filipova, I.; Verovkins, A.; Zoldners, J. Harvesting mycelial biomass of selected basidiomycetes for chitosan biopolymer extraction. Polymers 2023, 15, 3548. [Google Scholar] [CrossRef]
- Chen, L.-C.; Lin, S.-Y.; Sheu, M.-T.; Su, C.-H.; Lin, H.-L.; Hsieh, C.-M. Fabrication and characterization of Rhizochitosan and its incorporation with platelet concentrates to promote wound healing. Carbohydr. Polym. 2021, 268, 118239. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, A.; Gullón, B.; Lobato-Rodríguez, Á.; Garrote, G.; Del Río, P.G. Microwave-assisted extraction of hemicellulosic oligosaccharides and phenolics from Robinia pseudoacacia wood. Carbohydr. Polym. 2023, 301, 120364. [Google Scholar] [CrossRef]
- Pereira, M.J.; Pedrosa, S.S.; Costa, J.R.; Carvalho, M.J.; Neto, T.; Oliveira, A.L.; Pintado, M.; Madureira, A.R. Sugarcane Straw Hemicellulose Extraction by Autohydrolysis for Cosmetic Applications. Molecules 2025, 30, 1208. [Google Scholar] [CrossRef]
- Gautério, G.V.; Amorim, C.; Silvério, S.C.; Cardoso, B.B.; Ballesteros, L.F.; Alves, J.I.; Pereira, M.A.; Silva, S.P.; Coelho, E.; Coimbra, M.A. Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chem. 2022, 391, 133231. [Google Scholar] [CrossRef]
- Li, F.; Li, Q.; Zhang, Y.; Zhou, X.; Yi, R.; Zhao, X. Effects of Xylooligosaccharides on Lipid Metabolism, Inflammation, and Gut Microbiota in C57BL/6J Mice Fed a High-Fat Diet. Front. Pharmacol. 2021, 12, 791614. [Google Scholar] [CrossRef] [PubMed]
- Cabeza Sánchez, Á.; Trygve Berglihn, O.; Ottaviano, E.; Rücker, T.; Pettersen, T.; Wittgens, B.; Aliko, A.; Gálvez, L.; López, M. Innovative vanillin yielding from lignin: Process modelling and assessment. Open Res. Eur. 2024, 4, 5. [Google Scholar] [CrossRef]
- García-Rollán, M.; Rivas-Márquez, M.N.; Bertran-Llorens, S.; Deuss, P.J.; Ruiz-Rosas, R.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Biobased vanillin production by oxidative depolymerization of kraft lignin on a nitrogen-and phosphorus-functionalized activated carbon catalyst. Energy Fuels 2024, 38, 7018–7032. [Google Scholar] [CrossRef]
- Grinco, M.; Barba, A.; Kulciţki, V. Extraction of pharmaceutical grade lignins and their ozonolytic cleavage in a deep eutectic solvent. In New Frontiers in Natural Product Chemistry; Rahman, A., Ed.; Bentham Science Publishers: Singapore, 2022; p. 28. [Google Scholar]
- Karagoz, P.; Khiawjan, S.; Marques, M.P.C.; Santzouk, S.; Bugg, T.D.H.; Lye, G.J. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: Linking lignin source and processing with clinical indication. Biomass Convers. Biorefin. 2024, 14, 26553–26574. [Google Scholar] [CrossRef]
- de Souza Silva, A.P.; de Camargo, A.C.; Lazarini, J.G.; Franchin, M.; Sardi, J.C.O.; Rosalen, P.L.; de Alencar, S.M. Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí (Euterpe oleracea) Meal: A Prospective Study. Foods 2022, 12, 86. [Google Scholar] [CrossRef]
- Salem, Y.; Sunoqrot, S.; Hammad, A.; Rajha, H.N.; Alzaghari, L.F.; Abusulieh, S.; Maroun, R.G.; Louka, N. Oxidation-Driven Assembly of Phenolic Compounds from Grape Seeds Waste into Nanoparticles as Potential Anti-Inflammatory and Wound Healing Therapies. ACS Appl. Bio Mater 2025, in press. [CrossRef] [PubMed]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef]
- Nan, N.; Hu, W.; Wang, J. Lignin-based porous biomaterials for medical and pharmaceutical applications. Biomedicines 2022, 10, 747. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, R.; Banerjee, S.; Arora, A. Recent advances in the integrated biorefinery concept for the valorization of algal biomass through sustainable routes. Biofuels Bioprod. Biorefin. 2021, 15, 879–898. [Google Scholar] [CrossRef]
- Premaratne, M.; Nishshanka, G.K.S.H.; Anthonio, R.A.D.P.; Liyanaarachchi, V.C.; Thevarajah, B.; Nimarshana, P.; Malik, A.; Ariyadasa, T.U. Resource recovery from waste streams for production of microalgae biomass: A sustainable approach towards high-value biorefineries. Bioresour. Technol. Rep. 2022, 18, 101070. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Pereira, L. Role of Seaweed as a Functional Ingredients in Nutraceuticals, Pharmaceuticals, Cosmetics, and Edible Salts. In Recent Advances in Seaweed Biotechnology: Biomass, Emerging Applications and Bioeconomy; Springer: Berlin/Heidelberg, Germany, 2025; pp. 347–390. [Google Scholar]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Silva, J.; Alves, C.; Pinteus, S.; Félix, C.; Augusto, A.; Pedrosa, R.; Mestre, A.S.; Santos, R.M.; Carvalho, A.P. Towards a zero-waste sustainable biorefinery of Codium sp. seaweed: From bioactives application to soil enhancement materials. J. Clean. Prod. 2024, 453, 142191. [Google Scholar] [CrossRef]
- Paul, V.; Agarwal, A.; Dutt Tripathi, A.; Sirohi, R. Valorization of lignin for the production of vanillin by Bacillus aryabhattai NCIM 5503. Bioresour. Technol. 2023, 385, 129420. [Google Scholar] [CrossRef]
- Valladares-Diestra, K.K.; de Souza Vandenberghe, L.P.; Vieira, S.; Goyzueta-Mamani, L.D.; de Mattos, P.B.G.; Manzoki, M.C.; Soccol, V.T.; Soccol, C.R. The Potential of Xylooligosaccharides as Prebiotics and Their Sustainable Production from Agro-Industrial by-Products. Foods 2023, 12, 2681. [Google Scholar] [CrossRef]
- Bai, R.; Nguyen, T.T.; Zhou, Y.; Diao, Y.; Zhang, W. Identification of Antioxidative Peptides Derived from Arthrospira maxima in the Biorefinery Process after Extraction of C-Phycocyanin and Lipids. Mar. Drugs 2023, 21, 146. [Google Scholar] [CrossRef]
- Santana, Á.L.; Meireles, M.A.A. Valorization of Cereal Byproducts with Supercritical Technology: The Case of Corn. Fermentation 2023, 11, 289. [Google Scholar] [CrossRef]
- Baharlouei, P.; Rahman, A. Chitin and Chitosan: Prospective Biomedical Applications in Drug Delivery, Cancer Treatment, and Wound Healing. Mar. Drugs 2022, 20, 460. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.; Chaudhary, A.A.; Sinha, A.; Chaubey, K.K.; Ashraf, M.S.; Basher, N.S.; Rudayni, H.A.; Dayal, D.; Kumar, S. Nanocatalyst-Based Biofuel Generation: An Update, Challenges and Future Possibilities. Sustainability 2023, 15, 6180. [Google Scholar] [CrossRef]
- Akia, M.; Yazdani, F.; Motaee, E.; Han, D.; Arandiyan, H. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res. J. 2014, 1, 16–25. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Zhang, B.; Sun, H.; Wang, N.; Wang, L.; Zhang, J.; Xue, R. Comparison of magnetite/reduced graphene oxide nanocomposites and magnetite nanoparticles on enhancing hydrogen production in dark fermentation. Int. J. Hydrogen Energy 2022, 47, 22359–22370. [Google Scholar] [CrossRef]
- Ingle, A.P.; Chandel, A.K.; Philippini, R.; Martiniano, S.E.; da Silva, S.S. Advances in nanocatalysts mediated biodiesel production: A critical appraisal. Symmetry 2020, 12, 256. [Google Scholar] [CrossRef]
- Montiel Schneider, M.G.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef]
- Dos Santos, K.M.; de França Serpa, J.; de Castro Bizerra, V.; Melo, R.L.F.; Sousa Junior, P.G.a.d.; Santos Alexandre, V.; da Fonseca, A.M.; Fechine, P.B.A.; Lomonaco, D.; Sousa dos Santos, J.C. Enhanced Biodiesel Production with Eversa Transform 2.0 Lipase on Magnetic Nanoparticles. Langmuir 2024, 40, 26835–26851. [Google Scholar] [CrossRef]
