Determination of Estimated Biodiesel Potential of Microalgae Grown in Biogas Liquid Digestate
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Detection of Microalgae Species in BLD, Biomass Yield, Nutrient, and CO2 Removal
2.2. Fatty Acid Methyl Esters
2.3. Estimated Biodiesel Properties
3. Results and Discussion
3.1. Microalgae Species Detection in Digestate Content, COD and Nutrient Removal, Biomass Yield, and CO2 Removal
3.2. Effects of Dosages of Biogas Liquid Digestate on Fatty Acid Compositions Produced from Cyanobacteria
3.3. Evaluation of Algal Lipids for Estimated Biodiesel Production
3.4. Cluster Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COD | Chemical oxygen demand |
BLD | Biogas liquid digestate |
BBM | Bold basal medium |
CFPP | Cold filter plugging point |
CN | Cetane number |
CP | Cloud point |
HHV | High heating value |
LCSF | Long-chain saturated factor |
DU | Degree of unsaturation |
OS | Oxidation stability |
SV | Saponification value |
NGS | Next-generation sequencing |
PCR | Polymerase chain reaction |
References
- Anaerobic Digestion: Products. Available online: https://enst.umd.edu/sites/enst.umd.edu/files/files/documents/Extension/Anaerobic-Digest_Products.pdf (accessed on 2 February 2025).
- Yıldırım, E. Effect of Rumen Fungi on Potential of Biogas Production in Anaerobic Digesters Fed with Different Lignocellulosic Compounds. Master’s Thesis, Boğaziçi Üniversitesi Çevre Bilimleri Enstitüsü, İstanbul, Turkey, 2016. [Google Scholar]
- Bascetincelik, A.; Ozturk, H.H.; Ekinci, K.; Kaya, D.; Kacira, M.; Karaca, C. Strategy Development and Determination of Barriers for Thermal Energy and Electricity Generation from Agricultural Biomass in Turkey. Energy Explor. Exploit. 2009, 27, 277–294. [Google Scholar] [CrossRef]
- Cengiz, K. Determination of biogas production potential from animal manure and GHG emission abatement in Turkey. Int. J. Agric. Biol. Eng. 2018, 11, 205–210. [Google Scholar]
- Song, Q.; Li, J.; Zeng, X. Minimizing the increasing solid waste through zero waste strategy. J. Clean. Prod. 2015, 104, 199–210. [Google Scholar] [CrossRef]
- Serdjuk, M.; Bodmer, U.; Hülsbergen, K.J. Integration of biogas production into organic arable farming systems: Crop yield response and economic effects. Org. Agr. 2018, 8, 301–314. [Google Scholar] [CrossRef]
- Workshop on Zero Waste Vision and the Management of Animal Wastes. Available online: https://webdosya.csb.gov.tr/db/bolu/icerikler/b-yogaz-yontemler--ve-ik-nc-l-urunler_prof.dr.-nur-ye-altinay-perendeci-20230107084153.pdf (accessed on 23 January 2025).
- Palikrousis, T.L.; Manolis, C.; Kalamaras, S.D.; Samaras, P. Effect of Light Intensity on the Growth and Nutrient Uptake of the Microalga Chlorella sorokiniana Cultivated in Biogas Plant Digestate. Water 2024, 16, 2782. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2011, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Hugerth, L.W.; Andersson, A.F. Analysing microbial community composition through amplicon sequencing: From sampling to hypothesis testing. Front. Microbiol. 2017, 8, 1561. [Google Scholar] [CrossRef] [PubMed]
- TS EN ISO 14911; Water quality—Determination of Dissolved Alkaline Earth and Alkali Metals Using ion Chromatography of cations. Turkish Standards Institution (TSE): Ankara, Turkey, 2022.
- TS EN ISO 10304-1; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. Turkish Standards Institution (TSE): Ankara, Turkey, 2022.
