Effect of Lignite Addition on Maturity and Bacterial Community Assembly in Co-Composting of Goat Manure and Corn Straw
Abstract
1. Introduction
2. Materials and Methods
2.1. Composting Raw Materials and Experimental Design
2.2. Determination of Physicochemical Indicators
2.3. DNA Extraction of Microbial 16S rRNA and High-Throughput Sequencing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of Lignite Addition on Composting Physicochemical Indicators
3.2. Lignite Addition Drives the Diversity of Composting Microbial Communities and Biomarkers
3.3. Lignite Addition Drives the Symbiotic Network Pattern of Microbial Communities During Composting
3.4. Influence of Lignite Addition on Compost Microbial Community Assembly Based on the iCAMP Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, C.; Zhang, X.; Wei, H.; Wang, S.; Wang, W.; He, L.; Lu, Y.; Zhang, K.; Zhang, Z.; Wang, G.; et al. Effect of replacing alfalfa hay with common vetch hay in sheep diets on growth performance, rumen fermentation and rumen microbiota. Animals 2024, 14, 2182. [Google Scholar] [CrossRef]
- Wang, S.; Lv, R.; Yin, X.; Feng, P.; Hu, K. Effects of the ratio of substituting mineral fertilizers with manure nitrogen on soil properties and vegetable yields in china: A meta-analysis. Plants 2023, 12, 964. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Chang, Y.; Li, R.; Zhou, K.; Zhan, Y.; Wei, R.; Wei, Y. Comparing bacterial dynamics for the conversion of organics and humus components during manure composting from different sources. Front. Microbiol. 2023, 14, 1281633. [Google Scholar] [CrossRef]
- Wu, K.; Xu, Y.; Zhang, W.; Mao, H.; Chen, B.; Zheng, Y.; Hu, X. Differences in fecal microbiome and antimicrobial resistance between captive and free-range sika deer under the same exposure of antibiotic anthelmintics. Microbiol. Spectr. 2021, 9, e0191821. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Wang, H.; Jia, Y.; Ding, J.; Fan, S.; Li, D.; Zhang, A.; Zhou, H.; Xu, Q.; et al. Biochar addition accelerates the humification process by affecting the microbial community during human excreta composting. Environ. Technol. 2024, 45, 5332–5345. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, S.; Li, X.; Rong, K.; Li, J.; Jiang, L. Effects of microbial inoculant and additives on pile composting of cow manure. Front. Microbiol. 2013, 13, 1084171. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Li, H.; Song, D.; Lin, X.; Wang, Y. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Bioresour. Technol. 2018, 263, 393–401. [Google Scholar] [CrossRef]
- Duan, Y.; Awasthi, M.K.; Wu, H.; Yang, J.; Li, Z.; Ni, X.; Zhang, J.; Zhang, Z.; Li, H. Biochar regulates bacterial-fungal diversity and associated enzymatic activity during goat manure composting. Bioresour. Technol. 2022, 346, 126647. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Hu, H.W.; Guo, H.G.; Butterly, C.; Bai, M.; Zhang, Y.S.; Chen, D.; He, J.Z. Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. Bioresour. Technol. 2020, 315, 123841. [Google Scholar] [CrossRef]
- Gao, Q.; Li, L.; Wang, K.; Zhao, Q. Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering 2023, 10, 1084. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.A.; Mohaddes, F.; Pramanik, B.K.; Othman, M.; Muster, T.; Bhuiyan, M.A. Application of Victorian brown coal for removal of ammonium and organics from wastewater. Environ. Technol. 2018, 39, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Bai, M.; Han, B.; Impraim, R.; Butterly, C.; Hu, H.; He, J.; Chen, D. Enhanced nitrogen retention by lignite during poultry litter composting. J. Clean. Prod. 2020, 277, 122422. [Google Scholar] [CrossRef]