- Krishnan, P.D.; Jayavignesh, V.; Ramkumar, G.; Purushothaman, Y.; Sadhasivam, S.; Sabarathinam, S.; Venkatesan, K.; Sivakumar, E.; Ganesh, R.S.; Swaminathan, K. Synthesis, surface modification, and application of iron oxide nanoparticles in lipase immobilization for biodiesel production: A review. In Nanomaterials; Apple Academic Press: New York, NY, USA, 2018. [Google Scholar]
- Karnwal, A.; Kumar Sachan, R.S.; Devgon, I.; Devgon, J.; Pant, G.; Panchpuri, M.; Ahmad, A.; Alshammari, M.B.; Hossain, K.; Kumar, G. Gold nanoparticles in nanobiotechnology: From synthesis to biosensing applications. ACS Omega 2024, 9, 29966–29982. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef]
- Gupta, K.; Rai, R.K.; Singh, S.K. Metal catalysts for the efficient transformation of biomass-derived HMF and furfural to value added chemicals. ChemCatChem 2018, 10, 2326–2349. [Google Scholar] [CrossRef]
- Wang, D.; Li, G.; Zhang, C.; Wang, Z.; Li, X. Nickel nanoparticles inlaid in lignin-derived carbon as high effective catalyst for lignin depolymerization. Bioresour. Technol. 2019, 289, 121629. [Google Scholar] [CrossRef] [PubMed]
- Awogbemi, O.; Ojo, A.A.; Adeleye, S.A. Advancements in the application of metal oxide nanocatalysts for sustainable biodiesel production. Discov. Appl. Sci. 2024, 6, 250. [Google Scholar] [CrossRef]
- Yassin, M.T.; Al-Otibi, F.O.; Al-Sahli, S.A.; El-Wetidy, M.S.; Mohamed, S. Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities. Cancers 2024, 16, 4234. [Google Scholar] [CrossRef]
- Mandal, A.K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Bhandari, D.P.; Shah, A.K.; Bhattarai, N.; Parajuli, N. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials 2022, 12, 3066. [Google Scholar] [CrossRef]
- Ashour, M.; Mansour, A.T.; Abdelwahab, A.M.; Alprol, A.E. Metal oxide nanoparticles’ green synthesis by plants: Prospects in phyto-and bioremediation and photocatalytic degradation of organic pollutants. Processes 2023, 11, 3356. [Google Scholar] [CrossRef]
- Sharma, R.K.; Bandichhor, R.; Mishra, V.; Sharma, S.; Yadav, S.; Mehta, S.; Arora, B.; Rana, P.; Dutta, S.; Solanki, K. Advanced metal oxide-based nanocatalysts for the oxidative synthesis of fine chemicals. Mater. Adv. 2023, 4, 1795–1830. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Qian, K.; Huang, W. Metal–support interactions in metal/oxide catalysts and oxide–metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022, 12, 1268–1287. [Google Scholar] [CrossRef]
- AbdulRasheed, T.; Afotey, B.; Ankudey, E.G.; Anang, D.A. Synthesis and characterization of novel calcium oxide/calcium ferrite, CaO/CaFe2O4 composite nanocatalyst for biodiesel production. ES Mater. Manuf. 2023, 22, 922. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075–8098. [Google Scholar] [CrossRef]
- Pelicano, C.M.; Saruyama, M.; Takahata, R.; Sato, R.; Kitahama, Y.; Matsuzaki, H.; Yamada, T.; Hisatomi, T.; Domen, K.; Teranishi, T. Bimetallic synergy in ultrafine cocatalyst alloy nanoparticles for efficient photocatalytic water splitting. Adv. Funct. Mater. 2022, 32, 2202987. [Google Scholar] [CrossRef]
- Liu, Q.; Han, X.; Zheng, Z.; Xiong, P.; Jeong, R.G.; Kim, G.; Park, H.; Kim, J.; Kim, B.K.; Park, H.S. Crystallinity regulated functional separator based on bimetallic NixFey alloy nanoparticles for facilitated redox kinetics of lithium–sulfur batteries. Adv. Funct. Mater. 2022, 32, 2207094. [Google Scholar] [CrossRef]
- Mustieles Marin, I.; Asensio, J.M.; Chaudret, B. Bimetallic nanoparticles associating noble metals and first-row transition metals in catalysis. ACS Nano 2021, 15, 3550–3556. [Google Scholar] [CrossRef]
- Sharif, A.; Khan, S.M.; Gull, N.; Rizwan, K.; Munir, S.; Shakeel, M.; Islam, A. Introduction to nanomaterials: A strategic tool for production of biofuel and bioenergy from biomass. In Nanomaterials in Biomass Conversion; Elsevier: Amsterdam, The Netherlands, 2024; pp. 57–84. [Google Scholar]
- Guo, G.; Li, W.; Dou, X.; Ogunbiyi, A.T.; Ahmed, T.; Zhang, B.; Wu, M. Hydroconversion of Kraft lignin for biofuels production using bifunctional rhenium-molybdenum supported zeolitic imidazolate framework nanocatalyst. Bioresour. Technol. 2021, 321, 124443. [Google Scholar] [CrossRef]
- Usman, M.A.; Naeem, M.; Saeed, M.; Zaheer, M. Catalytic C–O bond cleavage in a β-O-4 lignin model through intermolecular hydrogen transfer. Inorg. Chim. Acta 2021, 521, 120305. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Hou, Q.; Mo, Z.; Liu, X.; Li, W. A review on catalytic depolymerization of lignin towards high-value chemicals: Solvent and catalyst. Fermentation 2023, 9, 386. [Google Scholar] [CrossRef]
- Blay-Roger, R.; Carrasco-Ruiz, S.; Reina, T.R.; Bobadilla, L.F.; Odriozola, J.A.; Nawaz, M.A. Integrating catalytic tandem reactions for the next generation of biofuels: A perspective. Chem. Catal. 2024, 4, 100897. [Google Scholar] [CrossRef]
- Merkouri, L.-P.; Paksoy, A.I.; Ramirez Reina, T.; Duyar, M.S. The need for flexible chemical synthesis and how dual-function materials can pave the way. ACS Catal. 2023, 13, 7230–7242. [Google Scholar] [CrossRef]
- Mullins, L.; Sullivan, J.A. Synthesis of a Sustainable Cellulose-Derived Biofuel Through a 1-Pot, 2-Catalyst Tandem Reaction. Top. Catal. 2020, 63, 1434–1445. [Google Scholar] [CrossRef]
- Song, Y.; Sun, P.; Qiu, W.; Li, Y.; Peng, C. Catalytic and engineering strategies for enhanced hydrogenation reactions: A review of heterogeneous catalysts and process optimization. Results Eng. 2025, 25, 103958. [Google Scholar] [CrossRef]
- Akram, H.A.; Imran, M.; Javaid, A.; Latif, S.; Rizvi, N.B.; Jesionowski, T.; Bilal, M. Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. Mol. Catal. 2023, 539, 112893. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Cai, C.X.; Xing, X.; Li, J.; Hu, Z.E.; Xie, Z.B.; Wang, N.; Yu, X.Q. Magnetic COFs as satisfied support for lipase immobilization and recovery to effectively achieve the production of biodiesel by great maintenance of enzyme activity. Biofuels 2021, 14, 156. [Google Scholar]
- Silva, F.M.W.G.; Szemes, J.; Mustashev, A.; Takács, O.; Imarah, A.O.; Poppe, L. Immobilization of Lipase B from Candida antarctica on Magnetic Nanoparticles Enhances Its Selectivity in Kinetic Resolutions of Chiral Amines with Several Acylating Agents. Fermentation 2023, 13, 1560. [Google Scholar] [CrossRef]
- Duan, Y.; Cheng, Y.; Hu, Z.; Wang, C.; Sui, D.; Yang, Y.; Lu, T. A Comprehensive Review on Metal Catalysts for the Production of Cyclopentanone Derivatives from Furfural and HMF. Molecules 2023, 28, 5397. [Google Scholar] [CrossRef]
- Ronel, D.; Nasya, N.; Duarte, J.; Cheng, Y.-S.; Selvasembian, R.; Amir, F.; De Oliveira, L.; Wan Azelee, N.I.; Meili, L.; Rangasamy, G. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. Chemosphere 2023, 319, 138003. [Google Scholar]
- Jeevanandam, J.; Manchala, S.; Danquah, M.K. Wastewater Treatment by Photocatalytic Biosynthesized Nanoparticles. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1st ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–23. [Google Scholar]
- Bronstein, L.M.; Matveeva, V.G. Multifunctional Catalysts for Cascade Reactions in Biomass Processing. Fermentation 2024, 14, 1937. [Google Scholar] [CrossRef] [PubMed]
