Fe/Mn-Modified Biochar Facilitates Functional Microbial Enrichment for Efficient Glucose–Xylose Co-Fermentation and Biohydrogen Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Inocula
2.2. Batch Fermentation Procedure
2.3. Analytical Methods
2.4. Microbial Community Analysis
2.5. Kinetic Analysis
3. Results and Discussion
3.1. Effects of Pretreated Inocula on H2 Production from Xylose Fermentation
3.2. Performance of Hydrogen Fermentation Using Glucose–Xylose Mixed Substrates
3.3. Extracellular Polymeric Substance Dynamics in Metabolic Regulation
3.4. Microbial Community Shifts and Functional Gene Prediction During Xylose Fermentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HPB | Hydrogen-producing bacteria |
| CCR | Carbon catabolite repression |
| EPS | Extracellular polymeric substances |
| BES | 2-bromoethanesulfonate |
| GXMS | Glucose and xylose mix sugars |
| TCD | Thermal conductivity detector |
| HPLC | High-performance liquid chromatography |
| 3D-EEM | Three-dimensional excitation-emission |
| TOC | Total organic carbon |
| OTU | Operational taxonomic unit |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| S | Activated sludge |
| SAC | Acid-treated activated sludge |
| SAK | Alkali-treated activated sludge |
| ST3 | 30 min heat-shock-treated activated sludge |
| ST6 | 60 min heat-shock-treated activated sludge |
| SU3 | 3.5 min per day ultrasonic-treated activated sludge |
| SU7 | 7 min per day ultrasonic-treated activated sludge |
| SB | 2-bromoethanesulfonate-treated activated sludge |
| SCL | Chloroform treated activated sludge |
| SC | Activated sludge with straw-derived biochar addition |
| SMC | Activated sludge with Fe/Mn-modified straw biochar addition |
| SN | Untreated activated sludge |
| MAC | Acid-treated methanogenic digester slurry |
| MAK | Alkali-treated methanogenic digester slurry |
| MT3 | 30 min heat-shock treated methanogenic digester slurry |
| MT6 | 60 min heat-shock treated methanogenic digester slurry |
| MU3 | 3.5 min per day ultrasonic=treated methanogenic digester slurry |
| MU7 | 7 min per day ultrasonic-treated methanogenic digester slurry |
| MB | 2-bromoethanesulfonate-treated methanogenic digester slurry |
| MCL | Chloroform-treated methanogenic digester slurry |
| MC | Methanogenic digester slurry with straw-derived biochar addition |
| MMC | Methanogenic digester slurry with Fe/Mn-modified straw biochar addition |
| MN | Untreated methanogenic digester slurry |
| SMC-75 | Activated sludge with Fe/Mn-modified straw biochar as inoculum, substrate is a xylose-glucose mixture with 75% xylose and 25% glucose |
| SMC-50 | Activated sludge with Fe/Mn-modified straw biochar as inoculum, substrate is a xylose-glucose mixture with 50% xylose and 50% glucose |
| SMC-25 | Activated sludge with Fe/Mn-modified straw biochar as inoculum, substrate is a xylose-glucose mixture with 25% xylose and 75% glucose |
| MMC-75 | Methanogenic digester slurry with Fe/Mn-modified straw biochar as inoculum, substrate is a xylose-glucose mixture with 75% xylose and 25% glucose |
| MMC-50 | Methanogenic digester slurry with Fe/Mn-modified straw biochar as inoculum, substrate is a xylose-glucose mixture with 50% xylose and 50% glucose |
| MMC-25 | Methanogenic digester slurry with Fe/Mn-modified straw biochar as inoculum, substrate is a xylose-glucose mixture with 25% xylose and 75% glucose |
| HAc | Acetic acid |
| HBu | Butyric acid |
| EET | Extracellular electron transfer |
| S-EPS | Soluble extracellular polymeric substances |
| LB-EPS | Loosely bound extracellular polymeric substances |
| TB-EPS | Tightly bound extracellular polymeric substances |
| PN | Protein |
| PS | Polysaccharide |
References
