In Vitro Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Potential Coupled with Molecular Docking Simulation of the Dynamic Fermentation Characteristics of Marine-Derived Bacterium Halomonas saccharevitans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Cultural Conditions
2.2. Fermentation and Extraction of H.S-AB2 Crude Extract
2.3. Vacuum Liquid Chromatography (VLC) Analysis
2.4. Thin Layer Chromatography (TLC)
2.5. Evaluating of Biological Activity
2.5.1. Antibacterial Assay
2.5.2. Determination of the Minimum Inhibitory Concentration (MIC)
2.5.3. Antifungal Activity
2.5.4. Determination of the Minimum Fungicidal Concentration (MFC)
2.5.5. MTT Cytotoxicity Assay
2.5.6. Antioxidant Assay
2.6. Theoretical Validation of Antioxidant Potential
Molecular Docking
2.7. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.8. Time Kill Kinetics
2.9. Statistical Analysis
3. Results
3.1. Strain Condition and Activation
3.2. Assessment of Each Solvent’s Biological Activity
3.2.1. Antibacterial Activity
3.2.2. Time–Kill Kinetics Assay
3.2.3. Antifungal Activity
3.2.4. Determination of the Minimum Inhibitory Concentration (MIC)
3.2.5. Cytotoxicity Activity
3.2.6. Antioxidant Activity
3.3. Molecular Docking of Identified Compounds
3.4. Identification of Potentially Bioactive Fractions by GC–MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising Bioactive Compounds from the Marine Environment and Their Potential Effects on Various Diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef]
- Hamidi, M.; Kozani, P.S.; Kozani, P.S.; Pierre, G.; Michaud, P.; Delattre, C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar. Drugs 2019, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lu, H.; Zhang, Y.; Zhang, X.; Liu, L.; Wang, M.; Liu, L. The Natural Products Discovered in Marine Sponge-Associated Microorganisms: Structures, Activities, and Mining Strategy. Front. Mar. Sci. 2023, 10, 1191858. [Google Scholar] [CrossRef]
- Hai, Y.; Wei, M.-Y.; Wang, C.-Y.; Gu, Y.-C.; Shao, C.-L. The Intriguing Chemistry and Biology of Sulfur-Containing Natural Products from Marine Microorganisms (1987–2020). Mar. Life Sci. Technol. 2021, 3, 488–518. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.H.; Attia, E.Z.; Hajjar, D.; Anany, M.A.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S.; Wajant, H.; Gulder, T.A.M.; Abdelmohsen, U.R. New Cytotoxic Cyclic Peptide from the Marine Sponge-Associated Nocardiopsis Sp. UR67. Mar. Drugs 2018, 16, 290. [Google Scholar] [CrossRef] [PubMed]
- Renn, D.; Shepard, L.; Vancea, A.; Karan, R.; Arold, S.T.; Rueping, M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front. Microbiol. 2021, 12, 732856. [Google Scholar] [CrossRef]
- El-Hossary, E.M.; Abdel-Halim, M.; Ibrahim, E.S.; Pimentel-Elardo, S.M.; Nodwell, J.R.; Handoussa, H.; Abdelwahab, M.F.; Holzgrabe, U.; Abdelmohsen, U.R. Natural Products Repertoire of the Red Sea. Mar. Drugs 2020, 18, 457. [Google Scholar] [CrossRef]
- Nadeem, F.; Oves, M.; Qari, H.; Ismail, I. Red Sea Microbial Diversity for Antimicrobial and Anticancer Agents. J. Mol. Biomark. Diagn. 2016, 7, 2. [Google Scholar] [CrossRef]
- Bibi, F.; Naseer, M.I.; Azhar, E.I. Assessing the Diversity of Bacterial Communities from Marine Sponges and Their Bioactive Compounds. Saudi J. Biol. Sci. 2021, 28, 2747–2754. [Google Scholar] [CrossRef]
- Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M. Antioxidant, Antibacterial, Antitumor, Antifungal, Antiviral, Anti-Inflammatory, and Nevro-Protective Activity of Ganoderma Lucidum: An Overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar] [CrossRef]
- Leekha, S.; Terrell, C.L.; Edson, R.S. General Principles of Antimicrobial Therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef]