- Sanz, A.; Susmozas, A.; Peters, J.; Dufour, J. Biorefinery Modeling and Optimization. In Biorefineries; Rabaçal, M., Ferreira, A., Silva, C., Costa, M., Eds.; Springer: Cham, Switzerland, 2017; Volume 57, pp. 123–160. [Google Scholar]
- Chemmangattuvalappil, N.G.; Ng, D.K.S.; Ng, L.Y.; Ooi, J.; Chong, J.W.; Eden, M.R. A Review of Process Systems Engineering (PSE) Tools for the Design of Ionic Liquids and Integrated Biorefineries. Processes 2020, 8, 1678. [Google Scholar] [CrossRef]
- Shen, F.; Sun, R.; Yao, J.; Li, J.; Liu, Q.; Price, N.D.; Liu, C.; Wang, Z. OptRAM: In-silico strain design via integrative regulatory-metabolic network modeling. PLoS Comput. Biol. 2019, 15, e1006835. [Google Scholar] [CrossRef] [PubMed]
- Raman, K.; Chandra, N. Flux balance analysis of biological systems: Applications and challenges. Brief. Bioinform. 2009, 10, 435–449. [Google Scholar] [CrossRef]
- Raajaraam, L.; Raman, K. A Computational Framework to Identify Metabolic Engineering Strategies for the Co-Production of Metabolites. Front. Bioeng. Biotechnol. 2022, 9, 779405. [Google Scholar] [CrossRef]
- Carbonell, P.; Parutto, P.; Baudier, C.; Junot, C.; Faulon, J.-L. Retropath: Automated Pipeline for Embedded Metabolic Circuits. ACS Synth. Biol. 2014, 3, 565–577. [Google Scholar] [CrossRef]
- Moura, M.; Broadbelt, L.; Tyo, K. Computational Tools for Guided Discovery and Engineering of Metabolic Pathways. In Systems Metabolic Engineering: Methods and Protocols; Alper, H.S., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 985, pp. 123–147. [Google Scholar]
- Lopes, T.F.; Ortigueira, J.; Matos, C.T.; Costa, L.; Ribeiro, C.; Reis, A.; Gírio, F. Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments. Fermentation 2023, 9, 255. [Google Scholar] [CrossRef]
- Lawson, C.E.; Martí, J.M.; Radivojevic, T.; Jonnalagadda, S.V.R.; Gentz, R.; Hillson, N.J.; Peisert, S.; Kim, J.; Simmons, B.A.; Petzold, C.J.; et al. Machine learning for metabolic engineering: A review. Metab. Eng. 2021, 63, 34–60. [Google Scholar] [CrossRef]
- Lee, M.K.; Mohamad, M.S.; Choon, Y.W.; Mohd Daud, K.; Nasarudin, N.A.; Ismail, M.A.; Ibrahim, Z.; Napis, S.; Sinnott, R.O. Comparison of optimization-modelling methods for metabolites production in Escherichia coli. J. Integr. Bioinform. 2020, 17, 20190073. [Google Scholar] [CrossRef]
- Patané, A.; Jansen, G.; Conca, P.; Carapezza, G.; Costanza, J.; Nicosia, G. Multi-objective optimization of genome-scale metabolic models: The case of ethanol production. Ann. Oper. Res. 2019, 276, 211–227. [Google Scholar] [CrossRef]
- Mienda, B.S.; Dräger, A. Genome-scale metabolic modeling of Escherichia coli and its chassis design for synthetic biology applications. In Computational Methods in Synthetic Biology; Marchisio, M.A., Ed.; Springer: New York, NY, USA, 2021; pp. 217–229. [Google Scholar]
- Bernstein, D.B.; Sulheim, S.; Almaas, E.; Segrè, D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol. 2021, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ye, C. Development and applications of genome-scale metabolic network models. Adv. Appl. Microbiol. 2024, 126, 1–26. [Google Scholar]
- Kulyashov, M.A.; Kolmykov, S.K.; Khlebodarova, T.M.; Akberdin, I.R. State-of the-art constraint-based modeling of microbial metabolism: From basics to context-specific models with a focus on methanotrophs. Microorganisms 2023, 11, 2987. [Google Scholar] [CrossRef]
- Knoop, H.; Steuer, R. A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front. Bioeng. Biotechnol. 2015, 3, 47. [Google Scholar] [CrossRef] [PubMed]
- Antoniewicz, M.R. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications. Metab. Eng. 2021, 63, 2–12. [Google Scholar] [CrossRef]
- Sen, P. Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories. Biotechnol. Genet. Eng. Rev. 2024, 40, 3682–3715. [Google Scholar] [CrossRef]
- Griesemer, M.; Navid, A. Uses of multi-objective flux analysis for optimization of microbial production of secondary metabolites. Microorganisms 2023, 11, 2149. [Google Scholar] [CrossRef]
- Sundqvist, N.; Grankvist, N.; Watrous, J.; Mohit, J.; Nilsson, R.; Cedersund, G. Validation-based model selection for 13C metabolic flux analysis with uncertain measurement errors. PLoS Comput. Biol. 2022, 18, e1009999. [Google Scholar] [CrossRef] [PubMed]
- Sake, C.L.; Metcalf, A.J.; Meagher, M.; Di Paola, J.; Neeves, K.B.; Boyle, N.R. Isotopically nonstationary 13C metabolic flux analysis in resting and activated human platelets. Metab. Eng. 2022, 69, 313–322. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, H.; Huang, X.; Chang, L.; Yang, B.; Chen, W. Precise metabolic modeling in post-omics era: Accomplishments and perspectives. Crit. Rev. Biotechnol. 2025, 45, 683–701. [Google Scholar] [CrossRef]
- Hafner, J.; Mohammadi-Peyhani, H.; Hatzimanikatis, V. Pathway Design. In Metabolic Engineering: Concepts and Applications, 1st ed.; Lee, S.Y., Nielsen, J., Stephanopoulos, G., Eds.; Wiley: Weinheim, Germany, 2021; Volume 13, pp. 237–257. [Google Scholar]
- Zheng, S.; Zeng, T.; Li, C.; Chen, B.; Coley, C.W.; Yang, Y.; Wu, R. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nat. Commun. 2022, 13, 3342. [Google Scholar] [CrossRef]
- Sveshnikova, A.; MohammadiPeyhani, H.; Hatzimanikatis, V. Computational tools and resources for designing new pathways to small molecules. Curr. Opin. Biotechnol. 2022, 76, 102722. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, N.; Alonso-Cotchico, L.; Lucas, M.F. Enzyme immobilization studied through molecular dynamic simulations. Front. Bioeng. Biotechnol. 2023, 11, 1200293. [Google Scholar] [CrossRef] [PubMed]
- Childers, M.C.; Daggett, V. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2017, 2, 9–33. [Google Scholar] [CrossRef]
- Perilla, J.R.; Goh, B.C.; Cassidy, C.K.; Liu, B.; Bernardi, R.C.; Rudack, T.; Yu, H.; Wu, Z.; Schulten, K. Molecular dynamics simulations of large macromolecular complexes. Curr. Opin. Struct. Biol. 2015, 31, 64–74. [Google Scholar] [CrossRef]
- Hu, X.; Zeng, Z.; Zhang, J.; Wu, D.; Li, H.; Geng, F. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem. 2023, 405, 134824. [Google Scholar] [CrossRef]
- Rithuan, R.H.B. Simulation Study of Process Flow Design for Downstream Processing of Succinic Acid Production Using SuperPro Designer Software; Universiti Teknologi Malaysia: Johor Bahru, Malaysia, 2021. [Google Scholar]
- Esmaeili-Faraj, S.H.; Rezazadeh, M.; Abdi, J. Simulation of Biosynthesis Gas Process from Palm Oil Mill Effluent Sewage by Aspen HYSYS and SuperPro Designer. J. Water Wastewater 2023, 33, 34–43. [Google Scholar]
- Gómez, J.A.; Sánchez, Ó.J.; Correa, L.F. Techno-economic and environmental evaluation of cheesemaking waste valorization through process simulation using SuperPro designer. Waste Biomass Valorization 2020, 11, 6025–6045. [Google Scholar] [CrossRef]
- Jang, W.D.; Kim, G.B.; Kim, Y.; Lee, S.Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr. Opin. Biotechnol. 2022, 73, 101–107. [Google Scholar] [CrossRef]
- Diment, D.; Löfgren, J.; Alopaeus, M.; Stosiek, M.; Cho, M.; Xu, C.; Hummel, M.; Rigo, D.; Rinke, P.; Balakshin, M. AI-guided biorefinery optimization for the production of lignin-carbohydrate complexes with tailored properties. ChemRxiv 2024, submitted.
