Dual Reinforcement of Biohydrogen Production from Food Waste Dark Fermentation by Thermal–Alkaline Pretreatment Coupled with Nickel-Based Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.2. Preparation and Characterization of NiCo2O4 NPs
2.3. Batch Dark Fermentation Experiments
2.4. Determination of Biogas Components and Solubility Indicators
2.5. Analysis of Enzyme Activity and Microbial Community
2.6. Analysis of Variance and Kinetic Modeling
3. Results and Discussion
3.1. Characterization of the Physicochemical Properties of NiCo2O4 NPs
3.2. Effects of TA Pretreatment Coupled with NiCo2O4 NPs on Biohydrogen Production
3.3. Effects of TA Pretreatment Coupled with NiCo2O4 NPs on Biochemical Process Related to Dark Fermentation for Biohydrogen Production
3.4. Effects of TA Pretreatment Coupled with NiCo2O4 NPs on Key Enzyme Activities
3.5. Effects of TA Pretreatment Coupled with NiCo2O4 NPs on Microbial Community
3.6. Overall Understanding and Implication
- (1)
- Nanomaterials often exhibit a concentration-dependent double-edged biological effect characterized by stimulation at low doses and inhibition at high concentrations [60]. The sustained release of Ni2+ and Co2+ from high-concentration NiCo2O4 NPs may exceed the tolerance threshold of microorganisms, thereby inducing metal ion toxicity that disrupted enzymatic functions and triggered oxidative stress [17]. Furthermore, a substantial number of nanomaterials were prone to undergo uncontrolled aggregation and adsorption on cell surfaces, which might not only impede nutrient transport but also cause physical damage to the cell membrane [24]. The combined physical–chemical toxicity can inhibit microbial growth and metabolism, thereby impeding the sustained progression of biohydrogen production. This also constituted the primary reason why no additional biohydrogen production was observed when the concentration of NiCo2O4 NPs exceeded 100 mg/L in this study. Consequently, in future studies, real-time tracking of the stability (e.g., zeta potential, aggregation) of its physical and chemical properties during the fermentation process, as well as the kinetics of metal ion release, will be crucial for precisely regulating the NP addition strategy and ensuring the safety and efficiency of its application.
- (2)
- During long-term operation, NiCo2O4 NPs may lose their activity or even be lost due to physical erosion, chemical corrosion or biological encapsulation. A feasible solution is to utilize the inherent ferromagnetic property of NiCo2O4 NPs, and achieve recovery and reuse by applying an external magnetic field [61, 62], which can significantly reduce long-term operational costs. Therefore, future research should focus on the changes in activity and recovery efficiency of NiCo2O4 NPs after multiple uses in continuous-flow reactors.
- (3)
- Ultimately, a comprehensive life-cycle and techno-economic assessments in long-term continuous-flow reactors are necessary for the transformation of this technology from concept to practice. This encompasses a full-process analysis spanning from the synthesis of nanomaterials, energy consumption during system operation, biohydrogen production revenue, to end-of-life waste disposal, in order to determine its net environmental benefits and economic competitiveness.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Don’t wait for COP: The end of the fossil-fuel age must start now. Nature 2023, 613, 216. [CrossRef]
- Sagar, A.D.; Mathur, A.; Birol, F.; Mulugetta, Y.; Ogunbiyi, D.; Sokona, Y.; Steiner, A. Mission Energy Access for a just and sustainable future for all. Nat. Energy 2023, 8, 1171–1173. [Google Scholar] [CrossRef]