- Dholakiya, R.N.; Kumar, R.; Mishra, A.; Mody, K.H.; Jha, B. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat. Front. Microbiol. 2017, 8, 2420. [Google Scholar] [CrossRef]
- Al-shaibani, M.M.; Radin Mohamed, R.M.S.; Sidik, N.M.; El Enshasy, H.A.; Al-Gheethi, A.; Noman, E.; Al-Mekhlafi, N.A.; Zin, N.M. Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules 2021, 26, 4504. [Google Scholar] [CrossRef]
- Andryukov, B.; Mikhailov, V.; Besednova, N. The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. J. Mar. Sci. Eng. 2019, 7, 176. [Google Scholar] [CrossRef]
- Petersen, L.-E.; Kellermann, M.Y.; Schupp, P.J. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In YOUMARES 9—The Oceans: Our Research, Our Future; Springer International Publishing: Cham, Switzerland, 2020; pp. 159–180. [Google Scholar]
- Chen, D.; Qian, X. A Brief History of Bacteria; World Scientific: Singapore, 2018; ISBN 978-981-322-515-2. [Google Scholar]
- Hussain, S.A.; Xu, A.; Sommers, C.H.; Sarker, M.I. Draft Genome Sequence of Red-Heat-Causing Halomonas Eurihalina MS1, a Moderately Halophilic Bacterium Isolated from Saline Soil in Alicante, Spain. Microbiol. Resour. Announc. 2020, 9, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Donio, M.B.S.; Ronica, F.A.; Viji, V.T.; Velmurugan, S.; Jenifer, J.S.C.A.; Michaelbabu, M.; Dhar, P.; Citarasu, T. Halomonas Sp. BS4, A Biosurfactant Producing Halophilic Bacterium Isolated from Solar Salt Works in India and Their Biomedical Importance. Springerplus 2013, 2, 149. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Llamas, I.; Amjres, H.; Mata, J.A.; Quesada, E.; Béjar, V. The Potential Biotechnological Applications of the Exopolysaccharide Produced by the Halophilic Bacterium Halomonas Almeriensis. Molecules 2012, 17, 7103–7120. [Google Scholar] [CrossRef] [PubMed]
- Boujida, N.; Palau, M.; Charfi, S.; El Moussaoui, N.; Manresa, A.; Miñana-Galbis, D.; Skali Senhaji, N.; Abrini, J. Isolation and Characterization of Halophilic Bacteria Producing Exopolymers with Emulsifying and Antioxidant Activities. Biocatal. Agric. Biotechnol. 2018, 16, 631–637. [Google Scholar] [CrossRef]
- Arahal, D.R.; Ventosa, A. The Family Halomonadaceae. In The Prokaryotes; Springer: New York, NY, USA, 2006; pp. 811–835. [Google Scholar]
- Gaffney, E.M.; Simoska, O.; Minteer, S.D. The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. Biosensors 2021, 11, 48. [Google Scholar] [CrossRef]
- Mohamed, H.; Ebrahim, W.; El-Neketi, M.; Awad, M.F.; Zhang, H.; Zhang, Y.; Song, Y. In Vitro Phytobiological Investigation of Bioactive Secondary Metabolites from the Malus Domestica-Derived Endophytic Fungus Aspergillus Tubingensis Strain AN103. Molecules 2022, 27, 3762. [Google Scholar] [CrossRef]
- Al Mousa, A.A.; Mohamed, H.; Hassane, A.M.A.; Abo-Dahab, N.F. Antimicrobial and Cytotoxic Potential of an Endophytic Fungus Alternaria Tenuissima AUMC14342 Isolated from Artemisia judaica L. Growing in Saudi Arabia. J. King Saud. Univ.-Sci. 2021, 33, 101462. [Google Scholar] [CrossRef]
- Mohamed, H.; Hassane, A.; Rawway, M.; El-Sayed, M.; Gomaa, A.E.-R.; Abdul-Raouf, U.; Shah, A.M.; Abdelmotaal, H.; Song, Y. Antibacterial and Cytotoxic Potency of Thermophilic Streptomyces Werraensis MI-S.24-3 Isolated from an Egyptian Extreme Environment. Arch. Microbiol. 2021, 203, 4961–4972. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. No TitlAntibiotic Susceptibility Testing by a Standardized Single Disk Method E. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- M07-A9; National Committee for Clinical Laboratory Standards Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003.