- Arjmand, B.; Hamidpour, S.K.; Tayanloo-Beik, A.; Goodarzi, P.; Aghayan, H.R.; Adibi, H.; Larijani, B. Machine learning: A new prospect in multi-omics data analysis of cancer. Front. Genet. 2022, 13, 824451. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, M.K.; Savizi, I.S.P.; Lewis, N.E.; Shojaosadati, S.A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol. J. 2021, 16, 2100212. [Google Scholar] [CrossRef]
- Palacios, S.; Collins, J.J.; Del Vecchio, D. Machine learning for synthetic gene circuit engineering. Curr. Opin. Biotechnol. 2025, 92, 103263. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Shao, M.; Wang, W.; Chen, G.-Q. Next-generation biotechnology inspired by extremes. EMBO Rep. 2025, 26, 1191–1195. [Google Scholar] [CrossRef]
- Mohanta, S.; Bahuguna, M.; Baley, J.D.; Sharma, S.; Sharma, V. Extremophilic Cellulases: A Comprehensive Review. J. Trop. Biol. 2023, 8, 74986. [Google Scholar] [CrossRef]
- Dumorné, K.; Córdova, D.C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: A Potential Source for Industrial Applications. J. Microbiol. Biotechnol. 2017, 27, 649–659. [Google Scholar] [CrossRef]
- Barbosa, M.; Garcia, I.L.; Clélia, A.; Maranhão, P. The microalga Dunaliella and its applications: A review. Appl. Phycol. 2023, 4, 99–120. [Google Scholar] [CrossRef]
- Giani, M.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments. Mar. Drugs 2019, 17, 524. [Google Scholar] [CrossRef]
- Priya, J.P.; Rautela, J.; Pandey, P.; Morris, S.; Ghildiyal, P. Salt Tolerant Microbes (Active Metabolites) Mediated Nanoparticle: Drug Delivery and Future Prospects. J. Pharm. Appl. Med. 2024, 18, 853–866. [Google Scholar] [CrossRef]
- Koller, M.; Rittmann, S. Haloarchaea as Emerging Big Players in Future Polyhydroxyalkanoate Bioproduction: Review of Trends and Perspectives. Curr. Res. Biotechnol. 2022, 4, 100–112. [Google Scholar] [CrossRef]
- Hamid, B.; Bashir, Z.; Yatoo, A.M.; Mohiddin, F.; Majeed, N.; Bansal, M.; Poczai, P.; Almalki, W.H.; Sayyed, R.Z.; Shati, A.A.; et al. Cold-Active Enzymes and Their Potential Industrial Applications—A Review. Molecules 2022, 27, 5885. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.S. Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol. Lett. 2003, 219, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Aslam, M. Biofuel synthesis by extremophilic microorganisms. In Biofuels Production–Sustainability and Advances in Microbial Bioresources; Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R., Eds.; Biofuel and Biorefinery Technologies; Springer: Cham, Switzerland, 2020; Volume 11, pp. 115–138. [Google Scholar]
- Ghosh, A. Hydrolases from Extremophiles: Exploring Alternative Strategies for Low-Cost Biofuel Production. In Biofuels; CRC Press: Boca Raton, FL, USA, 2024; pp. 440–463. [Google Scholar]
- Arbab, S.; Ullah, H.; Khan, M.I.; Khattak, M.N.; Zhang, J.; Li, K.; Hassan, I.U. Diversity and distribution of thermophilic microorganisms and their applications in biotechnology. J. Basic Microbiol. 2022, 62, 95–108. [Google Scholar] [CrossRef]
- Ajeje, S.B.; Hu, Y.; Song, G.; Peter, S.B.; Afful, R.G.; Sun, F.; Asadollahi, M.A.; Amiri, H.; Abdulkhani, A.; Sun, H. Thermostable cellulases/xylanases from thermophilic and hyperthermophilic microorganisms: Current perspective. Front. Bioeng. Biotechnol. 2021, 9, 794304. [Google Scholar] [CrossRef]
- Hashemi, A.; Pajoum Shariati, F.; Delavari Amrei, H.; Heydari Nasab, A. The effect of instantaneous and slow-release salt stress methods on beta-carotene production within Dunaliella salina Cells. Iran. J. Chem. Chem. Eng. 2021, 40, 1642–1652. [Google Scholar]
- Tuyen, V.T.X.; Khai, T.; Diem, N.T.T.; Xuan, L.N.T.; Tan, N.D. Effect of supplied salt concentrations in the nutrient solution during hydroponic production on phytochemicals and antioxidant activity of ice plants (Mesembryanthemum crystallinum L.). Int. J. Agric. Biosci. 2025, 14, 59–67. [Google Scholar]
- De Souza Celente, G.; de Cassia de Souza Schneider, R.; Julich, J.; Rizzetti, T.M.; Lobo, E.A.; Sui, Y. Life cycle assessment of microalgal cultivation medium: Biomass, glycerol, and beta-carotene production by Dunaliella salina and Dunaliella tertiolecta. Int. J. Life Cycle Assess. 2023, 29, 2269–2282. [Google Scholar] [CrossRef]
- Mohanta, A.; Khadim, S.R.; Singh, P.; Laxmi; Asthana, R. A Study on Mixotrophic Approach for Maximizing Lipid Production in a Hypersaline Microalga, Dunaliella salina. BioEnergy Res. 2023, 16, 2512–2528. [Google Scholar] [CrossRef]
- Sharma, Y.; Singh, G.P.; Singh, C.P. Biorefinery potential of Dunaliella (Chlorophyta) for production of value-added compounds. Biofuels Bioprod. Biorefin. 2024, 18, 1755–1781. [Google Scholar] [CrossRef]
- Nguyen, P.T.H.; Nguyen, D.T.; Vo, T. Determination of Carotenoid and Beta-Carotene Content in Dunaliella Microalgae Powder. Eur. J. Med. Health Res. 2025, 3, 21–26. [Google Scholar] [CrossRef]
- Moopantakath, J.; Imchen, M.; Kumavath, R.; Martínez-Espinosa, R.M. Ubiquitousness of Haloferax and carotenoid producing genes in Arabian sea coastal biosystems of India. Mar. drugs 2021, 19, 442. [Google Scholar] [CrossRef] [PubMed]
- Bouhamed, S.B.H.; Chaari, M.; Baati, H.; Zouari, S.; Ammar, E. Extreme halophilic Archaea: Halobacterium salinarum carotenoids characterization and antioxidant properties. Heliyon 2024, 10, e25843. [Google Scholar] [CrossRef] [PubMed]
- Favreau, C.; Tribondeau, A.; Marugan, M.; Guyot, F.; Alpha-Bazin, B.; Marie, A.; Puppo, R.; Dufour, T.; Huguet, A.; Zirah, S. Molecular acclimation of Halobacterium salinarum to halite brine inclusions. Front. Microbiol. 2023, 13, 1075274. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.-S.; Cha, I.-T.; Roh, S.W.; Seo, M.-J. Haloferax litoreum sp. nov., Haloferax marinisediminis sp. nov., and Haloferax marinum sp. nov., low salt-tolerant haloarchaea isolated from seawater and sediment. Antonie Leeuwenhoek 2021, 114, 2065–2082. [Google Scholar] [CrossRef]
- Pfeifer, F. Recent advances in the study of gas vesicle proteins and application of gas vesicles in biomedical research. Life 2022, 12, 1455. [Google Scholar] [CrossRef]
- Kasirajan, L.; Maupin-Furlow, J.A. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol. Bioeng. 2021, 118, 1066–1090. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M. Halocins and C50 Carotenoids from Haloarchaea: Potential Natural Tools against Cancer. Mar. Drugs 2024, 22, 448. [Google Scholar] [CrossRef]
- Kumari, S.; Satapathy, S.; Datta, M.; Kumar, S. Adaptation of microalgae to temperature and light stress. In Plant Stress: Challenges and Management in the New Decade; Roy, S., Mathur, P., Chakraborty, A.P., Saha, S.P., Eds.; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2022; pp. 123–134. [Google Scholar]
