High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Natural Product Source
Natural Product Extraction
2.2. Bacterial Strains
2.2.1. Probiotic and Environmental Bacteria
2.2.2. Pathogenic Bacteria
2.3. Genotypic Characterization of the Novel Isolate
2.4. Bacterial Growth
2.5. Biofilm Biomass Quantification
Specific Biofilm Index Determination
2.6. Surfactant Activity
2.7. Liquid–Liquid Interfacial Activity
2.8. Chemical and Spectrochemical Analysis
Quantification of Phenolic Compounds
2.9. Lactobacilli Fermentation into Modified Media
2.10. Specific Enzyme Inhibition
2.11. Electron Microscopy
2.12. TLC and GC-MS Analysis
3. Results and Discussion
3.1. Identification of a Novel Lacticaseibacillus paracasei Strain
3.2. Effects of Tuber Peel Extracts Added into Culture Media on the Non-Pathogenic Bacteria Development
3.2.1. Food Origin-Probiotic Lactiplantibacillus plantarum ATCC 10241
3.2.2. Lacticaseibacillus paracasei CO1-LVP105
3.3. Impact on Gram-Negative Bacteria
3.4. Spectrochemical Data
Phenolic Compounds: Quantitative Bioguided Analysis
3.5. Toxic Compounds Biodegradation
3.6. Surfactant Activity
3.7. Liquid–Liquid Interfacial Activity
3.8. Phenol Oxidase Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neylon, E.; Nyhan, L.; Zannini, E.; Monin, T.; Münch, S.; Sahin, A.W.; Arendt, E.K. Food Ingredients for the future: In-depth analysis of the effects of lactic acid bacteria fermentation on spent barley rootlets. Fermentation 2023, 9, 78. [Google Scholar] [CrossRef]
- Abedin, M.M.; Chourasia, R.; Phukon, L.C.; Sarkar, P.; Ray, R.C.; Singh, S.P.; Rai, A.K. Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10730–10748. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, I.M.; Verni, M.C.; Argañaraz Martinez, F.E.; Babot, J.D.; Terán, V.; Danilovich, M.E.; Cartagena, E.; Alberto, M.R.; Arena, M.E. Novel lactic acid bacteria strains from regional peppers with health-promoting potential. Fermentation 2024, 10, 209. [Google Scholar] [CrossRef]
- Dable-Tupas, G.; Otero, M.C.B.; Bernolo, L. (Eds.) Functional Foods and Nutraceuticals: Bioactive Components, Formulations, and Innovations; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- AlAli, M.; Alqubaisy, M.; Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021, 26, 2540. [Google Scholar] [CrossRef]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. The complex role of lactic acid bacteria in food detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef]
- Chantre-López, A.R.; Solanilla-Duque, J.F.; Ascacio-Valdes, J.A.; Salazar-Sánchez, M.d.R.; Flores-Gallegos, A.C.; Nery-Flores, S.D.; Silva-Belmares, S.Y.; Rodríguez-Herrera, R. Andean tubers: Traditional medicine and other applications. Plant Sci. Today 2024, 11, 342–352. [Google Scholar] [CrossRef]
- Choquechambi, L.A.; Callisaya, I.R.; Ramos, A.; Bosque, H.; Mújica, A.; Jacobsen, S.-E.; Sørensen, M.; Leidi, E.O. Assessing the nutritional value of root and tuber crops from Bolivia and Peru. Foods 2019, 8, 526. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Rosas-Cruz, G.P.; Silva-Correa, C.R.; Calderón-Peña, A.A.; Villarreal-La Torre, V.E.; Aspajo-Villalaz, C.L.; CruzadoRazco, J.L.; Rosario-Chávarri, J.; Rodríguez-Soto, J.; Pretel-Sevillano, O.; Sagástegui-Guarniz, W.; et al. Wound healing activity of an ointment from Solanum tuberosum L. “Tumbay yellow potato” on Mus musculus Balb/c. Pharmacogn. J. 2020, 12, 1268–1275. [Google Scholar] [CrossRef]