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- M39-A2; Clinical and Laboratory Standards Institute Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Approved Standard—Second Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- Khalaf, N.A.; Shakya, A.K.; Al-Othman, A.; El-Agbar, Z.; Farah, H. Antioxidant Activity of Some Common Plants. Turkish J. Biol. 2008, 32, 51–55. [Google Scholar]
- Ravikumar, Y.S.; Mahadevan, K.M.; Kumaraswamy, M.N.; Vaidya, V.P.; Manjunatha, H.; Kumar, V.; Satyanarayana, N.D. Antioxidant, Cytotoxic and Genotoxic Evaluation of Alcoholic Extract of Polyalthia Cerasoides (Roxb.) Bedd. Environ. Toxicol. Pharmacol. 2008, 26, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 Update: Improved Access to Chemical Data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed]
- Podvinec, M.; Schwede, T.; Peitsch, M.C. Docking for Neglected Diseases as Community Efforts. In Computational Structural Biology; World Scientific: Singapore, 2008; pp. 683–704. [Google Scholar]
- Enerijiofi, K.E.; Akapo, F.H.; Erhabor, J.O. GC–MS Analysis and Antibacterial Activities of Moringa Oleifera Leaf Extracts on Selected Clinical Bacterial Isolates. Bull. Natl. Res. Cent. 2021, 45, 179. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Mohamed, H.; Awad, M.F.; Shah, A.M.; Sadaqat, B.; Nazir, Y.; Naz, T.; Yang, W.; Song, Y. Coculturing of Mucor Plumbeus and Bacillus Subtilis Bacterium as an Efficient Fermentation Strategy to Enhance Fungal Lipid and Gamma-Linolenic Acid (GLA) Production. Sci. Rep. 2022, 12, 13111. [Google Scholar] [CrossRef]
- Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive Compounds from Marine Bacteria and Fungi. Microb. Biotechnol. 2010, 3, 544–563. [Google Scholar] [CrossRef] [PubMed]
- El-Garawani, I.M.; El-Sabbagh, S.M.; Abbas, N.H.; Ahmed, H.S.; Eissa, O.A.; Abo-Atya, D.M.; Khalifa, S.A.M.; El-Seedi, H.R. A Newly Isolated Strain of Halomonas Sp. (HA1) Exerts Anticancer Potential via Induction of Apoptosis and G2/M Arrest in Hepatocellular Carcinoma (HepG2) Cell Line. Sci. Rep. 2020, 10, 14076. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds From Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Ameen, F.; AlNadhari, S.; Al-Homaidan, A.A. Marine Microorganisms as an Untapped Source of Bioactive Compounds. Saudi J. Biol. Sci. 2021, 28, 224–231. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kawashima, M.; Iwatsuki, M.; Kimishima, A.; Tsutsumi, H.; Asami, Y.; Inahashi, Y. Comprehensive Analysis of Biosynthetic Gene Clusters in Bacteria and Discovery of Tumebacillus as a Potential Producer of Natural Products. J. Antibiot. 2023, 76, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Siddharth, S.; Vittal, R.R. Evaluation of Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Activities of Partially Purified Volatile Metabolites of Marine Streptomyces Sp.S2A. Microorganisms 2018, 6, 72. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine Bioactive Compounds and Health Promoting Perspectives; Innovation Pathways for Drug Discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [Google Scholar] [CrossRef]