- Kashyap, A.K.; Dubey, S.K.; Jain, B.P. Cyanobacterial diversity concerning the extreme environment and their bioprospecting. In Cyanobacterial Lifestyle and Its Applications in Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–22. [Google Scholar]
- Fernández-Sanromán, Á.; Sanromán, M.Á. Extremozymes in food production and processing. In Value-Addition in Food Products and Processing Through Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 25–43. [Google Scholar]
- Khan, N.F.; Zehra, U.; Reshi, Z.A.; Shah, M.A.; Baba, T.R. Seasonal Dynamics of Bacterial and Fungal Lineages in Extreme Environments. In Climate Change and Microbial Diversity; Apple Academic Press: New York, NY, USA, 2022; pp. 63–107. [Google Scholar]
- Quatrini, R.; Johnson, D.B. Acidithiobacillus ferrooxidans. Trends Microbiol. 2019, 27, 282–283. [Google Scholar] [CrossRef]
- Tonietti, L.; Esposito, M.; Cascone, M.; Barosa, B.; Fiscale, S.; Tomajoli, M.T.M.; Sbaffi, T.; Santomartino, R.; Covone, G.; Cordone, A. Unveiling the bioleaching versatility of Acidithiobacillus ferrooxidans. Microorganisms 2024, 12, 2407. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, L.-J.; Lin, C.-B.; Xie, X.-X.; Yong, X.-Y.; Wu, X.-Y.; Zhou, J.; Jia, H.-H.; Wei, P. Extracting heavy metals from electroplating sludge by acid and bioelectrical leaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 2020, 191, 105225. [Google Scholar] [CrossRef]
- Wang, R.; Lin, J.-Q.; Liu, X.-M.; Pang, X.; Zhang, C.-J.; Yang, C.-L.; Gao, X.-Y.; Lin, C.-M.; Li, Y.-Q.; Li, Y. Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Front. Microbiol. 2019, 9, 3290. [Google Scholar] [CrossRef]
- Maksimova, Y.; Eliseeva, A.; Maksimov, A. Metabolic and Morphological Aspects of Adaptation of Alkaliphilic Bacillus aequororis 5-DB and Alkali-Tolerant Bacillus subtilis ATCC 6633 to Changes in pH and Mineralization. Int. J. Microbiol. 2024, 2024, 3087296. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.K.; Misra, S.; Mishra, S.K.; Tewari, S.K.; Joshi, N.; Chauhan, P.S. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Leeuwenhoek 2020, 113, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Wei, S.; Fu, L.; Wang, Y.; Jin, M. Bioconversion of soybean meal into gut microbiota-targeting polysaccharides via fermentation by Bacillus subtilis. J. Clean. Prod. 2024, 464, 142787. [Google Scholar] [CrossRef]
- Zampieri, B.D.B.; Nogueira, E.W.; Quaglio, O.A.; Brucha, G. Overview of known alkaliphilic bacteria from bauxite residue. J. Min. Mech. Eng. 2019, 1, 41–50. [Google Scholar] [CrossRef]
- Inan Bektas, K.; Nalcaoğlu, A.; Ceylan, E.; Colak, D.N.; Caglar, P.; Agirman, S.; Sivri, N.S.; Gunes, S.; Kaya, A.; Canakci, S. Isolation and characterization of detergent-compatible amylase-, protease-, lipase-, and cellulase-producing bacteria. Braz. J. Microbiol. 2023, 54, 725–737. [Google Scholar] [CrossRef]
- Gallo, G.; Aulitto, M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Fermentation 2024, 14, 1205. [Google Scholar] [CrossRef]
- Schultz, J.; Modolon, F.; Peixoto, R.S.; Rosado, A.S. Shedding light on the composition of extreme microbial dark matter: Alternative approaches for culturing extremophiles. Front. Microbiol. 2023, 14, 1167718. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi, S.; Jayalakshmi, S.K.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769. [Google Scholar] [CrossRef]
- Nehmeh, M.; Rodriguez-Donis, I.; Cavaco-Soares, A.; Evon, P.; Gerbaud, V.; Thiebaud-Roux, S. Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review. Processes 2022, 10, 841. [Google Scholar] [CrossRef]
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Rakha, A.; Shehzad, A.; Khan, K. Editorial: Plant bioactives: Challenges of extraction and processing. Front. Nutr. 2024, 11, 1357925. [Google Scholar] [CrossRef] [PubMed]
- Sumardiono, S.; Matin, H.H.A.; Hartono, I.I.; Choiruly, L. Biogas production from corn stalk as agricultural waste containing high cellulose material by anaerobic process. Mater. Today Proc. 2022, 63, S477–S483. [Google Scholar] [CrossRef]
- Tajmirriahi, M.; Momayez, F.; Karimi, K. The critical impact of rice straw extractives on biogas and bioethanol production. Bioresour. Technol. 2021, 319, 124167. [Google Scholar] [CrossRef]
- Alavijeh, R.S.; Shahvandi, A.; Okoro, O.V.; Denayer, J.F.; Karimi, K. Biorefining of corn stover for efficient production of bioethanol, biodiesel, biomethane, and value-added byproducts. Energy Convers. Manag. 2023, 283, 116877. [Google Scholar] [CrossRef]
- Qian, S.; Gao, S.; Li, J.; Liu, S.; Diao, E.; Chang, W.; Liang, X.; Xie, P.; Jin, C. Effects of combined enzymatic hydrolysis and fed-batch operation on efficient improvement of ferulic acid and p-coumaric acid production from pretreated corn straws. Bioresour. Technol. 2022, 366, 128176. [Google Scholar] [CrossRef]
- Shankar, K.; Beladhadi, R.; Jayalakshmi, S.; Sreeramulu, K. Recovery of antioxidative phenolic compounds by the valorization of rice biomass under the influence of lignocellulolytic enzymes. Biocatal. Biotransform. 2024, 42, 440–453. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Carvalho, M.J.; Oliveira, D.L.; Costa, E.; Pintado, M.; Madureira, A.R. Sugarcane straw polyphenols as potential food and nutraceutical ingredient. Foods 2022, 11, 4025. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Bertuzzi, T.; Oleszek, W. Phytochemicals derived from agricultural residues and their valuable properties and applications. Molecules 2023, 28, 342. [Google Scholar] [CrossRef]
- Risite, H.; Salim, M.H.; Oudinot, B.T.; Ablouh, E.-h.; Joyeux, H.T.; Sehaqui, H.; Razafimahatratra, J.H.A.; Qaiss, A.E.K.; El Achaby, M.; Kassab, Z. Artemisia annua stems a new sustainable source for cellulosic materials: Production and characterization of cellulose microfibers and nanocrystals. Waste Biomass Valorization 2022, 13, 2411–2423. [Google Scholar] [CrossRef]
- Lee, B.J.; Weyers, M.; Haynes, R.K.; van der Kooy, F. Discovery of artemisinin in Artemisia annua, its current production, and relevance to sub-Saharan Africa. S. Afr. J. Bot. 2023, 153, 21–27. [Google Scholar] [CrossRef]
- Cheong, D.H.; Tan, D.W.; Wong, F.W.; Tran, T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol. Res. 2020, 158, 104901. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-derived natural products in cancer research: Extraction, mechanism of action, and drug formulation. Molecules 2020, 25, 5319. [Google Scholar] [CrossRef]