- Robert, I.; Anthony, W.; Trevor, C.; Deli, C.; Helen, S. Lignite improved the quality of composted manure and mitigated emissions of ammonia and greenhouse gases during forced aeration composting. Sustainability 2020, 12, 10528. [Google Scholar] [CrossRef]
- Bao, Y.; Feng, Y.; Qiu, C.; Zhang, J.; Wang, Y.; Lin, X. Organic matter- and temperature-driven deterministic assembly processes govern bacterial community composition and functionality during manure composting. Waste Manag. 2021, 131, 31–40. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, H.; Tian, Y.; Yu, X.; Li, X. Stochasticity versus determinism: Microbial community assembly patterns under specific conditions in petrochemical activated sludge. J. Hazard. Mater. 2021, 407, 124372. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Chen, X.; Meng, Z.; Xu, R.; Duoji, D.Z.; Zhang, J.; He, J.; Wang, Z.; Chen, J.; et al. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil. Biol. Biochem. 2022, 172, 108766. [Google Scholar] [CrossRef]
- Cao, H.; Li, S.; He, H.; Sun, Y.; Wu, Y.; Huang, Q.; Cai, P.; Gao, C.H. Stronger linkage of diversity-carbon decomposition for rare rather than abundant bacteria in woodland soils. Front. Microbiol. 2023, 14, 1115300. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Zhang, Y.; Liu, C.; Liu, Y.; Li, Z.; Zhang, M. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system. J. Environ. Manag. 2023, 339, 117927. [Google Scholar] [CrossRef]
- Gu, W.; Lu, Y.; Tan, Z.; Xu, P.; Xie, K.; Li, X.; Sun, L. Fungi diversity from different depths and times in chicken manure waste static aerobic composting. Bioresour. Technol. 2017, 239, 447–453. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Liu, J.; Song, C.; Wei, Z. The biotic effects of lignite on humic acid components conversion during chicken manure composting. Bioresour. Technol. 2024, 398, 130503. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wu, D.; Liu, Y.; Li, J.; Ma, L. Effect of lignite addition on the production of biochemical humic acid in sheep manure. Waste Biomass Valorization 2025, 16, 2565–2577. [Google Scholar] [CrossRef]
- Kamil, E.; İsmail, T.; Fevzi, Ş.; Necati, B.B.; Kemal, S.; Barbaros, S.K. Effects of initial C/N ratio on maturity and stability of compost produced from two-phase olive mill pomace, poultry and dairy manure and straw. Compost. Sci. Util. 2021, 29, 95–106. [Google Scholar]
- Meng, Q.; Yang, W.; Men, M.; Bello, A.; Xu, X.; Xu, B.; Deng, L.; Jiang, X.; Sheng, S.; Wu, X.; et al. Microbial community succession and response to environmental variables during cow manure and corn straw composting. Front. Microbiol. 2019, 10, 529. [Google Scholar] [CrossRef]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef]
- NY/T 525-2021 (NY 525-2012); Organic fertilizer. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2021.
- Zhou, G.; Qiu, X.; Wu, X.; Lu, S. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite. J. Hazard. Mater. 2021, 408, 124883. [Google Scholar] [CrossRef]
- Chu, L.; Chen, D.; Wang, J.; Yang, Z.; Yang, Q.; Shen, Y. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. J. Hazard. Mater. 2020, 382, 121058. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K.; et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Y.; Xie, X.; Mohamed, T.A.; Zhu, L.; Tang, Y.; Chen, Y.; Wei, Z. Role of NH3 recycling on nitrogen fractions during sludge composting. Bioresour. Technol. 2020, 295, 122175. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Zhao, Q.; Cui, P.; Chen, Z.; Yu, Z.; Geisen, S.; Friman, V.P.; Zhou, S. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. Environ. Int. 2019, 133, 105203. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wu, D.; Wei, D.; Zhao, Y.; Wu, J.; Xie, X.; Zhang, R.; Wei, Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour. Technol. 2019, 271, 66–74. [Google Scholar] [CrossRef]
