Effects of Different Levels of Thiamine Diphosphate on In Vitro Methane Reduction and Fermentation Characteristics of Korean Native Cow (Hanwoo)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thiamine Diphosphate and Substrate Preparation
2.2. In Vitro Incubation
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. In Vitro Digestibility and Gas Production
3.2. Ruminal Fermentation Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, A.P.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2021. [Google Scholar]
- Glasson, C.R.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Misiukiewicz, A.; Gao, M.; Filipiak, W.; Cieslak, A.; Patra, A.K.; Szumacher-Strabel, M. Methanogens and methane production in the digestive systems of nonruminant farm animals. Animal 2021, 15, 100060. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 1–10. [Google Scholar] [CrossRef]
- Xuan, T.; Zheng, T.; Li, T.; Wu, B.; Li, T.; Bao, W.; Qin, W. The Effects of Different Doses of 3-NOP on Ruminal Fermentation Parameters, Methane Production, and the Microbiota of Lambs In Vitro. Fermentation 2024, 10, 440. [Google Scholar] [CrossRef]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K.; Kindermann, M. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar] [CrossRef]
- Luke, J.R.; Tonsor, G.T. The enteric methane emission conundrum: US beef cattle producer adoption of climate-focused technology. Sustain. Prod. Consum. 2024, 50, 364–375. [Google Scholar] [CrossRef]
- Alfano, M.; Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 2020, 29, 1071–1089. [Google Scholar] [CrossRef]
- Thauer, R.K. Methyl (alkyl)-coenzyme M reductases: Nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 2019, 58, 5198–5220. [Google Scholar] [CrossRef]
- Cedervall, P.E.; Dey, M.; Pearson, A.R.; Ragsdale, S.W.; Wilmot, C.M. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues. Biochemistry 2010, 49, 7683–7693. [Google Scholar] [CrossRef]
- Chai, H.; Park, W.; Lim, D.; Seong, P.N.; Wi, J.; Lee, S.; Lee, Y. Composition for Reducing Methane Emission from Ruminants Containing Thiamine Diphosphate. KR 1020230176706, 7 December 2023. [Google Scholar]
- Horecker, B.L.; Smyrniotis, P.Z. The coenzyme function of thiamine pyrophosphate in pentose phosphate metabolism. J. Am. Chem. Soc. 1953, 75, 1009–1010. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Horng, Y.C.; Ragsdale, S.W. Rapid ligand exchange in the MCRred1 form of methyl-coenzyme m reductase. J. Am. Chem. Soc. 2003, 125, 2436–2443. [Google Scholar] [CrossRef]
- Yang, N.; Reiher, M.; Wang, M.; Harmer, J.; Duin, E.C. Formation of a nickel− methyl species in methyl-coenzyme M reductase, an enzyme catalyzing methane formation. J. Am. Chem. Soc. 2007, 129, 11028–11029. [Google Scholar] [CrossRef]
- Dey, M.; Li, X.; Kunz, R.C.; Ragsdale, S.W. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Biochemistry 2010, 49, 10902–10911. [Google Scholar] [CrossRef]
- Chai, H.; Seong, P.N.; Lim, D.; Kim, T.; Park, W.; Wi, J.; Lee, S.; Lee, Y. Composition for Reducing Methane Emission from Ruminants Containing Thiamine Triphosphate. WO2024106663, 22 June 2023. [Google Scholar]
- Friedemann, R.; Uslar, W. Quantum chemical and molecular mechanics calculations on the thiamine pyrophosphate system. J. Mol. Struct. Theochem. 1988, 181, 401–410. [Google Scholar] [CrossRef]
- Melgar, A.; Welter, K.C.; Nedelkov, K.; Martins, C.M.M.R.; Harper, M.T.; Oh, J.; Räisänen, S.E.; Chen, X.; Cueva, S.F.; Duval, S.; et al. Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. J. Dairy Sci. 2020, 103, 6145–6156. [Google Scholar] [CrossRef]