- Biswas, J.; Jana, S.K.; Mandal, S. Biotechnological Impacts of Halomonas: A Promising Cell Factory for Industrially Relevant Biomolecules. Biotechnol. Genet. Eng. Rev. 2022, 1–30. [Google Scholar] [CrossRef]
- Llamas, I.; Béjar, V.; Martínez-Checa, F.; Martínez-Cánovas, M.J.; Molina, I.; Quesada, E. Halomonas stenophila Sp. Nov., a Halophilic Bacterium That Produces Sulphate Exopolysaccharides with Biological Activity. Int. J. Syst. Evol. Microbiol. 2011, 61, 2508–2514. [Google Scholar] [CrossRef]
- Bitzer, J.; Große, T.; Wang, L.; Lang, S.; Beil, W.; Zeeck, A. New Aminophenoxazinones from a Marine Halomonas Sp.: Fermentation, Structure Elucidation, and Biological Activity. J. Antibiot. 2006, 59, 86–92. [Google Scholar] [CrossRef]
- Velmurugan, S.; Raman, K.; Thanga Viji, V.; Donio, M.B.S.; Adlin Jenifer, J.; Babu, M.M.; Citarasu, T. Screening and Characterization of Antimicrobial Secondary Metabolites from Halomonas Salifodinae MPM-TC and Its in Vivo Antiviral Influence on Indian White Shrimp Fenneropenaeus Indicus against WSSV Challenge. J. King Saud. Univ.-Sci. 2013, 25, 181–190. [Google Scholar] [CrossRef]
- Erdal Altıntaş, Ö.; Toksoy Öner, E.; Çabuk, A.; Aytar Çelik, P. Biosynthesis of Levan by Halomonas Elongata 153B: Optimization for Enhanced Production and Potential Biological Activities for Pharmaceutical Field. J. Polym. Environ. 2023, 31, 1440–1455. [Google Scholar] [CrossRef]
- Kowalewicz-Kulbat, M.; Krawczyk, K.T.; Szulc-Kielbik, I.; Rykowski, S.; Denel-Bobrowska, M.; Olejniczak, A.B.; Locht, C.; Klink, M. Cytotoxic Effects of Halophilic Archaea Metabolites on Ovarian Cancer Cell Lines. Microb. Cell Fact. 2023, 22, 197. [Google Scholar] [CrossRef]
- Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar. Drugs 2019, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Patkar, S.; Shinde, Y.; Chindarkar, P.; Chakraborty, P. Evaluation of Antioxidant Potential of Pigments Extracted from Bacillus Spp. and Halomonas Spp. Isolated from Mangrove Rhizosphere. BioTechnologia 2021, 102, 157–169. [Google Scholar] [CrossRef]
- Orhan, F.; Ceyran, E. Valorisation of Cheese Whey for Ectoine Production by Halomonas Neptunia. Int. J. Dairy. Technol. 2024, 77, 146–155. [Google Scholar] [CrossRef]
- Santhaseelan, H.; Dinakaran, V.T.; Dahms, H.-U.; Ahamed, J.M.; Murugaiah, S.G.; Krishnan, M.; Hwang, J.-S.; Rathinam, A.J. Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022, 10, 417. [Google Scholar] [CrossRef]