- Balaji, R.K. Beyond Electrification: Green Hydrogen From Offshore Wind and Green Ammonia as Emerging Vectors for Decarbonization. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2024. [Google Scholar]
- Tuluhong, A.; Chang, Q.; Xie, L.; Xu, Z.; Song, T. Current Status of Green Hydrogen Production Technology: A Review. Sustainability 2024, 16, 9070. [Google Scholar] [CrossRef]
- Litti, Y.V.; Khuraseva, N.D.; Vishnyakova, A.V.; Zhuravleva, E.A.; Kovalev, A.A.; Kovalev, D.A.; Panchenko, V.A.; Parshina, S.N. Comparative Study on Biohydrogen Production by Newly Isolated Clostridium Butyricum SP4 and Clostridium Beijerinckii SP6. Int. J. Hydrogen Energy 2023, 48, 27540–27556. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Liu, J.; Zhang, S. Experimental Study on Biogas Fermentation of Corn Stover Pretreated with Compound Microbial Agent. Energy 2024, 306, 132469. [Google Scholar] [CrossRef]
- Shen, X.; Jin, S.; Liang, Z.; Ao, R. Unravelling the Effects of Straw Return on Rice Production in Central China: Evidence for Future Policy-making. Soil Use Manag. 2024, 40, e13118. [Google Scholar] [CrossRef]
- Saletnik, B.A.; Saletnik, A.; Bajcar, M.; Zaguła, G.; Puchalski, C.; Strobel, W.; Dobrzański, B., Jr. Influence of Temperature and Duration of Pyrolysis Process on Calorific Value of Cereal Straw Biochar and Dust Explosive Index. Int. Agrophys. 2024, 38, 267–278. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ulgiati, S. Circular Economy Transition in Italy. Achievements, Perspectives and Constraints. J. Clean. Prod. 2020, 243, 118360. [Google Scholar] [CrossRef]
- Blasi, A.; Verardi, A.; Lopresto, C.G.; Siciliano, S.; Sangiorgio, P. Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling 2023, 8, 61. [Google Scholar] [CrossRef]
- Tang, Z.; Liang, Y.; Wang, M.; Zhang, H.; Wang, X. Effect of Mechanical Properties of Rice Stem and Its Fiber on the Strength of Straw Rope. Ind. Crops Prod. 2022, 180, 114729. [Google Scholar] [CrossRef]
- Poy, H.; Valles, A.; Lladosa, E.; Gabaldón, C.; Loras, S. Selection of Protic Ionic Liquids for the Improved Production of Butanol from Rice Straw. Fuel 2023, 333, 126386. [Google Scholar] [CrossRef]
- Fu, H.; Yang, S.-T.; Wang, M.; Wang, J.; Tang, I.-C. Butyric Acid Production from Lignocellulosic Biomass Hydrolysates by Engineered Clostridium tyrobutyricum Overexpressing Xylose Catabolism Genes for Glucose and Xylose Co-Utilization. Bioresour. Technol. 2017, 234, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Jayakrishnan, U.; Deka, D.; Das, G. Regulation of Volatile Fatty Acid Accumulation from Waste: Effect of Inoculum Pretreatment. Water Environ. Res. 2021, 93, 1019–1031. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Z.-H.; Wu, J.-T.; Ren, H.-Y.; Yang, S.-S.; Nan, J.; Cao, G.-L.; Sheng, Y.-C.; Wang, A.-J.; Ren, N.-Q. Co-Fermentation of a Mixture of Glucose and Xylose to Hydrogen by Thermoanaerobacter thermosaccharolyticum W16: Characteristics and Kinetics. Int. J. Hydrogen Energy 2019, 44, 9248–9255. [Google Scholar] [CrossRef]
- Volschan Junior, I.; de Almeida, R.; Cammarota, M.C. A Review of Sludge Pretreatment Methods and Co-Digestion to Boost Biogas Production and Energy Self-Sufficiency in Wastewater Treatment Plants. J. Water Process Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Pineda-Muñoz, C.F.; Conde-Baez, L.; Lucho-Constantino, C.; Medina-Moreno, S.A.; Jiménez-González, A. Ultrasonic Energy Effect on Dark Fermentation by Ultrasound Application Alone and in Combination with Heat Shock. BioEnergy Res. 2020, 13, 334–348. [Google Scholar] [CrossRef]