- Liu, H.F.; Ampah, J.D.; Afrane, S.; Adun, H.; Jin, C.; Yao, M.F. Potential benefits and trade-offs associated with hydrogen transition under diverse carbon dioxide removal strategies. Sci. Bull. 2024, 69, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.X.; Zhou, Q.; Yu, D.H. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wei, W.; Wang, C.; Ni, B.J. Microbial and physicochemical responses of anaerobic hydrogen-producing granular sludge to polyethylene micro(nano)plastics. Water Res. 2022, 221, 118745. [Google Scholar] [CrossRef]
- Zan, F.X.; Iqbal, A.; Lu, X.J.; Wu, X.H.; Chen, G.H. “Food waste-wastewater-energy/resource” nexus: Integrating food waste management with wastewater treatment towards urban sustainability. Water Res. 2022, 211, 118089. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Sneha, N.P.; Rafi, S.M.; Sarkar, O. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Sci. Total Environ. 2023, 888, 163801. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.C.; Carrere, H. Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresour. Technol. 2018, 249, 1025–1039. [Google Scholar] [CrossRef]
- Gbiete, D.; Narra, S.; Kongnine, D.M.; Narra, M.M.; Nelles, M. Insights into Biohydrogen Production Through Dark Fermentation of Food Waste: Substrate Properties, Inocula, and Pretreatment Strategies. Energies 2024, 17, 6350. [Google Scholar] [CrossRef]
- Jia, X.; Li, M.X.; Zhu, J.L.; Jiang, Y.H.; Wang, Y.; Wang, Y.J. Enhancement split-phase hydrogen production from food waste during dark fermentation: Protein substances degradation and transformation during hydrothermal pre-treatments. Int. J. Hydrogen Energy 2019, 44, 17334–17345. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Chauhan, R.; Chakma, S. Influence and strategies for enhanced biohydrogen production from food waste. Renew. Sust. Energ. Rev. 2018, 92, 807–822. [Google Scholar] [CrossRef]
- Yun, Y.M.; Lee, M.K.; Im, S.W.; Marone, A.; Trably, E.; Shin, S.R.; Kin, M.G.; Cho, S.K.; Kim, D.H. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresour. Technol. 2018, 248, 79–87. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.L. Changes in microbial community structure during dark fermentative hydrogen production. Int. J. Hydrogen Energy 2019, 44, 25542–25550. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.L. Various additives for improving dark fermentative hydrogen production: A review. Renew. Sustain. Energy Rev. 2018, 95, 130–146. [Google Scholar] [CrossRef]
- Yang, Y.J.; Bu, J.; Tiong, Y.W.; Xu, S.; Zhang, J.X.; He, Y.L.; Zhu, M.J.; Tong, Y.W. Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar. Environ. Res. 2024, 244, 117946. [Google Scholar] [CrossRef]
- Arun, J.; Sasipraba, T.; Copinath, K.P.; Priyadharsini, P.; Nachiappan, S.; Nachiappan, N.; Dawn, S.S.; Chi, N.T.L.; Pugazhendhi, A. Influence of biomass and nanoadditives in dark fermentation for enriched bio-hydrogen production: A detailed mechanistic review on pathway and commercialization challenges. Fuel 2022, 327, 125112. [Google Scholar] [CrossRef]
- Salazar-Batres, K.J.; Moreno-Andrade, I. Effect of nickel concentration on biohydrogen production: Organic solid waste vs. glucose. Int. J. Hydrogen Energy 2022, 47, 30097–30106. [Google Scholar] [CrossRef]
- Trchounian, K.; Sawers, R.G.; Trchounian, A. Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches. Renew. Sustain. Energy Rev. 2017, 80, 1201–1216. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhao, W.Q.; Yang, J.W.; Li, Z.M.; Zhang, J.C.; Zang, L.H. Comparison of mesophilic and thermophilic dark fermentation with nickel ferrite nanoparticles supplementation for biohydrogen production. Bioresour. Technol. 2021, 329, 124853. [Google Scholar] [CrossRef]
- Mishra, P.; Akaniro, I.R.; Zhang, R.L.; Wang, P.X.; Geng, Y.Q.; Li, D.Y.; Xu, Q.X.; Wong, J.W.C.; Zhao, J. Unlocking the Potential of Ni/Fe2O3 Bimetallic Nanoparticles for Fermentative Biohydrogen Production. ACS EST Eng. 2024, 4, 2424–2434. [Google Scholar] [CrossRef]