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Slade, R.; Bauen, A. Microalgae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 2013, 53, 29–38. [Google Scholar] [CrossRef]
- Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Alam, M.A.; Mehmood, M.A. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci. Total Environ. 2020, 704, 135303. [Google Scholar] [CrossRef]
- Li, S.; Luo, S.; Guo, R. Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour. Technol. 2013, 136, 267–272. [Google Scholar] [CrossRef]
- Zhao, Q.; Han, F.; You, Z.; Huang, Y.; She, X. Evaluation of the relationship of wastewater treatment and biodiesel production by microalgae cultivated in the photobioreactor. Fuel 2023, 350, 128750. [Google Scholar] [CrossRef]
- Nie, M.S. A new understanding of the development of water treatment technology. Water Supply Drain. 2007, 277. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; Mata, T.M.; Martins, A.A.; Freitas, M.A.V.; Caetano, N.S. Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Rep. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Bardakçı, B.; Seçilmiş, H. Isparta bölgesindeki gül yağının kimyasal içeriğinin GC-MS ve FTIR spektroskopisi tekniği ile incelenmesi. Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg. 2006, 1, 64–69. [Google Scholar]
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Krisnangkura, K. A simple method for estimation of cetane index of vegetable oil methyl esters. J. Am. Oil Chem. Soc. 1986, 63, 552–553. [Google Scholar] [CrossRef]
- Talebi, A.F.; Tabatabaei, M.; Chisti, Y. BiodieselAnalyzer: A user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res. J. 2014, 1, 55–57. [Google Scholar] [CrossRef]
- Bart, J.C.J.; Palmeri, N.; Cavallaro, S. Emerging new energy crops for biodiesel production. Biodiesel Sci. Technol. 2010, 226–284. [Google Scholar] [CrossRef]
- Uysal, Ö.; Ekinci, K. Treatment of rose oil processing effluent with Chlorella sp. using photobioreactor and raceway. J. Environ. Manag. 2021, 295, 113089. [Google Scholar] [CrossRef]
- Uysal, F.Ö. Gül Yağı İşleme Atık Suyunun Acutodesmus Obliquus İle Arıtımı ve Elde Edilen Mikroalgal Kütleden Biyodizel, Biyokömür ve Biyogübre Üretim Potansiyelinin Araştırılması, Süreçlerin su Ayak İzi ve Enerji Analizleri. Ph.D. Thesis, Isparta Uygulamalı Bilimler Üniversitesi/Lisansüstü Eğitim Enstitüsü, Isparta, Turkey, 2022. [Google Scholar]
- Kurt, Ç.; Ekinci, K.; Uysal, Ö. The effect of LEDs on the growth and fatty acid composition of Botryococcus braunii. Renew. Energy 2022, 186, 66–73. [Google Scholar] [CrossRef]
- Dunn, R.O. Correlating the cloud point of biodiesel to the concentration and melting properties of the component fatty acid methyl esters. Energy Fuels 2018, 32, 455–464. [Google Scholar] [CrossRef]
- Knothe, G.; Matheaus, A.C.; Ryan, T.W., III. Cetane numbers of branched and straight chain fatty esters determined in an ignition quality tester. Fuel 2003, 82, 971–975. [Google Scholar] [CrossRef]
- Rashid, U.; Anwar, F.; Moser, B.R.; Knothe, G. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 2008, 99, 8175–8179. [Google Scholar] [CrossRef]
- EN 14214; Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines—Requirements and Test Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2008.
- ASTM D6751; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2008.
- Özdemir, Z.Ö.; Mutlubaş, H. Biyodizel Üretim Yöntemleri ve Çevresel Etkileri. Kirklareli Univ. J. Eng. Sci. 2016, 2, 129–143. [Google Scholar]