- Wu, J.; Dong, L.; Zhou, C.; Liu, B.; Xing, D.; Feng, L.; Wu, X.; Wang, Q.; Cao, G. Enhanced Butanol-Hydrogen Coproduction by Clostridium Beijerinckii with Biochar as Cell’s Carrier. Bioresour. Technol. 2019, 294, 122141. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Feng, M.; Guo, C.; Zhou, J.; Zhang, X.; Lv, S.; Huo, Y.; Wang, F. Machine Learning-Driven Prediction of Phosphorus Removal Performance of Metal-Modified Biochar and Optimization of Preparation Processes Considering Water Quality Management Objectives. Bioresour. Technol. 2024, 403, 130861. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chen, X.; Hu, B.-B.; Wei, M.-Y.; Zhu, M.-J. Efficient Hydrogen Production from Sugarcane Bagasse and Food Waste by Thermophilic Clostridiales Consortium and Fe–Mn Impregnated Biochars. Renew. Energy 2023, 211, 166–178. [Google Scholar] [CrossRef]
- Dong, L.; Cao, G.; Wu, J.; Liu, B.; Xing, D.; Zhao, L.; Zhou, C.; Feng, L.; Ren, N. High-Solid Pretreatment of Rice Straw at Cold Temperature Using NaOH/Urea for Enhanced Enzymatic Conversion and Hydrogen Production. Bioresour. Technol. 2019, 287, 121399. [Google Scholar] [CrossRef]
- Wu, J.; Pei, S.; Zhou, C.; Liu, B.; Cao, G. Assessment of Potential Biotoxicity Induced by Biochar-Derived Dissolved Organic Matters to Biological Fermentative H2 Production. Sci. Total Environ. 2022, 838, 156072. [Google Scholar] [CrossRef]
- Dessì, P.; Porca, E.; Frunzo, L.; Lakaniemi, A.; Collins, G.; Esposito, G.; Lens, P.N.L. Inoculum Pretreatment Differentially Affects the Active Microbial Community Performing Mesophilic and Thermophilic Dark Fermentation of Xylose. Int. J. Hydrogen Energy 2018, 43, 9233–9245. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, L.; Xu, Y.; Li, S.; Wang, Q.; Chen, R.; Yu, L. Performance and Mechanism of Different Pretreatment Methods for Inoculated Sludge in Biohydrogen Production. Bioresour. Technol. 2023, 383, 129234. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, B.; Cai, Z. Determination of the Adsorption Density of High Molecular Weight Polymers on Ultrafine Sub-Micron Particles. J. Polym. Res. 2023, 30, 68. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Kinetics and Microbial Community Analysis for Hydrogen Production Using Raw Grass Inoculated with Different Pretreated Mixed Culture. Bioresour. Technol. 2018, 247, 954–962. [Google Scholar] [CrossRef]
- Wu, J.; You, S.; Zhou, C.; Xi, Q.; Fan, J.; Ma, J.; Cao, G. Unlocking Bio-H2 Production Potential from Straw–Sludge Co-Substrates: The Role of Fe/Mn-Biochar in Alleviating Carbon Catabolite Repression. Chem. Eng. J. 2025, 519, 165592. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y. Effects of Fe-Mn-Modified Biochar Addition on Anaerobic Digestion of Sewage Sludge: Biomethane Production, Heavy Metal Speciation and Performance Stability. Bioresour. Technol. 2020, 313, 123695. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J. Enhancement of Biohydrogen Production from Grass by Ferrous Ion and Variation of Microbial Community. Fuel 2018, 233, 404–411. [Google Scholar] [CrossRef]
- Okonkwo, O.; Escudie, R.; Bernet, N.; Mangayil, R.; Lakaniemi, A.-M.; Trably, E. Impacts of Short-Term Temperature Fluctuations on Biohydrogen Production and Resilience of Thermophilic Microbial Communities. Int. J. Hydrogen Energy 2019, 44, 8028–8037. [Google Scholar] [CrossRef]
- Okonkwo, O.; Escudie, R.; Bernet, N.; Mangayil, R.; Lakaniemi, A.-M.; Trably, E. Bioaugmentation Enhances Dark Fermentative Hydrogen Production in Cultures Exposed to Short-Term Temperature Fluctuations. Appl. Microbiol. Biotechnol. 2020, 104, 439–449. [Google Scholar] [CrossRef]
- Chaitanya, N.; Sivaramakrishna, D.; Kumar, B.S.; Himabindu, V.; Lakshminarasu, M.; Vishwanadham, M. Selection of Pretreatment Method for Enriching Hydrogen-Producing Bacteria Using Anaerobic Sewage Sludge with Three Different Substrates. Biofuels 2016, 7, 163–171. [Google Scholar] [CrossRef]