- Marousek, J.; Gavurova, B.; Marouskova, A. Machine learning enables more efficient (nano)catalyst management, enhancing the competitiveness of (bio)hydrogen production from sewage sludge. Renew. Energy 2026, 256, 124025. [Google Scholar] [CrossRef]
- Li, Z.M.; Wang, J.M.; Tian, K.X.; Zhou, C.; Pei, Y.; Zhang, J.S.; Zang, L.H. Nickel-Cobalt Oxide Nanoparticle-Induced Biohydrogen Production. ACS Omega 2022, 7, 41594–41605. [Google Scholar] [CrossRef]
- He, C.S.; Ding, R.R.; Wang, Y.R.; Li, Q.; Wang, Y.X.; Mu, Y. Insights into short- and long-term effects of loading nickel nanoparticles on anaerobic digestion with flocculent sludge. Environ. Sci. Nano 2019, 6, 2820–2831. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.T.; Jian, P.M.; Wang, L.X.; Yan, X.D. Hollow urchin-like NiO/NiCo2O4 heterostructures as highly efficient catalysts for selective oxidation of styrene. J. Colloid Interface Sci. 2018, 526, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Xu, D.; Zhang, D.F.; Zhang, G.Z.; Zhang, L. Superior performance of 3 D Co-Ni bimetallic oxides for catalytic degradation of organic dye: Investigation on the effect of catalyst morphology and catalytic mechanism. Appl. Catal. B-Environ. 2016, 186, 193–203. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Malhotra, B.D.; Gupta, V.K.; Ramteke, P.W.; Silva, R.N.; Shunkla, P.; Dubey, K.K.; Mishra, P.K. Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnol. Adv. 2019, 37, 107384. [Google Scholar] [CrossRef]
- Ouafa, A.; Kerroum, D.; Antonio, P.; Lamis, R.; Chaima, B.; Rania, Z.Z.; Mossaab, B.L. Coffee grounds and fruit and vegetable waste co-digestion in dark Fermentation: Evaluation of mixing ratio and hybrid pretreatments impact on bio-hydrogen production. Biomass Bioenergy 2025, 199, 107896. [Google Scholar] [CrossRef]
- Ji, J.; Shen, L. Screening of enhanced biohydrogen production from anaerobic fermentation amended with nano-sized barium ferrite supported by aluminum oxide. Int. J. Hydrogen Energy 2024, 69, 961–973. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.W.; Li, C. Synergistic increase of bio-hydrogen production from sludge anaerobic fermentation by thermal hydrolysis coupled with calcium hypochlorite pretreatment. J. Clean. Prod. 2025, 522, 146304. [Google Scholar] [CrossRef]
- Palanivel, P.D.; Jovita, A.; Babu, K.; Mohamed, S.N. Harnessing dark fermentation: Mechanisms, metabolic pathways, and nanoparticle innovations for biohydrogen enhancement. Int. J. Hydrogen Energy 2025, 109, 383–396. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wei, W.; Huang, Q.S.; Wang, C.; Wang, Y.; Ni, B.J. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Res. 2020, 179, 115898. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wei, W.; Sun, J.; Xu, Q.X.; Ni, B.J. Long-Term Effects of Polyvinyl Chloride Microplastics on Anaerobic Granular Sludge for Recovering Methane from Wastewater. Environ. Sci. Technol. 2020, 54, 9662–9671. [Google Scholar] [CrossRef] [PubMed]
- Brindhadevi, K.; Pugazhendhi, A. Enhancing biohydrogen production through microbial fermentation with the addition of nanometal ions. Renew. Sustain. Energy Rev. 2025, 215, 115552. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, W.; Yang, D.H.; Wu, L.; Chen, X.M.; Dai, X.H.; Ni, B.J. Unraveling temperature effects on caproate and caprylate production from waste activated sludge. Bioresour. Technol. 2025, 417, 131844. [Google Scholar] [CrossRef]
- Chen, H.; Yi, H.; Li, H.C.; Guo, X.S.; Xiao, B.Y. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism. Renew. Energy 2020, 147, 2409–2416. [Google Scholar] [CrossRef]