- Fariq, A.; Yasmin, A.; Jamil, M. Production, Characterization and Antimicrobial Activities of Bio-Pigments by Aquisalibacillus Elongatus MB592, Salinicoccus Sesuvii MB597, and Halomonas Aquamarina MB598 Isolated from Khewra Salt Range, Pakistan. Extremophiles 2019, 23, 435–449. [Google Scholar] [CrossRef]
- Menasria, T.; Monteoliva-Sánchez, M.; Benammar, L.; Benhadj, M.; Ayachi, A.; Hacène, H.; Gonzalez-Paredes, A.; Aguilera, M. Culturable Halophilic Bacteria Inhabiting Algerian Saline Ecosystems: A Source of Promising Features and Potentialities. World J. Microbiol. Biotechnol. 2019, 35, 132. [Google Scholar] [CrossRef] [PubMed]
- Boyadzhieva, I.; Tomova, I.; Radchenkova, N.; Kambourova, M.; Poli, A.; Vasileva-Tonkova, E. Diversity of Heterotrophic Halophilic Bacteria Isolated from Coastal Solar Salterns, Bulgaria and Their Ability to Synthesize Bioactive Molecules with Biotechnological Impact. Microbiology 2018, 87, 519–528. [Google Scholar] [CrossRef]
- Oren, A.; Hallsworth, J.E. Microbial Weeds in Hypersaline Habitats: The Enigma of the Weed-like Haloferax Mediterranei. FEMS Microbiol. Lett. 2014, 359, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Sun, H.; Wang, J.; Zhu, F.; Liu, H.; Wang, Z.; Lei, T.; Li, Y.; Hou, T. Assessing the Performance of MM/PBSA and MM/GBSA Methods. 8. Predicting Binding Free Energies and Poses of Protein–RNA Complexes. RNA 2018, 24, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Vallavan, V.; Krishnasamy, G.; Zin, N.M.; Abdul Latif, M. A Review on Antistaphylococcal Secondary Metabolites from Basidiomycetes. Molecules 2020, 25, 5848. [Google Scholar] [CrossRef] [PubMed]
- Devi, T.S.; Vijay, K.; Vidhyavathi, R.M.; Kumar, P.; Govarthanan, M.; Kavitha, T. Antifungal Activity and Molecular Docking of Phenol, 2,4-Bis(1,1-Dimethylethyl) Produced by Plant Growth-Promoting Actinobacterium Kutzneria Sp. Strain TSII from Mangrove Sediments. Arch. Microbiol. 2021, 203, 4051–4064. [Google Scholar] [CrossRef]
- Kaushik, S.; Kaushik, S.; Kumar, R.; Dar, L.; Yadav, J.P. In-Vitro and in Silico Activity of Cyamopsis tetragonoloba (Gaur) L. Supercritical Extract against the Dengue-2 Virus. VirusDisease 2020, 31, 470–478. [Google Scholar] [CrossRef]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS Analysis of Phytoconstituents from Amomum Nilgiricum and Molecular Docking Interactions of Bioactive Serverogenin Acetate with Target Proteins. Sci. Rep. 2020, 10, 16438. [Google Scholar] [CrossRef] [PubMed]
- Razack, S.; Kumar, K.; Nallamuthu, I.; Naika, M.; Khanum, F. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys Jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS. Antioxidants 2015, 4, 185–203. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Zhu, W.; Gong, Z.; Yin, H.; Gao, C.; Zhu, A.; Wang, D. A Two-Staged Adsorption/Thermal Desorption GC/MS Online System for Monitoring Volatile Organic Compounds. Environ. Monit. Assess. 2023, 195, 869. [Google Scholar] [CrossRef]