- Romero-Pérez, A.; Okine, E.K.; Guan, L.L.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Effects of 3-nitrooxypropanol on methane production using the rumen simulation technique (Rusitec). Anim. Feed Sci. Technol. 2015, 209, 98–109. [Google Scholar] [CrossRef]
- Romero-Perez, A.; Okine, E.K.; McGinn, S.M.; Guan, L.L.; Oba, M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. Anim. Sci. J. 2014, 92, 4682–4693. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, W.; Zhang, Y.; Zhou, M. Effect of 3-Nitropropionic Acid at Different Doses on In Vitro Rumen Fermentation, Digestibility, and Methane Emissions of Grazing Yak and Cattle. Animals 2024, 14, 1804. [Google Scholar] [CrossRef] [PubMed]
- Haisan, J.; Sun, Y.; Guan, L.L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Barreda, D.R.; Oba, M. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 2014, 97, 3110–3119. [Google Scholar] [CrossRef]
- Martínez-Fernández, G.; Abecia, L.; Arco, A.; Cantalapiedra-Hijar, G.; Martín-García, A.I.; Molina-Alcaide, E.; Kindermann, M.; Duval, S.; Yáñez-Ruiz, D.R. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy Sci. 2014, 97, 3790–3799. [Google Scholar] [CrossRef]
- Cristobal-Carballo, O.; McCoard, S.A.; Cookson, A.L.; Ganesh, S.; Lowe, K.; Laven, R.A.; Muetzel, S. Effect of methane inhibitors on ruminal microbiota during early life and its relationship with ruminal metabolism and growth in calves. Front. Microbiol. 2021, 12, 710914. [Google Scholar] [CrossRef]
- Mitsumori, M.; Shinkai, T.; Takenaka, A.; Enishi, O.; Higuchi, K.; Kobayashi, Y.; Nonaka, I.; Asanuma, N.; Denman, S.E.; McSweeney, C.S. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 2012, 108, 482–491. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Jo, Y.H.; Kim, W.S.; Kim, Y.R.; Ju, M.S.; Nejad, J.G.; Lee, H.G. Impacts of Protein and Energy Levels on Rumen Fermentation and Microbial Activity Under Different Incubation Temperatures. Animals 2024, 14, 3093. [Google Scholar] [CrossRef]
- Lopes, J.C.; De Matos, L.F.; Harper, M.T.; Giallongo, F.; Oh, J.; Gruen, D.; Ono, S.; Kindermann, M.; Duval, S.; Hristov, A.N. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 2016, 99, 5335–5344. [Google Scholar] [CrossRef]
- Schilde, M.; von Soosten, D.; Hüther, L.; Kersten, S.; Meyer, U.; Zeyner, A.; Dänicke, S. Dose–response effects of 3-nitrooxypropanol combined with low-and high-concentrate feed proportions in the dairy cow ration on fermentation parameters in a rumen simulation technique. Animals 2021, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.J.; Peel, J.L. The biosynthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem. J. 1971, 121, 431–437. [Google Scholar] [CrossRef] [PubMed]
Item | Concentrate | Mixed Hay |
---|---|---|
Ingredients, % of dry matter | ||
Cracked corn | 58.10 | |
Soybean hull | 16.60 | |
Corn gluten feed | 11.70 | |
Wheat bran | 5.80 | |
Soybean meal | 3.50 | |
Lupin | 2.30 | |
Limestone | 0.80 | |
Sodium bicarbonate | 0.60 | |
Salt | 0.40 | |
Vitamin & mineral mixture 1 | 0.20 | |
Kentucky bluegrass | 50.00 | |
Tall fescue | 50.00 |
Item | Concentrate | Rice Straw |
---|---|---|
Crude protein, % of DM | 12.79 | 8.67 |
Ether extract, % of DM | 3.09 | 0.83 |
Neutral detergent fiber, % of DM | 21.60 | 65.29 |
Acid detergent fiber, % of DM | 11.66 | 46.79 |
Crude ash, % of DM | 3.98 | 11.44 |
Non-fiber carbohydrates 1, % of DM | 58.55 | 13.76 |