- Khamtib, S.; Reungsang, A. Biohydrogen Production from Xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 Isolated from Hot Spring Sediment. Int. J. Hydrogen Energy 2012, 37, 12219–12228. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, H.; Liu, W.; Guo, J.; Xian, M. Debottlenecking the Biological Hydrogen Production Pathway of Dark Fermentation: Insight into the Impact of Strain Improvement. Microb. Cell Factories 2022, 21, 166. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.; Yu, Z. Impact of Substrates, Volatile Fatty Acids, and Microbial Communities on Biohydrogen Production: A Systematic Review and Meta-Analysis. Sustainability 2024, 16, 10755. [Google Scholar] [CrossRef]
- Campbell, A.; Gdanetz, K.; Schmidt, A.W.; Schmidt, T.M. H2 Generated by Fermentation in the Human Gut Microbiome Influences Metabolism and Competitive Fitness of Gut Butyrate Producers. Microbiome 2023, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.C.; Zhang, R.H.; Upadhyaya, S.K. The Effect of Low Pressure and Mixing on Biological Hydrogen Production via Anaerobic Fermentation. Int. J. Hydrogen Energy 2012, 37, 11504–11513. [Google Scholar] [CrossRef]
- Jensen, M.B.; de Jonge, N.; Dolriis, M.D.; Kragelund, C.; Fischer, C.H.; Eskesen, M.R.; Noer, K.; Møller, H.B.; Ottosen, L.D.M.; Nielsen, J.L.; et al. Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion. Front. Microbiol. 2021, 12, 645174. [Google Scholar] [CrossRef]
- Chen, D.; Zuo, X.; Li, J.; Wang, X.; Liu, J. Carbon Migration and Metagenomic Characteristics during Anaerobic Digestion of Rice Straw. Biotechnol. Biofuels 2020, 13, 130. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zheng, K.; Guo, H.; Tian, L.; Zhu, T.; Liu, Y. Ultrasound-Sodium Percarbonate Effectively Promotes Short-Chain Carboxylic Acids Production from Sewage Sludge through Anaerobic Fermentation. Bioresour. Technol. 2022, 364, 128024. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Z.; Zhang, Y. Enhancing Anaerobic Digestion of Kitchen Wastes with Biochar: Link between Different Properties and Critical Mechanisms of Promoting Interspecies Electron Transfer. Renew. Energy 2021, 167, 791–799. [Google Scholar] [CrossRef]
- Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic Substances as Electron Acceptors for Microbial Respiration. Nature 1996, 382, 445–448. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Li, Z.; Wu, H. Impacts of Aeration and Biochar Addition on Extracellular Polymeric Substances and Microbial Communities in Constructed Wetlands for Low C/N Wastewater Treatment: Implications for Clogging. Chem. Eng. J. 2020, 396, 125349. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Cheng, C.; Xie, Y.; Liu, M.; Ren, N.; Wang, S.; Zeng, X.; Jia, Y. Quantitative Analysis of the Mechanism of Biochar in Alleviating Product Inhibition in Different Fermentative Hydrogen Production Processes. Biochar 2025, 7, 53. [Google Scholar] [CrossRef]
- Wang, G.; Chen, L.; Xing, Y.; Sun, C.; Fu, P.; Li, Q.; Chen, R. Biochar Establishing Syntrophic Partnership between Exoelectrogens to Facilitate Extracellular Electron Transfer. Sci. Total Environ. 2023, 904, 166549. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Wang, S.; Su, H. Enhanced Biohydrogen Production of Anaerobic Fermentation by the Fe3O4 Modified Mycelial Pellets-Based Anaerobic Granular Sludge. Bioresour. Technol. 2022, 366, 128144. [Google Scholar] [CrossRef]
- Lv, N.; Cai, G.; Pan, X.; Li, Y.; Wang, R.; Li, J.; Li, C.; Zhu, G. pH and Hydraulic Retention Time Regulation for Anaerobic Fermentation: Focus on Volatile Fatty Acids Production/Distribution, Microbial Community Succession and Interactive Correlation. Bioresour. Technol. 2022, 347, 126310. [Google Scholar] [CrossRef]