- Campos, D.; Noratto, G.; Chirinos, R.; Arbizu, C.; Roca, W.; Cisneros-Zevallos, L. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: Native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavon), oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). J. Sci. Food Agric. 2006, 86, 1481–1488. [Google Scholar] [CrossRef]
- Vescovo, D.; Manetti, C.; Ruggieri, R.; Spizzirri, U.G.; Aiello, F.; Martuscelli, M.; Restuccia, D. The Valorization of potato peels as a functional ingredient in the food industry: A comprehensive review. Foods 2025, 14, 1333. [Google Scholar] [CrossRef] [PubMed]
- Mis-Solval, K.E.; Jiang, N.; Yuan, M.; Joo, K.H.; Cavender, G.A. The Effect of the ultra-high-pressure homogenization of protein encapsulants on the survivability of probiotic cultures after spray drying. Foods 2019, 8, 689. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Medina, M.; Naves, P.; Blanco, J.; Aldeguer, X.; Blanco, J.E.; Blanco, M.; Ponte, C.; Soriano, F.; Darfeuille-Michaud, A.; Garcia-Gil, L.J. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol. 2009, 9, 202. [Google Scholar] [CrossRef]
- Cartagena, E.; Orphèe, C.H.; Verni, M.C.; Arena, M.E.; González, S.N.; Argañaraz, M.I.; Bardón, A. Patent: Medio de Cultivo Promotor y Bacterias No Patógenas Detoxificantes de Compuestos Mutagénicos/Carcinogénicos. Instituto Nacional de la Propiedad Industrial-INPI Nº 20190102418, 25 March 2021. [Google Scholar]
- Walter, V.; Syldatk, C.; Hausmann, R. Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms. In Biosurfactants. Advances in Experimental Medicine and Biology; Sen, R., Ed.; Springer: New York, NY, USA, 2010; pp. 1–13. [Google Scholar]
- Sambanthamoorthy, K.; Feng, X.; Patel, R.; Patel, S.; Paranavitana, C. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol. 2014, 14, 197. [Google Scholar] [CrossRef]
- Verni, M.C.; Orphèe, C.H.; González, S.N.; Bardón, A.; Arena, M.E.; Cartagena, E. Flourensia fiebrigii SF Blake in combination with Lactobacillus paracasei subsp. paracasei CE75. A novel antipathogenic and detoxifying strategy. LWT 2022, 156, 113023. [Google Scholar]
- Jia, Z.S.; Tang, M.C.; Wu, J.M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Chen, Z. Application of UV-vis spectroscopy in the detection and analysis of substances. Trans. Mater. Biotechnol. Life Sci. 2024, 3, 131–136. [Google Scholar] [CrossRef]
- Tapia, P.E.; Silva, A.M.; Delerue-Matos, C.; Moreira, M.; Rodrigues, F.; Torres Carro, R.; Santi, M.D.; Ortega, M.G.; Blázquez, M.A.; Arena, M.E.; et al. Exploring the phytochemical composition and the bioactive properties of malbec and torrontés wine pomaces from the Calchaquíes Valleys (Argentina) for their sustainable exploitation. Foods 2024, 13, 1795. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, J.; Medhi, T.; Kumar, A. Phytochemical screening, quantification, FT-IR analysis, and in silico characterization of potential bioactive compounds identified in hr-lc/ms analysis of the polyherbal formulation from Northeast India. ACS Omega 2022, 7, 33067–33078. [Google Scholar] [CrossRef]
- Ben Hmida, R.; Frikha, N.; Bouguerra Neji, S.; Kit, G.; Medina, F.; Bouaziz, M. Synthesis of high added value compounds through catalytic oxidation of 2-phenylethanol: A kinetic study. Int. J. Chem. Kinet. 2020, 52, 124–133. [Google Scholar] [CrossRef]
- Carullo, G.; Spizzirri, U.G.; Loizzo, M.R.; Leporini, M.; Sicari, V.; Aiello, F.; Restuccia, D. Valorization of red grape (Vitis vinifera cv. sangiovese) pomace as functional food ingredient. Ital. J. Food Sci. 2020, 32, 367–385. [Google Scholar]
- ECHA. European Chemicals Agency Documents. 2021. Available online: https://echa.europa.eu/documents/10162/de108693-1d4f-abfe-818e-9cea812ab4c2 (accessed on 21 April 2025).