- Gutierrez, T.; Morris, G.; Ellis, D.; Mulloy, B.; Aitken, M.D. Production and Characterisation of a Marine Halomonas Surface-Active Exopolymer. Appl. Microbiol. Biotechnol. 2020, 104, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Aissaoui, N.; Mahjoubi, M.; Nas, F.; Mghirbi, O.; Arab, M.; Souissi, Y.; Hoceini, A.; Masmoudi, A.S.; Mosbah, A.; Cherif, A.; et al. Antibacterial Potential of 2,4-Di-Tert-Butylphenol and Calixarene-Based Prodrugs from Thermophilic Bacillus Licheniformis Isolated in Algerian Hot Spring. Geomicrobiol. J. 2019, 36, 53–62. [Google Scholar] [CrossRef]
- Sholkamy, E.N.; Muthukrishnan, P.; Abdel-Raouf, N.; Nandhini, X.; Ibraheem, I.B.M.; Mostafa, A.A. Antimicrobial and Antinematicidal Metabolites from Streptomyces Cuspidosporus Strain SA4 against Selected Pathogenic Bacteria, Fungi and Nematode. Saudi J. Biol. Sci. 2020, 27, 3208–3220. [Google Scholar] [CrossRef] [PubMed]
- Oskoueian, E.; Abdullah, N.; Ahmad, S.; Saad, W.Z.; Omar, A.R.; Ho, Y.W. Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract. Int. J. Mol. Sci. 2011, 12, 5955–5970. [Google Scholar] [CrossRef] [PubMed]
Tested Fractions | MIC and MFC Values (μg/mL) | |||||
---|---|---|---|---|---|---|
E. coli | P. aeruginosa | S. aureus | B. subtilis | A. niger | C. albicans | |
n-hexane 100% | 4.1± 0.024 | 5.1 ± 0.11 | 5.3 ± 0.16 | 4.1 ± 0.20 | 3.3 ± 0.01 | 6.5 ± 0.25 |
n-hexane:EtOAc (50:50) | 13.2 ± 0.11 | 8.4 ± 0.11 | 5.9 ± 0.19 | 5.6 ± 0.15 | 6.7 ± 0.33 | 11.4 ± 1.30 |
EtOAc 100% | 9.8 ± 0.13 | 11.9 ± 0.14 | 7.6 ± 0.21 | 7.8 ± 0.33 | 5.5 ± 0.12 | 10.6 ± 0.42 |
DCM 100% | 8.2 ± 0.15 | 8.1 ± 0.22 | 6.1 ± 0.29 | 6.1 ± 0.29 | 4.7 ± 0.30 | 10.2 ± 1.65 |
DCM:MeOH (50:50) | 7.5 ± 0.14 | 4.5 ± 0.12 | 5.1 ± 0.25 | 5.5 ± 0.12 | 8.8 ± 0.02 | 9.8 ± 0.01 |
MeOH 100% | 3.5 ± 0.02 | 6.5 ± 0.03 | 4.3 ± 0.01 | 4.1 ± 0.11 | 4.2 ± 0.18 | 7.6 ± 0.21 |
Concentration (mg/mL) | Scavenging Activity (Inhibition%) | Ascorbic Acid (Inhibition%) | |
---|---|---|---|
Hexane Extract (100%) | Methanolic Extract (100%) | ||
1 | 12.32 ± 0.10 | 21.87 ± 0.85 | 10.64 ± 0.11 |
2 | 40.05 ± 0.22 | 47.89 ± 0.94 | 21.56 ± 0.22 |
3 | 54.71 ± 0.38 | 63.92 ± 1.05 | 32.81 ± 0.40 |
4 | 69.8 ± 0.50 | 73.06 ± 1.20 | 40.00 ± 0.55 |
5 | 75.02 ± 0.48 | 80.33 ± 1.10 | 49.78 ± 0.75 |
6 | 81.04 ± 0.56 | 89.28 ± 0.85 | 61.23 ± 0.80 |
7 | 88.1 ± 1.11 | 93.23 ± 1.33 | 78.95 ± 1.12 |
8 | 92.91 ± 1.25 | 98.25 ± 1.45 | 88.23 ± 1.5 |
Poc ID | Area (SA) Å2 | Volume (SA) Å3 |
---|---|---|
1 | 17,711.840 | 9434.812 |
2 | 8.830 | 4.313 |
3 | 0.948 | 0.373 |
4 | 0.873 | 0.294 |
Seq. | PubChem ID | Compound | Score (kcal/mol) | RMSD (Å) | Receptor Interaction | Bond Distance |
---|---|---|---|---|---|---|
1 | 7311 | Phenol, 2,4-bis-(1,1-dimethylethyl) | −9.2 | 1.2 | Lys179/H-donor | 3.49 |
2 | 1017 | 1,2-Benzenedicarboxylic acid | −8.5 | 2.4 | Ala83/H-donor | 2.88 |
3 | 7362 | 2-Furancarboxaldehyde | −6.3 | 1.5 | Ser185/pi-H Arg184/H-acceptor | 4.42 3.22 |