- He, Y.Q.; Zeng, X.; Lu, Z.R.; Mo, S.H.; An, Q.Z.; Liu, Q.H.; Yang, Y.L.; Lan, W.; Wang, S.Y.; Zou, Y.Q. Aqueous Electrocatalytic Hydrogenation Depolymerization of Lignin β-O-4 Linkage via Selective Caryl-O(C) Bond Cleavage: The Regulation of Adsorption. J. Am. Chem. Soc. 2024, 146, 32022–32031. [Google Scholar] [CrossRef]
- Li, W.M.; He, L.; Cheng, C.; Cao, G.L.; Ren, N.Q. Effects of biochar on ethanol-type and butyrate-type fermentative hydrogen productions. Bioresour. Technol. 2020, 306, 123088. [Google Scholar] [CrossRef]
- Detman, A.; Laubitz, D.; Chojnacka, A.; Kiela, P.R.; Salamon, A.; Barberan, A.; Chen, Y.J.; Yang, F.; Blaszczyk, M.K.; Sikora, A. Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. Microbiome 2021, 9, 158. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Chen, D.; Kuang, Y.; Wang, H.Y.; Liang, J.J.; Zhao, J.W. Insights into the mechanism of naproxen inhibiting biohydrogen production from sludge dark fermentation. Process Saf. Environ. 2022, 167, 390–397. [Google Scholar] [CrossRef]
- Gao, P.T.; Guo, L.; Sun, J.; Wang, Y.; She, Z.L.; Gao, M.C.; Zhao, Y.G. Accelerating waste sludge hydrolysis with alkyl polyglucose pretreatment coupled with biological process of thermophilic bacteria: Hydrolytic enzyme activity and organic matters transformation. J. Environ. Manag. 2019, 247, 161–168. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Fang, Q.; Ding, W.X.; Xiao, Z.L.; Luo, F.; Ren, P.F.; Wang, G.H. Enhancement of waste activated sludge hydrolysis and decomposition by combined free nitrous acid and sodium citrate pretreatment. J. Water Process Eng. 2023, 54, 103945. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wei, W.; Ni, B.J. Revealing the mechanism of zinc oxide nanoparticles facilitating hydrogen production in alkaline anaerobic fermentation of waste activated sludge. J. Clean. Prod. 2021, 328, 129580. [Google Scholar] [CrossRef]
- Wang, D.B.; Duan, Y.Y.; Yang, Q.; Liu, Y.W.; Ni, B.J.; Wang, Q.L.; Zeng, G.M.; Li, X.M.; Yuan, Z.G. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res. 2018, 133, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.N.; Zhu, M.J.; Zhao, L. Enhanced thermophilic hydrogen production from co-substrate of pretreated waste activated sludge and food waste: Analysis from microbial growth and metabolism. Int. J. Hydrogen Energy 2025, 97, 431–443. [Google Scholar] [CrossRef]
- Ji, H.S.; Wan, L.; Gao, Y.X.; Du, P.; Li, W.J.; Luo, H.; Ning, J.R.; Zhao, Y.Y.; Wang, H.W.; Zhang, L.X.; et al. Hydrogenase as the basis for green hydrogen production and utilization. J. Energy Chem. 2023, 85, 348–362. [Google Scholar] [CrossRef]
- Shobana, S.; Saratale, G.D.; Pugazhendhi, A.; Arvindnarayan, S.; Periyasamy, S.; Kumar, G.; Kim, S.H. Fermentative hydrogen production from mixed and pure microalgae biomass: Key challenges and possible opportunities. Int. J. Hydrogen Energy 2017, 42, 26440–26453. [Google Scholar] [CrossRef]
- Elreedy, A.; Ibrahim, E.; Hassan, N.; El-Dissouky, A.; Fujii, M.; Yoshimura, C.; Tawfik, A. Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers. Manag. 2017, 140, 133–144. [Google Scholar] [CrossRef]
- Chen, Y.W.; Zhu, K.; Qin, W.L.; Jiang, Z.W.; Hu, Z.F.; Sillanpa, M.; Yan, K. Enhanced electron transfer using NiCo2O4@C hollow nanocages with an electron-shuttle effect for efficient tetracycline degradation. Chem. Eng. J. 2024, 488, 150786. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.L. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresour. Technol. 2018, 266, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Silva-Martínez, R.D.; Aguilar-Juárez, O.; Díaz-Jiménez, L.; Valdez-Guzmán, B.E.; Aranda-Jaramillo, B.; Carlos-Hernández, S. Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge. Fermentation 2025, 11, 398. [Google Scholar] [CrossRef]