- Lachman, J.; Hamouz, K. Red and purple coloured potatoes as a significant antioxidant source in human nutrition—A review. Plant Soil Environ. 2005, 51, 477–482. [Google Scholar] [CrossRef]
- Campos, D.; Betalleluz-Pallardel, I.; Chirinos, R.; Aguilar-Galvez, A.; Noratto, G.; Pedreschi, R. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl.), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem. 2012, 135, 1592–1599. [Google Scholar] [CrossRef]
- Verediano, T.A.; Viana, M.L.; Vaz-Tostes, M.D.G.; Costa, N. The potential prebiotic effects of yacon (Smallanthus sonchifolius) in colorectal cancer. Curr. Nutr. Food Sci. 2021, 17, 167–175. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Palai, S.; Derecho, C.M.P.; Kesh, S.S.; Egbuna, C.; Onyeike, P.C. Prebiotics, probiotics, synbiotics and its importance in the management of diseases. In Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations; Springer International Publishing: Cham, Switzerland, 2020; pp. 173–196. [Google Scholar]
- Berlanga, M.; Guerrero, R. Living together in biofilms: The microbial cell factory and its biotechnological implications. Microb. Cell Fact. 2016, 15, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Frassinetti, S.M.G.; Moccia, E.; Longo, V.; Di Gioia, D. Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp. LWT 2020, 124, 109149. [Google Scholar]
- Cartagena, E.; Arena, M.E.; Verni, M.C.; Bardón, A. Natural terpenoids as a valuable resource of selective health-beneficial biofilm promoters. In Biofilms: Advances in Research and Applications; Rowland, S., Ed.; Nova Science Publishers: New York, NY, USA, 2021; pp. 159–186. [Google Scholar]
- Santonoceta, G.D.G.; Sgarlata, C. pH-Responsive cobalt(II)-coordinated assembly containing quercetin for antimicrobial applications. Molecules 2023, 28, 5581. [Google Scholar] [CrossRef]
- Holser, R. Principal component analysis of phenolic acid spectra. Int. Sch. Res. Not. 2012, 2012, 493203. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety. 2015. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_177.pdf (accessed on 2 September 2025).
- Parlindungan, E.; Dekiwadia, C.; Tran, K.T.; Jones, O.A.; May, B.K. Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. LWT 2018, 92, 556–563. [Google Scholar] [CrossRef]
- Lvova, K.; Martínez-Arcos, A.; López-Prieto, A.; Vecino, X.; Moldes, A.B.; Cruz, J.M. Optimization of the operational conditions to produce extracellular and cell-bound biosurfactants by Aneurinibacillus aneurinilyticus using corn steep liquor as a unique source of nutrients. Fermentation 2023, 9, 351. [Google Scholar] [CrossRef]
- Lara, V.M.; Gliemmo, M.F.; Vallejo, M.; García González, M.d.C.; Alfaro Rodríguez, M.d.C.; Campos, C.A. Use of the glycolipopeptid biosurfactant produced by Lactiplantibacillus plantarum Tw226 to formulate functional Cinnamon bark essential oil emulsions. Foods 2025, 14, 1540. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, M.K.; Park, I. Inhibitory effect of onion extract on polyphenol oxidase and enzymatic browning of taro (Colocasia antiquorum var. esculenta). Food Chem. 2007, 105, 528–532. [Google Scholar] [CrossRef]
- Matthews, A.; Grimaldi, A.; Walker, M.; Bartowsky, E.; Grbin, P.; Jiranek, V. Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl. Environ. Microbiol. 2004, 70, 5715–5731. [Google Scholar] [CrossRef]
- Arla Foods Ingredients Group P/S.; Heimbach, J.T. GRAS Notice No. 810: Lactobacillus paracasei subsp. paracasei Strain F-19e—Intended Use in Powdered Milk-Based Infant Formula; Scientific Procedures. U.S. Food & Drug Administration. 2019. Available online: https://www.fda.gov/media/129477/download (accessed on 21 April 2025).
- Wang, F.; Chen, L.; Li, Y.; Gao, G.; Wang, Y.; Shi, R.; Zhang, H.; Chen, Y.; Cao, R.; Shi, Q.; et al. Lacticaseibacillus paracasei subsp. paracasei Q-1 exhibits good safety and effectively prevents Escherichia coli K99-induced diarrhea in mice. Probiotics Antimicrob. Proteins 2025. Advance online publication. [Google Scholar] [CrossRef]