- Xiong, X.; Gou, J.; Liao, Q.; Li, Y.; Zhou, Q.; Bi, G.; Li, C.; Du, R.; Wang, X.; Sun, T. The Taxus genome provides insights into paclitaxel biosynthesis. Nat. Plants 2021, 7, 1026–1036. [Google Scholar] [CrossRef]
- Yu, K.D.; Ye, F.G.; He, M.; Fan, L.; Ma, D.; Mo, M.; Wu, J.; Liu, G.Y.; Di, G.H.; Zeng, X.H.; et al. Effect of Adjuvant Paclitaxel and Carboplatin on Survival in Women with Triple-Negative Breast Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1390–1396. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Gonzalez-Miquel, M.; Winterburn, J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem. Eng. J. 2022, 180, 108373. [Google Scholar] [CrossRef]
- Gołębiewska, K.; Fraś, A.; Gołębiewski, D. Rapeseed meal as a feed component in monogastric animal nutrition—A review. Ann. Anim. Sci. 2022, 22, 1163–1183. [Google Scholar] [CrossRef]
- Moreno-González, M.; Girish, V.; Keulen, D.; Wijngaard, H.; Lauteslager, X.; Ferreira, G.; Ottens, M. Recovery of sinapic acid from canola/rapeseed meal extracts by adsorption. Food Bioprod. Process. 2020, 120, 69–79. [Google Scholar] [CrossRef]
- Xie, C.; Li, W.; Gao, R.; Yan, L.; Wang, P.; Gu, Z.; Yang, R. Determination of glucosinolates in rapeseed meal and their degradation by myrosinase from rapeseed sprouts. Food Chem. 2022, 382, 132316. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Hao, Y.; Liu, Y. Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. LWT 2021, 146, 111411. [Google Scholar] [CrossRef]
- Kim, J.S.; Han, S.; Kim, H.; Won, S.Y.; Park, H.W.; Choi, H.; Choi, M.; Lee, M.Y.; Ha, I.J.; Lee, S.-G. Anticancer effects of high glucosinolate synthesis lines of Brassica rapa on colorectal cancer cells. Antioxidants 2022, 11, 2463. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.; Young, R. Strategies to reduce reliance on soya bean meal and palm kernel meal in livestock nutrition. J. Appl. Anim. Nutr. 2020, 8, 75–85. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S. Production of pharmaceutically important genistein and daidzein from soybean flour extract by using β-glucosidase derived from Penicillium janthinellum NCIM 1171. Process Biochem. 2020, 97, 183–190. [Google Scholar] [CrossRef]
- Berhow, M.A.; Singh, M.; Bowman, M.J.; Price, N.P.; Vaughn, S.F.; Liu, S.X. Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chem. 2020, 317, 126373. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jin, Z.; Hu, D.; Yang, W.; Yan, Y.; Nie, X.; Lin, J.; Zhang, Q.; Gai, D.; Ji, Y. Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT 2020, 125, 109264. [Google Scholar] [CrossRef]
- Kim, I.-S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Aboushanab, S.A.; Khedr, S.M.; Gette, I.F.; Danilova, I.G.; Kolberg, N.A.; Ravishankar, G.A.; Ambati, R.R.; Kovaleva, E.G. Isoflavones derived from plant raw materials: Bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit. Rev. Food Sci. Nutr. 2022, 63, 261–287. [Google Scholar] [CrossRef]
- Povod, M.; Mykhalko, O.; Povoznikov, M.; Gutyj, B.; Koberniuk, V.; Shuplyk, V.; Ievstafiieva, Y.; Buchkovska, V. Efficiency of using high-protein sunflower meal instead of soybean meal in feeding of growing piglets. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2022, 22, 595–602. [Google Scholar]
- Bozhkov, A.A.; Ganin, V.Y.; Akzhyhitov, R.A.; Ivanov, E.G.; Bilovetska, S.G.; Dobrianska, N.I.; Novikova, A.V.; Bozhkov, A.I. Chlorogenic acid from sunflower meal regulates the number of immunocompetent cells in animals with toxic liver fibrosis. Clin. Nutr. Open Sci. 2024, 53, 78–94. [Google Scholar] [CrossRef]
- Ali, M.; Khalil, M.; Badawy, W.Z.; Hellwig, M. Ultrasonic treatment as a modern technique to facilitate the extraction of phenolic compounds from organic sunflower seed cakes. J. Sci. Food Agric. 2024, 104, 2245–2251. [Google Scholar] [CrossRef]
- Le, T.T.; Ropars, A.; Aymes, A.; Frippiat, J.-P.; Kapel, R. Multicriteria optimization of phenolic compounds capture from a sunflower protein isolate production process by-product by adsorption column and assessment of their antioxidant and anti-inflammatory effects. Foods 2021, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Larnaudie, V.; Ferrari, M.D.; Lareo, C. Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability. Renew. Sustain. Energy Rev. 2022, 158, 112115. [Google Scholar] [CrossRef]
- Bryant, N.D.; Pu, Y.; Tschaplinski, T.J.; Tuskan, G.A.; Muchero, W.; Kalluri, U.C.; Yoo, C.G.; Ragauskas, A.J. Transgenic poplar designed for biofuels. Trends Plant Sci. 2020, 25, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Chipkar, S.H. Studying Effect of Drought on Switchgrass and Identifying Associated Microbial Inhibitors. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2023. [Google Scholar]
- Devi, M.; Bamrah, P.K.; Goyal, R.; Choudhary, M.; Chopra, H. Insights on the emerging therapeutic potential of terpenoids as anti-inflammatory agents: A scoping review. J. Bio-X Res. 2024, 7, 0006. [Google Scholar] [CrossRef]
- De Paola, C. Enhancing Nicotiana benthamiana as Chassis for Molecular Farming: Targeting Flowering Time for Increased Biomass and Recombinant Protein Production. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2024. [Google Scholar]
- Naeem, M.; Han, R.; Ahmad, N.; Zhao, W.; Zhao, L. Tobacco as green bioreactor for therapeutic protein production: Latest breakthroughs and optimization strategies. Plant Growth Regul. 2024, 103, 227–241. [Google Scholar] [CrossRef]
- Wu, S.; Gao, C.; Pan, H.; Wei, K.; Li, D.; Cai, K.; Zhang, H. Advancements in tobacco (Nicotiana tabacum L.) seed oils for biodiesel production. Front. Chem 2022, 9, 834936. [Google Scholar] [CrossRef]
- Botero Gutiérrez, C.D.; Restrepo Serna, D.L.; Cardona Alzate, C.A. A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants. Biofuel Res. J. 2017, 4, 691–703. [Google Scholar] [CrossRef]
- Kumar, L.; Mohan, L.; Anand, R.; Joshi, V.; Chugh, M.; Bharadvaja, N. A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. Front. Chem. Eng. 2022, 4, 998289. [Google Scholar] [CrossRef]
- Makepa, D.; Chihobo, C. Barriers to commercial deployment of biorefineries: A multi-faceted review of obstacles across the innovation chain. Heliyon 2024, 10, e32649. [Google Scholar] [CrossRef]
- Seufitelli, G.V.S.; El-Husseini, H.; Pascoli, D.U.; Bura, R.; Gustafson, R. Techno-economic analysis of an integrated biorefinery to convert poplar into jet fuel, xylitol, and formic acid. Biotechnol. Biofuels Bioprod. 2022, 15, 143. [Google Scholar] [CrossRef]
- Biorefinery Demo Plant—Sekab. Available online: https://www.sekab.com/en/this-is-how-it-works/biorefinery-demo-plant/ (accessed on 8 May 2025).