- Gol, N.; Taghavijeloudar, M.; Jalilian, N.; Rezania, S. Microalgae cultivation in semi-transparent photovoltaic bioreactor for sustainable power generation, wastewater treatment and biodiesel production. Energy Convers. Manag. 2025, 325, 119417. [Google Scholar] [CrossRef]
Stock Solution (g 100 mL−1) | Applied Solution (mL) | |
KNO3 | 1 | 20 |
K2HPO4 | 0.1 | 20 |
MgSO4·7H2O | 0.1 | 20 |
Soil extraction | 30 | |
Microelement solution | 5 | |
Distilled water | 905 | |
Total | 1000 | |
Stock Solution (g 100 m−1) | Applied Solution (mL) | |
ZnSO4·7H2O | 0.1 | 1 |
MnSO4·4H2O | 0.1 | 2 |
H3BO3 | 0.2 | 5 |
Co(NO3)2·6H2O | 0.02 | 5 |
Na2MoO4·2H2O | 0.02 | 5 |
CuSO4·5H2O | 0.0005 | 1 |
Distilled water | 981 | |
FeSO4·7H2O | 0.7 g | |
EDTA | 0.8 g |
Characteristic (mg L−1) | ||||||
COD | NO3 | NH4 | TN | TP | TN/TP | |
M1 | 4620 | 1 | 815 | 1550 | 115 | 13:1 |
M2 | 15,630 | 3 | 1605 | 2275 | 565 | 4:1 |
M3 | 23,470 | 5 | 2120 | 2940 | 840 | 4:1 |
M4 | 26,580 | 7 | 2560 | 3175 | 950 | 3:1 |
M5 | 50,540 | 9 | 3980 | 5756 | 1970 | 3:1 |
Treatment | |||||
---|---|---|---|---|---|
Fatty Acid Methyl Ester (%) | M1 * | M2 | M3 | M4 | M5 |
C8:0 (Caprylic acid) | 0.16 | 0.16 | 0.20 | 0.27 | 0.07 |
C10:0 (Capric acid) | 0.12 | 0.13 | 0.11 | 0.19 | 0.06 |
C14:0 (Myristic acid) | 0.45 | 0.30 | 0.39 | 0.48 | 0.27 |
C15:0 (Pentadecanoic acid) | 0.063 | 0.06 | 0.09 | 0.08 | 0.04 |
C16:0 (Palmitic acid) | 25.94 | 23.83 | 35.59 | 19.90 | 21.10 |
C16:1 (Palmitoleic acid) | 1.69 | 2.53 | 2.41 | 1.99 | 1.92 |
C18:0 (Stearic acid) | 2.05 | 2.53 | 3.78 | 2.47 | 3.03 |
C18:1 (Oleic acid) | 24.82 | 27.66 | 26.61 | 38.20 | 40.76 |
C18:2 (Linoleic acid) | 30.32 | 30.59 | 18.50 | 25.14 | 23.34 |
C18:3 (Linolenic acid) | 6.27 | 4.53 | 3.27 | 4.89 | 3.57 |
C20:1 (Eicosanoic acid) | 0.23 | 0.30 | 0.55 | 0.31 | 0.44 |
Saturated fatty acid (SFA) | 28.78 | 27.01 | 40.16 | 23.39 | 24.57 |
Monounsaturated fatty acid (MUFA) | 26.74 | 30.49 | 29.57 | 40.51 | 43.11 |
Polyunsaturated fatty acid (PUFA) | 36.58 | 35.12 | 21.77 | 30.03 | 26.91 |
Treatments | M1 | M2 | M3 | M4 | M5 | ASTM D6751 | EN 14214 |
---|---|---|---|---|---|---|---|
DU | 99.9 | 100.73 | 73.1 | 100.56 | 96.93 | - | - |
SV | 189.42 | 190.09 | 190.03 | 192.06 | 192.85 | - | - |
IV (g I2/100 g) | 96.26 | 95.45 | 69.23 | 95.51 | 90.97 | - | ≤120 |
CN (min) | 53.46 | 53.54 | 59.45 | 53.23 | 54.13 | ≥47 | ≥51 |
LCSF | 3.62 | 3.65 | 5.45 | 3.22 | 3.62 | - | - |
CFPP | −5.11 | −5.01 | 0.64 | −6.35 | −5.09 | (−13)–(−5) | (−20)–(+5) |
CP | 8.65 | 7.54 | 13.73 | 5.48 | 6.11 | - | - |
OS (min) | 5.81 | 5.95 | 8.01 | 6.52 | 6.97 | ≥3 | ≥6 |
HHV (MJ kg−1) | 36.25 | 36.47 | 36.01 | 37.01 | 37.3 | 38.1–40.8 | - |
Viscosity (mm2 s−1) | 3.28 | 3.33 | 3.36 | 3.43 | 3.51 | 1.9–6.0 | 3.5–5.0 |
Density (kg m−3) | 0.81 | 0.81 | 0.8 | 0.82 | 0.83 | - | 0.86–0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uysal, Ö. Determination of Estimated Biodiesel Potential of Microalgae Grown in Biogas Liquid Digestate. Fermentation 2025, 11, 89. https://doi.org/10.3390/fermentation11020089
Uysal Ö. Determination of Estimated Biodiesel Potential of Microalgae Grown in Biogas Liquid Digestate. Fermentation. 2025; 11(2):89. https://doi.org/10.3390/fermentation11020089
Chicago/Turabian StyleUysal, Önder. 2025. "Determination of Estimated Biodiesel Potential of Microalgae Grown in Biogas Liquid Digestate" Fermentation 11, no. 2: 89. https://doi.org/10.3390/fermentation11020089
APA StyleUysal, Ö. (2025). Determination of Estimated Biodiesel Potential of Microalgae Grown in Biogas Liquid Digestate. Fermentation, 11(2), 89. https://doi.org/10.3390/fermentation11020089