- Zhang, L.G.; Dong, J.; Guan, S.Y.; Cui, Y.Q.; Du, C.Z.; Ban, Q.Y. Anthraquinone-2,6-disulfonate as exogenous electron shuttles to improve the biohydrogen production from co-fermentation of waste activated sludge and corn stover. J. Environ. Chem. Eng. 2025, 13, 118887. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.; Dong, Z.; Cao, S.X.; Yuan, A.K.; Sha, H.; Chen, N. Enhancing dark fermentative hydrogen production from wheat straw through synergistic effects of active electric fields and enzymatic hydrolysis pretreatment. Bioresour. Technol. 2024, 406, 130993. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Biohydrogen production by co-fermentation of antibiotic fermentation residue and fallen leaves: Insights into the microbial community and functional genes. Bioresour. Technol. 2021, 337, 125380. [Google Scholar] [CrossRef]
- Chen, L.; Xu, D.; Liang, J.S.; Zhang, Y.J.; Fang, W.; Zhang, P.Y.; Zhang, G.M. New insight into effects of waste scrap iron on sludge anaerobic digestion: Performances, microbial community, and potential metabolic functions. J. Water Process Eng. 2023, 55, 104230. [Google Scholar] [CrossRef]
- Khamtib, S.; Reungsang, A. Biohydrogen production from xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 isolated from hot spring sediment. Int. J. Hydrogen Energy 2012, 37, 12219–12228. [Google Scholar] [CrossRef]
- Li, S.L.; Lin, J.S.; Wang, Y.H.; Lee, Z.K.; Kuo, S.C.; Tseng, I.C.; Cheng, S.S. Strategy of controlling the volumetric loading rate to promote hydrogen-production performance in a mesophilic-kitchen-waste fermentor and the microbial ecology analyses. Bioresour. Technol. 2011, 102, 8682–8687. [Google Scholar] [CrossRef]
- Li, Z.; Gu, J.Y.; Ding, J.; Ren, N.Q.; Xing, D.F. Molecular mechanism of ethanol-H2 co-production fermentation in anaerobic acidogenesis: Challenges and perspectives. Biotechnol. Adv. 2021, 46, 107679. [Google Scholar] [CrossRef]
- Mu, H.; Zheng, X.; Chen, Y.G.; Chen, H.; Liu, K. Response of Anaerobic Granular Sludge to a Shock Load of Zinc Oxide Nanoparticles during Biological Wastewater Treatment. Environ. Sci. Technol. 2012, 46, 5997–6003. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Liu, R.; Xu, J.; Li, X.; Yang, D.H.; Dai, X.H. Magnetic porous microspheres altering interfacial thermodynamics of sewage sludge to drive metabolic cooperation for efficient methanogenesis. Water Res. 2024, 261, 122022. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Liu, R.; Yang, D.H.; Dai, X.H. Magnetic porous microspheres enhancing the anaerobic digestion of sewage sludge: Synergistic free and attached methanogenic consortia. Water Res. 2024, 254, 121393. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-T.; An, X.; Hao, J.; Dai, X.; Xu, Y. Dual Reinforcement of Biohydrogen Production from Food Waste Dark Fermentation by Thermal–Alkaline Pretreatment Coupled with Nickel-Based Nanoparticles. Fermentation 2025, 11, 658. https://doi.org/10.3390/fermentation11120658
Zhang Y-T, An X, Hao J, Dai X, Xu Y. Dual Reinforcement of Biohydrogen Production from Food Waste Dark Fermentation by Thermal–Alkaline Pretreatment Coupled with Nickel-Based Nanoparticles. Fermentation. 2025; 11(12):658. https://doi.org/10.3390/fermentation11120658
Chicago/Turabian StyleZhang, Yu-Ting, Xiaona An, Jingyu Hao, Xiaohu Dai, and Ying Xu. 2025. "Dual Reinforcement of Biohydrogen Production from Food Waste Dark Fermentation by Thermal–Alkaline Pretreatment Coupled with Nickel-Based Nanoparticles" Fermentation 11, no. 12: 658. https://doi.org/10.3390/fermentation11120658
APA StyleZhang, Y.-T., An, X., Hao, J., Dai, X., & Xu, Y. (2025). Dual Reinforcement of Biohydrogen Production from Food Waste Dark Fermentation by Thermal–Alkaline Pretreatment Coupled with Nickel-Based Nanoparticles. Fermentation, 11(12), 658. https://doi.org/10.3390/fermentation11120658