Andean Plant Tubers (Names) | Peel Extracts (Codes) | Extract Yields (mg/g of Dry Peels) | Phenolic Compounds (FeCl3 and AlCl3 Reagents) | UV Spectroscopy | Assignments | |
λ (nm) | Abs | |||||
Oxalis tuberosa var. oca rosa | 1AE | 11.9 | Positive | 348.5 | 1.003 | Flavonoids (cinnamoyl group) |
325.5 | 1.120 | Ferulic acid and coumarins | ||||
303.5 | 1.225 | |||||
1EAS | 5.0 | Positive | 323.0 | 0.774 | Flavonoids (cinnamoyl group) | |
282.4 | 1.243 | Flavonoids (benzoyl group), Ferulic acid, and coumarins | ||||
Ullucus tuberosus | 3AE | 72.9 | Positive | 348.5 | 0.631 | Flavonoids (cinnamoyl) |
267.5 | 1.147 | Flavonoids (benzoyl group) | ||||
3EAS | 1.1 | Positive | 351.2 | 0.704 | Flavonoids (cinnamoyl) | |
277.2 | 1.191 | Flavonoids (benzoyl group), Ferulic acid and, coumarins | ||||
Solanum tuberosum subsp. andigena var. miskila colorada | 5AE | 20.0 | Positive | 343.0 | 0.791 | Flavonoids (cinnamoyl) |
300.5 | 0.461 | Ferulic acid and coumarins | ||||
5EAS | 1.6 | Positive | 341.5 | 0.617 | Flavonoids (cinnamoyl group) | |
321.5 | 0.964 | Ferulic acid and coumarins | ||||
300.5 | 0.447 | |||||
EE | 24.7 | Positive | 322.0 | 1.110 | Flavonoids (cinnamoyl group) | |
305.5 | 0.965 | Ferulic acid and coumarins | ||||
294.5 | 0.956 | Flavonoids (benzoyl group) | ||||
Solanum tuberosum subsp. andigena var. cuarentona | 7EE | 31.5 | Positive | 322.0 | 1.843 | Flavonoids (cinnamoyl group) |
305.5 | 1.619 | Ferulic acid and coumarins |
Phytochemical Group | EAS mg/g Dry Peel Sub-Extract | ES mg/g Dry Peel Sub-Extract |
Total phenolics (GAE) | 226.39 ± 18.25 a | 29.45 ± 0.28 f |
Non-flavonoid phenolics (GAE) | 123.85 ± 10.25 b | 17.66 ± 0.39 e |
Total flavonoids (QE) | 398.04 ± 18.02 c | 111.27 ± 2.08 g |
Hydroxycinnamic acids (CAE) | 21.40 ± 0.95 d | 5.75 ± 0.21 h |
Orthodiphenols (CAE) | 18.07 ± 0.65 e | 2.34 ± 0.51 i |
Orthodiphenols (GAE) | 29.42 ± 1.06 f | 3.80 ± 0.83 j |
Anthocyannins (C3GE) | <LOQ | <LOQ |
Culture Media Under Different Conditions | GC-MS OPP Retention Time | GC-MS Peak Area | OPP Comparative Peaks (Magnified) and Mass Spectrum |
Solution of 100 µg/mL OPP standard (abiotic control) | 12.76 min (peak in blue) | 16.969.230.572.786 | |
Solution of 100 µg/mL OPP standard plus L. paracasei CO1-LVP105 | 12.74 min (peak in magenta) | 13.504.203.129.604 | |
Solution of 100 µg/mL OPP standard plus L. paracasei CO1-LVP105 promoted with 1EAS | 12.71 min (peak in gray) | 4.652.244.706.499 |
Supernatants | Oil Spreading Halos (mm) | E24 Index (%) |
Lacticaseibacillus paracasei CO1-LVP105 | 80 ± 5 a | 54 ± 5 h |
L. paracasei CO1-LVP105 + PhOH | 88 ± 1b | 67 ± 6 i |
L. paracasei CO1-LVP105- EAS + PhOH | 169 ± 2 c | 71 ± 0 j |
L. paracasei CO1-LVP105 + OPP | 160 ± 0 d | ND |
L. paracasei CO1-LVP105-EAS + OPP | 320 ± 0 e | ND |
Lactiplantibacillus plantarum ATCC 10241 | 105 ± 2 f | 53 ± 3 h |
Lp. plantarum ATCC 10241 + PhOH | 130 ± 1 g | 66 ± 5 i |
Lp. plantarum ATCC 10241 -EAS+ PhOH | 129 ± 5 g | 67 ± 4 i |
Tween 80 | 50 ± 3 h | 50 ± 0 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orphèe, C.H.; Mercado, M.I.; Argañaraz Martínez, F.E.; Arena, M.E.; Cartagena, E. High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy. Fermentation 2025, 11, 576. https://doi.org/10.3390/fermentation11100576
Orphèe CH, Mercado MI, Argañaraz Martínez FE, Arena ME, Cartagena E. High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy. Fermentation. 2025; 11(10):576. https://doi.org/10.3390/fermentation11100576
Chicago/Turabian StyleOrphèe, Cecilia Hebe, María Inés Mercado, Fernando Eloy Argañaraz Martínez, Mario Eduardo Arena, and Elena Cartagena. 2025. "High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy" Fermentation 11, no. 10: 576. https://doi.org/10.3390/fermentation11100576
APA StyleOrphèe, C. H., Mercado, M. I., Argañaraz Martínez, F. E., Arena, M. E., & Cartagena, E. (2025). High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy. Fermentation, 11(10), 576. https://doi.org/10.3390/fermentation11100576