- Fu, X.; Jin, X.; Pan, C.; Ye, R.; Wang, Q.; Wang, H.; Lu, W. Enhanced Butyrate Production by Transition Metal Particles during the Food Waste Fermentation. Bioresour. Technol. 2019, 291, 121848. [Google Scholar] [CrossRef]
- Ma, H.; Yu, Z.; Wu, W.; Fu, P.; Xia, C.; Shiung Lam, S.; Boer Emilia, D.; Wang, Q.; Gao, M. Effects of Ethanol Addition on Caproic Acid Production and Rumen Microorganism Community Structure from Straw Fermentation. Fuel 2022, 327, 125142. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Yuan, Y.; Li, K.; Liu, H. Renewable Biohydrogen Production from Clostridium Sp. LQ25 Using Different Forms of Ferric as Electron Acceptor. Sci. Total Environ. 2023, 855, 158911. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Gong, X.; Liu, Z.; Wang, Y.; Zhong, Y.; Hu, X.; Wang, T.; Yi, J. Integrated Transcriptomic and Metabolomic Analyses Reveal the Mechanism of Lactiplantibacillus plantarum Enhancing Butyric Acid Production by Clostridium tyrobutyricum. Food Biosci. 2025, 71, 107418. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, C.; Sun, M.; Usman, M.; Cui, Y.; Zhang, S.; Ni, B.; Luo, G. Syntrophic Propionate Degradation in Anaerobic Digestion Facilitated by Hydrochar: Microbial Insights as Revealed by Genome-Centric Metatranscriptomics. Environ. Res. 2024, 261, 119717. [Google Scholar] [CrossRef]
- Selmer, T.; Willanzheimer, A.; Hetzel, M. Propionate CoA-Transferase from Clostridium Propionicum. Cloning of Gene and Identification of Glutamate 324 at the Active Site. Eur. J. Biochem. 2002, 269, 372–380. [Google Scholar] [CrossRef] [PubMed]








| Pretreated Inocula | Pmax (mL/L) | Rmax (mL/(h·L)) | λ (h) | R2 |
|---|---|---|---|---|
| SU3 | 818 | 7.53 | 4.3 | 0.979 |
| SU7 | 917 | 6.41 | 17.37 | 0.989 |
| ST3 | 328 | 10.15 | 38.65 | 0.999 |
| ST6 | 259 | 7.08 | 26.39 | 0.995 |
| SAC | 710 | 8.11 | 26.35 | 0.990 |
| SAK | 935 | 16.17 | 33.63 | 0.991 |
| SCL | 2088 | 21.51 | 33.36 | 0.985 |
| SB | 2092 | 20.97 | 32.47 | 0.983 |
| SC | 2044 | 31.59 | 33.84 | 0.995 |
| SMC | 2228 | 38.53 | 20.15 | 0.960 |
| SN | 584 | 4.73 | 15.24 | 0.957 |
| MU3 | 1862 | 17.81 | 37.59 | 0.994 |
| MU7 | 2251 | 28.16 | 23.14 | 0.983 |
| MT3 | 483 | 24.74 | 29.449 | 0.999 |
| MT6 | 563 | 21.96 | 26.64 | 0.999 |
| MAC | 2385 | 21.94 | 13.52 | 0.982 |
| MAK | 2185 | 27.34 | 30.86 | 0.986 |
| MCL | 1380 | 23.36 | 88.96 | 0.999 |
| MB | 2539 | 25.22 | 21.27 | 0.980 |
| MC | 1475 | 14.11 | 43.09 | 0.969 |
| MMC | 2918 | 35.43 | 38.17 | 0.998 |
| MN | 1022 | 12.41 | 35.10 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Wu, J.; Zhao, J.; Hao, H.; Yu, Y.; Cao, G.; Ren, N. Fe/Mn-Modified Biochar Facilitates Functional Microbial Enrichment for Efficient Glucose–Xylose Co-Fermentation and Biohydrogen Production. Fermentation 2025, 11, 703. https://doi.org/10.3390/fermentation11120703
Fan J, Wu J, Zhao J, Hao H, Yu Y, Cao G, Ren N. Fe/Mn-Modified Biochar Facilitates Functional Microbial Enrichment for Efficient Glucose–Xylose Co-Fermentation and Biohydrogen Production. Fermentation. 2025; 11(12):703. https://doi.org/10.3390/fermentation11120703
Chicago/Turabian StyleFan, Jianing, Jiwen Wu, Ji Zhao, Hongsheng Hao, Yange Yu, Guangli Cao, and Nanqi Ren. 2025. "Fe/Mn-Modified Biochar Facilitates Functional Microbial Enrichment for Efficient Glucose–Xylose Co-Fermentation and Biohydrogen Production" Fermentation 11, no. 12: 703. https://doi.org/10.3390/fermentation11120703
APA StyleFan, J., Wu, J., Zhao, J., Hao, H., Yu, Y., Cao, G., & Ren, N. (2025). Fe/Mn-Modified Biochar Facilitates Functional Microbial Enrichment for Efficient Glucose–Xylose Co-Fermentation and Biohydrogen Production. Fermentation, 11(12), 703. https://doi.org/10.3390/fermentation11120703