Items 1 | Levels of Thiamine Diphosphate, ppm | SEM | Contrast 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 240 | 360 | 480 | 600 | 720 | L | Q | C | ||
pH | 6.20 b | 6.27 a | 6.28 a | 6.27 a | 6.27 a | 6.25 a | 0.005 | 0.001 | <0.001 | 0.300 |
NH3-N, mg/dL | 10.1 | 8.30 | 7.98 | 7.73 | 9.20 | 7.65 | 1.814 | 0.204 | 0.333 | 0.547 |
Total VFA, mM | 53.9 | 55.2 | 53.7 | 55.3 | 54.8 | 56.9 | 5.908 | 0.907 | 0.550 | 0.837 |
Acetate, % | 56.5 | 56.3 | 56.2 | 55.9 | 56.6 | 56.5 | 0.407 | 0.873 | 0.044 | 0.806 |
Propionate, % | 25.9 c | 26.6 b | 27.0 b | 27.9 a | 25.7 c | 25.4 c | 0.331 | 0.422 | <0.001 | 0.048 |
Iso-butyrate, % | 1.09 | 1.06 | 1.09 | 1.11 | 1.14 | 1.18 | 0.063 | 0.104 | 0.120 | 0.579 |
Butyrate, % | 13.2 ab | 12.7 bc | 12.4 cd | 11.9 d | 13.2 ab | 13.4 a | 0.285 | 0.656 | <0.001 | 0.069 |
Valerate, % | 2.13 ab | 2.10 ab | 2.08 ab | 2.03 b | 2.23 a | 2.22 a | 0.065 | 0.033 | 0.006 | 0.814 |
Iso-valerate, % | 1.23 | 1.24 | 1.21 | 1.19 | 1.18 | 1.22 | 0.035 | 0.155 | 0.361 | 0.059 |
A:P ratio | 2.18 | 2.12 | 2.08 | 2.00 | 2.21 | 2.22 | 1.486 | 0.222 | 0.032 | 0.380 |
Items 1 | Levels of Thiamine Diphosphate, ppm | SEM | Contrast 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 240 | 360 | 480 | 600 | 720 | L | Q | C | ||
pH | 6.02 c | 6.09 ab | 6.06 bc | 6.13 a | 6.14 a | 6.08 abc | 0.009 | <0.001 | 0.004 | 0.037 |
NH3-N, mg/dL | 23.5 a | 19.4 bc | 18.3 bc | 16.2 c | 21.0 ab | 20.5 ab | 0.513 | 0.009 | <0.001 | 0.979 |
Total VFA, mM | 78.0 bc | 70.0 c | 75.9 bc | 87.1 ab | 79.2 b | 95.0 a | 1.797 | <0.001 | 0.001 | 0.401 |
Acetate, % | 59.5 a | 58.4 ab | 59.2 a | 57.1 b | 57.0 b | 58.3 ab | 0.212 | <0.001 | 0.053 | 0.006 |
Propionate, % | 24.3 d | 25.7 bc | 25.9 b | 26.9 a | 25.3 bc | 25.0 cd | 0.166 | 0.002 | <0.001 | 0.159 |
Iso-butyrate, % | 1.23 c | 1.14 d | 1.16 cd | 1.36 b | 1.44 a | 1.39 ab | 0.022 | <0.001 | <0.001 | <0.001 |
Butyrate, % | 11.3 b | 11.2 b | 10.2 c | 11.0 bc | 12.3 a | 11.5 ab | 0.142 | 0.025 | 0.005 | 0.064 |
Valerate, % | 2.45 a | 2.23 b | 2.29 b | 2.21 b | 2.51 a | 2.42 a | 0.024 | 0.160 | <0.001 | 0.002 |
Iso-valerate, % | 1.27 b | 1.35 ab | 1.27 b | 1.41 a | 1.46 a | 1.38 ab | 0.017 | <0.001 | 0.624 | 0.056 |
A:P ratio | 2.45 a | 2.27 b | 2.28 b | 2.12 c | 2.25 b | 2.33 b | 0.021 | 0.002 | <0.001 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-S.; Jo, S.-U.; Kim, H.-S.; Wi, J.-S.; Lee, Y.-K.; Lee, S.-D. Effects of Different Levels of Thiamine Diphosphate on In Vitro Methane Reduction and Fermentation Characteristics of Korean Native Cow (Hanwoo). Fermentation 2025, 11, 247. https://doi.org/10.3390/fermentation11050247
Lee S-S, Jo S-U, Kim H-S, Wi J-S, Lee Y-K, Lee S-D. Effects of Different Levels of Thiamine Diphosphate on In Vitro Methane Reduction and Fermentation Characteristics of Korean Native Cow (Hanwoo). Fermentation. 2025; 11(5):247. https://doi.org/10.3390/fermentation11050247
Chicago/Turabian StyleLee, Seong-Shin, Seong-Uk Jo, Heoyn-Sang Kim, Ji-Soo Wi, Yoo-Kyung Lee, and Seong-Dae Lee. 2025. "Effects of Different Levels of Thiamine Diphosphate on In Vitro Methane Reduction and Fermentation Characteristics of Korean Native Cow (Hanwoo)" Fermentation 11, no. 5: 247. https://doi.org/10.3390/fermentation11050247
APA StyleLee, S.-S., Jo, S.-U., Kim, H.-S., Wi, J.-S., Lee, Y.-K., & Lee, S.-D. (2025). Effects of Different Levels of Thiamine Diphosphate on In Vitro Methane Reduction and Fermentation Characteristics of Korean Native Cow (Hanwoo). Fermentation, 11(5), 247. https://doi.org/10.3390/fermentation11050247