- Borregaard—The Sustainable Biorefinery. Available online: https://www.borregaard.com/ (accessed on 8 May 2025).
- Integrating the Production of Biofuels and Bioproducts. Available online: https://www.energy.gov/eere/articles/integrating-production-biofuels-and-bioproducts/ (accessed on 8 May 2025).
- Qiao, J.; Cui, H.; Wang, M.; Fu, X.; Wang, X.; Li, X.; Huang, H. Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. Bioresour. Technol. 2022, 360, 127516. [Google Scholar] [CrossRef] [PubMed]
- Vlysidis, A.; Binns, M.; Webb, C.; Theodoropoulos, C. A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals. Energy 2011, 36, 4671–4683. [Google Scholar] [CrossRef]
- Keiper, F.; Atanassova, A. Regulation of Synthetic Biology: Developments Under the Convention on Biological Diversity and Its Protocols. Front. Bioeng. Biotechnol. 2020, 8, 310. [Google Scholar] [CrossRef] [PubMed]
- Naveen, A.K.; Sontakke, M. A review on regulatory aspects, challenges and public perception in acceptance of genetically modified foods. Food Sci. Biotechnol. 2024, 33, 791–804. [Google Scholar] [CrossRef]
- Patraşcu, I.; Bîldea, C.S.; Kiss, A.A. Eco-efficient Downstream Processing of Biobutanol by Enhanced Process Intensification and Integration. ACS Sustain. Chem. Eng. 2018, 6, 5452–5461. [Google Scholar] [CrossRef]
- Tönjes, S.; Uitterhaegen, E.; Palmans, I.; Ibach, B.; De Winter, K.; Van Dijck, P.; Soetaert, W.; Vandecruys, P. Metabolic Engineering and Process Intensification for Muconic Acid Production Using Saccharomyces cerevisiae. Int. J. Mol. Sci. 2024, 25, 10245. [Google Scholar] [CrossRef]
- Biological Approvals by Year. Available online: https://www.fda.gov/vaccines-blood-biologics/development-approval-process-cber/biological-approvals-year (accessed on 26 May 2025).
- Kohli, K.; Prajapati, R.; Sharma, B.K. Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries. Energies 2019, 12, 233. [Google Scholar] [CrossRef]
Microorganism | Biofuel(s)/Precursors | Pharmaceuticals/Precursors | Refs. |
---|---|---|---|
Acinetobacter spp. | Biodiesel | Potential for emulsifiers/biosurfactants—varies by species | [17,18] |
Bacillus spp. | Biodiesel | Bioacetoin | [19,20] |
Chlamydomonas reinhardtii | Hydrogen, Biodiesel | Carotenoids (β-carotene, astaxanthin) | [21,22,23] |
Clostridium acetobutylicum | Butanol | Butyric Acid | [24,25] |
Dunaliella salina | Biodiesel | β-carotene (antioxidant, vitamin A precursor) | [26,27,28] |
Haematococcus pluvialis | Biodiesel, Ethanol, Biogas (from residual biomass) | Astaxanthin (antioxidant, anti-inflammatory, neuroprotective) | [29,30,31] |
Mortierella isabellina | Biodiesel | Gamma-linolenic acid (anti-inflammatory) | [32,33,34] |
Phaffia rhodozyma | Biodiesel (from lipids) | Astaxanthin (antioxidant, anti-inflammatory, neuroprotective) | [35,36] |
Phormidium sp. | Biodiesel | Squalene | [37,38] |
Rhizopus oryzae | Biodiesel | Chitin/Chitosan (biomedical polymers) | [39,40,41] |
Rhodotorula babjevae Y-SL7 | Microbial oil (>40%) | Polyol Esters of Fatty Acids | [42,43] |
Rhodotorula glutinis | Biodiesel | Carotenoids (β-carotene, torulene, torularhodin-antioxidants) | [44,45] |
Rhodotorula kratochvilovae SY89 | Biodiesel | Carotenoids, β-glucans (immunostimulatory), Exoglycolipids | [46,47,48] |
Rhodococcus spp. | Biodiesel | Potential for steroid biotransformation—varies by species | [49,50,51] |
Spirulina (Arthrospira platensis) | Biodiesel | Phycocyanin (antioxidant, anti-inflammatory) | [52,53] |
Yarrowia lipolytica | Biodiesel | Omega-3 fatty acids, Carotenoids, Flavonoids (engineered, e.g., naringenin), Lipases | [54,55,56,57,58,59] |
Engineered Organism | Synthetic Biology Approach | Biofuel(s)/Precursors | Pharmaceuticals | Refs. |
---|---|---|---|---|
Escherichia coli | Pathway engineering, Gene expression optimization, Metabolic flux control | Fatty acid ethyl esters, Alkanes, Isoprenoid fuels | Lycopene, Amorphadiene (artemisinin precursor), Other isoprenoids | [82,83,84,85,86,87,88] |
Microbial Consortia | Division of labor, Cross-feeding between engineered strains | Varies (e.g., H2 + CO2 -> methane/acetate) | Varies (e.g., sequential biotransformation for complex drugs) | [89,90,91,92] |
Saccharomyces cerevisiae | Metabolic engineering, Heterologous pathway construction, CRISPR-Cas9 | Ethanol, Isobutanol, Farnesene, Other alcohols | Artemisinic acid (artemisinin precursor), Resveratrol, Insulin precursors, Polyketides | [93,94,95,96,97,98,99] |
Synechocystis sp. PCC 6803 (Cyanobacterium) | Photosynthetic pathway engineering, CO2 fixation enhancement, CRISPR-Cas9 | Isobutanol, Ethanol, Fatty acids, Limonene | β-carotene, Phycocyanin, Terpenoid precursors, Other bioactive compounds | [100,101,102,103,104,105] |
Various (using advanced tools) | Biosensors, Dynamic regulatory circuits, High-throughput screening | Optimized yield/titer | Optimized yield/titer, Balanced co-production | [106,107,108] |
Yarrowia lipolytica | Metabolic engineering, Lipid pathway optimization, CRISPR-Cas9, Pathway compartmentalization | Biodiesel | Omega-3 fatty acids (EPA, DHA), Carotenoids, Polyketides | [59,109,110,111,112,113,114,115] |
Biorefinery Waste Stream | Extracted Medicinal Component(s) | Potential Medicinal Application(s) | Refs. |
---|---|---|---|
Crude Glycerol from Biodiesel | Impurities potentially convertible, e.g., to 1,3-propanediol | Chemical intermediate | [122,123,124] |
Fermentation Residues | Residual enzymes, Bioactive Peptides, Phenolic compounds, Microbial biomass components | Antimicrobial, Antioxidant, Enzyme source, Animal feed supplement | [125,126,127,128,129] |
Fungal Biomass Residues | Chitin, Chitosan | Drug delivery, Wound healing, Tissue engineering | [130,131,132,133,134,135] |
Hemicellulose Hydrolysate | Phenolic acids, Oligosaccharides | Antioxidant, Prebiotic | [136,137,138,139] |
Lignocellulosic Residues | Phenolic monomers/oligomers | Antioxidant, Antimicrobial, Anti-inflammatory, Flavorant, Chemical precursor | [140,141,142,143,144,145,146,147] |
Spent Microalgal Biomass (post-primary extraction) | Bioactive Peptides, Proteins, β-glucans, Residual Carotenoids, Chlorophyll derivatives, Omega-3 fatty acids, Minerals | Antioxidant, Antihypertensive, Immunostimulatory, Antimicrobial, Nutritional supplement | [145,148,149,150,151,152] |
Nanocatalyst Type | Process/Reaction Catalyzed | Relevance to Co-production | Refs. |
---|---|---|---|
Enzyme–Nanomaterial Conjugates | Transesterification; Esterification; Hydrolysis; Kinetic Resolution | Efficient biodiesel production; Synthesis/resolution of chiral drug precursors; Catalyst recovery and reuse via magnetic/physical separation. | [160,161,162,163,164] |
Supported Metal NPs | Hydrogenation, Dehydrogenation, Oxidation, C-C Coupling, Hydrodeoxygenation | Upgrading biomass platform chemicals into fuel additives and pharmaceutical building blocks; Lignin depolymerization. | [165,166,167,168] |