- Simone, E.K.; Kevin, J.F.; Mathew, E.D. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181. [Google Scholar] [CrossRef]
- Wang, K.; Fan, H.; Gao, P.; He, Y.; Shu, P. Spontaneous combustion characteristics of wetting coal under different prepyrolysis temperatures. ACS Omega 2020, 5, 33347–33356. [Google Scholar] [CrossRef]
- Sun, L.; Long, M.; Li, J.; Wu, R.; Ma, L.; Tang, D.; Lu, Y.; Wang, Z. Different effects of thermophilic microbiological inoculation with and without biochar on physicochemical characteristics and bacterial communities in pig manure composting. Front. Microbiol. 2021, 12, 746718. [Google Scholar] [CrossRef]
- Jiménez, E.I.; García, V.P. Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation-exchange capacity. Resour. Conserv. Recycl. 1991, 6, 45–60. [Google Scholar] [CrossRef]
- Cihlář, Z.; Vojtová, L.; Conte, P.; Nasir, S.; Kučerík, J. Hydration and water holding properties of cross-linked lignite humic acids. Geoderma 2014, 230–231, 151–160. [Google Scholar] [CrossRef]
- Wang, B.; Chen, W.; Sa, C.; Gao, X.; Chang, S.; Wei, Y.; Li, J.; Shi, X.; Zhang, L.; Zhang, C.; et al. Dynamics of antibiotic resistance genes and the association with bacterial community during pig manure composting with chitin and glucosamine addition. Front. Microbiol. 2024, 15, 1384577. [Google Scholar] [CrossRef]
- Valero, N.; Gómez, L.; Pantoja, M.; Ramírez, R. Production of humic substances through coal-solubilizing bacteria. Braz. J. Microbiol. 2014, 45, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhan, J.; Li, L.; Zhu, Y.; Liu, J.; Guo, X. Total petroleum hydrocarbons and influencing factors in co-composting of rural sewage sludge and organic solid wastes. Environ. Pollut. 2023, 319, 120911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Q.; Zheng, C.; Wang, Y.; Chen, H.; Dong, S.; Hu, X. The impact of microbial inoculants on large-scale composting of straw and manure under natural low-temperature conditions. Bioresour. Technol. 2024, 400, 130696. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, H.; Yao, T.; Su, M.; Ran, F.; Han, B.; Li, J.; Lan, X.; Zhang, Y.; Yang, X.; et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour. Technol. 2019, 289, 121653. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, C.; Zhang, L.; Ma, Y.; Li, G.; Nghiem, L.D.; Luo, W. Regulating bacterial dynamics by lime addition to enhance kitchen waste composting. Bioresour. Technol. 2021, 341, 125749. [Google Scholar] [CrossRef]
- Vargas-García, M.C.; Suárez-Estrella, F.; López, M.J.; Moreno, J. Effect of inoculation in composting processes: Modifications in lignocellulosic fraction. Waste Manag. 2007, 27, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Houbraken, J.; Meijer, M.; Cecchi, G.; Kraak, B.; Rosa, E.; Zotti, M. Thermotolerant and thermophilic mycobiota in different steps of compost maturation. Microorganisms 2020, 8, 880. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Z.; Li, Y.; Zhang, L.; Li, G.; Nghiem, L.D.; Luo, W. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste. Sci. Total Environ. 2021, 801, 149640. [Google Scholar] [CrossRef]
- Yin, Z.; Zhou, X.; Kang, J.; Pei, F.; Du, R.; Ye, Z.; Ding, H.; Ping, W.; Ge, J. Intraspecific and interspecific quorum sensing of bacterial community affects the fate of antibiotic resistance genes during chicken manure composting under penicillin G stress. Bioresour. Technol. 2022, 347, 126372. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yuan, Y.; Yu, Z.; Yang, G.Q.; Zhou, S.G. Bacillus borbori sp. Nov., isolated from an electrochemically active biofilm. Curr. Microbiol. 