Metal Oxide Nanocatalysts | Photocatalysis; Oxidation; Acid/Base Catalysis | Biomass pretreatment enhancement; Biorefinery wastewater treatment; Specific organic synthesis for pharmaceuticals; Support material. | [169,170,171,172,173,174] |
Bimetallic/Alloy Nanoparticles | Synergistic Catalysis | Enhanced activity/selectivity for hydrogenation, oxidation, C-C coupling in biomass upgrading, potentially benefiting both fuel/pharma pathways. | [175,176,177,178,179] |
Nanocatalysts for Lignin Valorization | Selective Cleavage of Lignin Bonds | Controlled depolymerization of lignin waste into specific aromatic precursors for high-performance biofuels/materials and pharmaceuticals. | [180,181,182,183] |
Multifunctional/Tandem Nanocatalysts | Cascade Reactions | One-pot conversion of biomass components or intermediates into advanced biofuels and pharmaceutical precursors, improving process efficiency. | [184,185,186,187,188] |
Computational Tool/Method | Biological System/Process Targeted | Role in Optimizing Co-production | Refs. |
---|---|---|---|
Genome-Scale Metabolic Models (GEMs) | Whole-cell metabolism (bacteria, yeast, algae, etc.) | Comprehensive representation of metabolic network; Foundation for constraint-based modeling and systems analysis. | [204,205,206,207,208,209] |
Flux Balance Analysis (FBA) and Variants (OptFlux, FVA) | Microbial metabolic flux distribution | Predicting optimal flux patterns; Identifying gene modification targets (knockouts, overexpression) for redirecting flux towards simultaneous biofuel/pharma production. | [210,211,212,213] |
13C-Metabolic Flux Analysis | Intracellular metabolic fluxes | Quantifying actual metabolic fluxes to validate and refine GEMs and FBA predictions for co-production pathways. | [214,215,216] |
Pathway Design Algorithms (e.g., RetroPath, BNICE) | Novel metabolic pathway construction | Designing synthetic pathways for target molecules; Exploring alternative routes; Identifying pathways potentially favoring co-production economics. | [217,218,219] |
Molecular Dynamics Simulation | Enzyme structure function, Enzyme–substrate interactions | Understanding enzyme mechanisms; Guiding protein engineering efforts to improve catalyst efficiency or specificity relevant to biofuel/pharma synthesis. | [220,221,222,223] |
Process Simulation Software (e.g., Aspen, SuperPro) | Integrated biorefinery processes (upstream, fermentation, downstream) | Designing, optimizing, and scaling up entire processes; Performing techno-economic analysis and life cycle assessment of co-production scenarios. | [224,225,226] |
Machine Learning (ML)/Artificial Intelligence (AI) | Multi-omics data, Fermentation data, Genetic circuit design | Building predictive models from complex data; Optimizing conditions; Discovering enzyme functions; Designing dynamic control systems for balancing co-production. | [227,228,229,230,231] |
Extremophile Type/Example | Extreme Condition Tolerance | Biofuel Product/Process Contribution | Pharmaceutical/Value-Added Product/Enzyme | Refs. |
---|---|---|---|---|
Thermophilic Bacteria/Archaea (Clostridium, Caldicellulosiruptor, Thermoanaerobacterium) | High Temperature (>60 °C) | Ethanol, Hydrogen, Butanol (from lignocellulose via CBP); Reduced contamination | Thermostable enzymes (cellulases, xylanases, ligninases, amylases, proteases) | [194,241,242,243,244] |
Halophili Algae (Dunaliella salina) | High Salinity (>10–30% NaCl) | Lipids (biodiesel precursor), Glycerol | β-carotene, Lutein | [26,245,246,247,248,249,250] |
Halophilic Archaea (Halobacterium, Haloferax) | High Salinity (15%—saturation) | Lipids (potential), PHAs (bioplastics/biomedical), Gas vesicles (potential) | Bacterioruberin (C50 carotenoid antioxidant), Compatible solutes (ectoine, hydroxyectoine) | [251,252,253,254,255,256,257] |
Psychrophilic Bacteria/Algae/Fungi | Low Temperature (<15 °C) | Lipids (biodiesel precursor-potential) | Polyunsaturated fatty acids, Cold-active enzymes (lipases, proteases, amylases) | [258,259,260,261] |
Acidophilic Microorganisms (Acidithiobacillus) | Low pH (<3) | Biomining contribution (metal leaching-indirect) | Acid-stable enzymes, Unique metabolites | [262,263,264,265] |
Alkaliphilic Microorganisms (Bacillus spp.) | High pH (>9) | Contribution to specific bioconversions | Alkali-stable enzymes (proteases, amylases for detergents), Unique metabolites | [266,267,268,269,270] |
Plant Source/Type | Primary Biomass Use (Biofuel Potential) | Secondary Metabolite(s) | Medicinal Application(s)/Potential Benefits | Refs. |
---|---|---|---|---|
Crop Residues (Corn Stover, Wheat Straw) | Cellulosic Ethanol, Biogas | Phenolic Acids, Flavonoids | Antioxidant, Anti-inflammatory | [277,278,279,280,281,282,283] |
Artemisia annua | Lignocellulosic Biomass Residue (Post-extraction) | Artemisinin | Antimalarial | [284,285,286] |
Taxus spp. | Lignocellulosic Biomass Residue (Needles/Bark, Post-extraction) | Paclitaxel | Anticancer | [287,288,289] |
Rapeseed Meal (Post-oil extraction) | Animal Feed/Fertilizer/Potential Energy Recovery | Phenolic Compounds, Glucosinolates | Antioxidant, Potential anticancer (glucosinolate metabolites) | [290,291,292,293,294,295] |
Soybean Meal (Post-oil extraction) | Animal Feed/Fertilizer/Potential Energy Recovery | Isoflavones, Saponins, Phenolic acids | Phytoestrogenic (hormone health), Antioxidant, Potential anticancer | [296,297,298,299,300,301] |
Sunflower Meal (Post-oil extraction) | Animal Feed/Fertilizer/Potential Energy Recovery | Chlorogenic acid, Other phenolic compounds | Antioxidant, Anti-inflammatory | [302,303,304,305] |
Dedicated Energy Crops (Switchgrass, Poplar) | Cellulosic Biofuels | Phenolics, Flavonoids, Terpenoids—varies | Varies (Antioxidant, Anti-inflammatory potential, requires investigation) | [306,307,308,309] |
Tobacco (Nicotiana spp.—engineered) | Potential for Oil (biodiesel)/Biomass | Engineered production of specific proteins/antibodies | Therapeutic proteins (e.g., vaccines, antibodies) | [310,311,312] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; He, M.; Shi, R.; Yin, H.; Luo, W. Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability. Fermentation 2025, 11, 312. https://doi.org/10.3390/fermentation11060312
Liu T, He M, Shi R, Yin H, Luo W. Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability. Fermentation. 2025; 11(6):312. https://doi.org/10.3390/fermentation11060312
Chicago/Turabian StyleLiu, Tao, Miaoxin He, Rui Shi, Hui Yin, and Wen Luo. 2025. "Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability" Fermentation 11, no. 6: 312. https://doi.org/10.3390/fermentation11060312
APA StyleLiu, T., He, M., Shi, R., Yin, H., & Luo, W. (2025). Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability. Fermentation, 11(6), 312. https://doi.org/10.3390/fermentation11060312