2013, 67, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Zhao, Y.; Wei, Z.; Li, J.; Song, C.; Chen, X.; Zhao, M. Lignite drove phenol precursors to participate in the formation of humic acid during chicken manure composting. Sci. Total Environ. 2023, 874, 162609. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wei, Z.; Guo, W.; Wei, Y.; Luo, J.; Song, C.; Lu, Q.; Zhao, Y. Two types nitrogen source supply adjusted interaction patterns of bacterial community to affect humifaction process of rice straw composting. Bioresour. Technol. 2021, 332, 125129. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, L.; Ma, J.; Chi, G.; Lu, C.; Chen, X. Effects of multiple antibiotics residues in broiler manure on composting process. Sci. Total Environ. 2022, 817, 152808. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Hu, M.; Xiong, Y.; Huang, Q.; Jin, S.; Huang, G. Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant-microbe interactions in saline-sodic soil. Sci. Total Environ. 2023, 879, 163113. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Awasthi, M.K.; Yang, J.; Tian, Y.; Li, H.; Cao, S.; Syed, A.; Verma, M.; Ravindran, B. Bacterial community dynamics and co-occurrence network patterns during different stages of biochar-driven composting. Bioresour. Technol. 2023, 384, 129358. [Google Scholar] [CrossRef]
- Mielke, K.C.; Brochado, M.G.D.S.; Laube, A.F.S.; Guimarães, T.; Medeiros, B.A.P.; Mendes, K.F. Pyrolysis Temperature vs. Application Rate of Biochar Amendments: Impacts on Soil Microbiota and Metribuzin Degradation. Int. J. Mol. Sci. 2023, 24, 11154. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Wong, V.N.L.; Cavagnaro, T.R.; Patti, A.F. Nitrogen Dynamics in Soil Fertilized with Slow Release Brown Coal-Urea Fertilizers. Sci. Rep. 2018, 8, 14577. [Google Scholar] [CrossRef]
- Chase, J.M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 2010, 328, 1388–1391. [Google Scholar] [CrossRef]
- Wan, W.; Liu, S.; Li, X.; Xing, Y.; Chen, W.; Huang, Q. Bridging rare and abundant bacteria with ecosystem multifunctionality in salinized agricultural soils: From community diversity to environmental adaptation. mSystems 2021, 6, e01221-20. [Google Scholar] [CrossRef]
- Knelman, J.E.; Nemergut, D.R. Changes in community assembly may shift the relationship between biodiversity and ecosystem function. Front. Microbiol. 2014, 5, 424. [Google Scholar] [CrossRef]
- Silva, J.L.A.; Souza, A.F.; Jardim, J.G.; Goto, B.T. Community assembly in harsh environments: The prevalence of ecological drift in the heath vegetation of South America. Ecosphere 2015, 6, 1–18. [Google Scholar] [CrossRef]
- Jiao, S.; Lu, Y. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Glob. Change Biol. 2020, 26, 4506–4520. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Wang, B.; Sa, C.; Zhang, C.; Li, W.; Wei, Y.; Sun, H. Effect of Lignite Addition on Maturity and Bacterial Community Assembly in Co-Composting of Goat Manure and Corn Straw. Fermentation 2025, 11, 591. https://doi.org/10.3390/fermentation11100591
Yi L, Wang B, Sa C, Zhang C, Li W, Wei Y, Sun H. Effect of Lignite Addition on Maturity and Bacterial Community Assembly in Co-Composting of Goat Manure and Corn Straw. Fermentation. 2025; 11(10):591. https://doi.org/10.3390/fermentation11100591
Chicago/Turabian StyleYi, Lalete, Bo Wang, Chula Sa, Chunhua Zhang, Wenting Li, Yuquan Wei, and Haizhou Sun. 2025. "Effect of Lignite Addition on Maturity and Bacterial Community Assembly in Co-Composting of Goat Manure and Corn Straw" Fermentation 11, no. 10: 591. https://doi.org/10.3390/fermentation11100591
APA StyleYi, L., Wang, B., Sa, C., Zhang, C., Li, W., Wei, Y., & Sun, H. (2025). Effect of Lignite Addition on Maturity and Bacterial Community Assembly in Co-Composting of Goat Manure and Corn Straw. Fermentation, 11(10), 591. https://doi.org/10.3390/fermentation11100591