4 | 237332 | 5-Hydroxymethylfurfural | −7 | 0.4 | Arg184/pi-Hydrogen Lys179/H-acceptor His-181/ H-donor | 3.56 3.15 3.48 |
5 | 54670067 | Ascorbic acid | −9.5 | 1.2 | Ala83/H-donor Ser81/H-donor | 3.24 2.95 |
Molecule | 2D | 3D |
---|---|---|
Phenol, 2,4-bis-(1,1-dimethylethyl) | ||
1,2-Benzenedicarboxylic acid | ||
2-Furancarboxaldehyde | ||
5-Hydroxymethylfurfural | ||
Ascorbic acid (docked) | ||
Protein | Compound | Pose | Procedure and Score | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | PB1 | PB3 | PB4 | GB1 | GB2 | GB5 | GB6 | ||
Cytochrome c peroxidase | Phenol, 2,4-bis-(1,1-dimethylethyl) | −0.98 | −9.64 | −10.98 | −14.08 | −13.13 | −14.05 | −13.95 | |
1,2-Benzenedicarboxylic acid | 4.71 | −5.01 | −4.1 | −7.01 | −6.06 | −6.26 | −7.94 | ||
2-Furancarboxaldehyde | 1.73 | −0.19 | −2.75 | −5.26 | −4.01 | −3.98 | −1.28 | ||
5-Hydroxymethylfurfural | −1.49 | −5.58 | −6.36 | −8.34 | −7.86 | −8.36 | −7.97 | ||
Ascorbic acid | 8.8 | 1.67 | 2.52 | −3.15 | −2.48 | −2.6 | −1.84 |
ELE | VDW | INT | GAS | PBSUR/GBSUR | PBCAL/GB | PBSOL/GBSOL | PBELE/GBELE | PBTOT/GBTOT |
---|---|---|---|---|---|---|---|---|
−15.91 | −12.34 | 0 | −28.25 | −11.59 | 18.06 | 27.27 | 2.15 | −0.98 |
No. | Compounds | Chemical Formula | Molecular Weight | RT (min) | Match Factor | Area (%) |
---|---|---|---|---|---|---|
Hexane extract (100%) | ||||||
1 | 1-Nonadecene | C19H38 | 266 | 15.22 | 841 | 5.03 |
2 | Phenol, 2,4-bis-(1,1-dimethylethyl) | C14H22O | 206 | 16.30 | 975 | 56.33 |
3 | 1-Hexadecanol | C16H34O | 242 | 18.34 | 844 | 4.36 |
4 | 1-Eicosene | C20H40 | 280 | 21.22 | 814 | 4.86 |
5 | Heptacos-1-ene | C27H54 | 378 | 23.84 | 822 | 2.62 |
6 | 17-Pentatriacontene | C35H70 | 490 | 26.26 | 671 | 1.91 |
7 | 1,2-Benzenedicarboxylic acid | C24H38O4 | 390 | 30.69 | 916 | 14.77 |
8 | Hexaphenylcyclotrisiloxane | C36H30O3Si3 | 594 | 41.21 | 706 | 2.10 |
Methanolic extract (100%) | ||||||
1 | -2-Furancarboxaldehyde | C5H4O2 | 96 | 4.81 | 940 | 12.52 |
2 | 2-Furancarboxaldehyde, 5-methyl- | C6H6O2 | 110 | 7.34 | 918 | 3.10 |
3 | Methyl 2-furoate | C6H6O3 | 126 | 10.04 | 900 | 5.50 |
4 | Hepta-2,4-dienoic acid, methyl ester | C8H12O2 | 140 | 11.54 | 676 | 1.85 |
5 | 5-Hydroxymethylfurfural | C6H6O3 | 126 | 14.18 | 932 | 59.44 |
6 | Oleic acid | C18H34O2 | 282 | 25.17 | 845 | 3.19 |
7 | Methyl 5,13-docosadienoate | C23H42O2 | 350 | 29.31 | 755 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, H.; Abdrabo, M.A.A.; Hassan, S.W.M.; Ibrahim, H.A.H.; Awad, M.F.; Abdul-Raouf, U.M.; Song, Y. In Vitro Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Potential Coupled with Molecular Docking Simulation of the Dynamic Fermentation Characteristics of Marine-Derived Bacterium Halomonas saccharevitans. Fermentation 2024, 10, 433. https://doi.org/10.3390/fermentation10080433
Mohamed H, Abdrabo MAA, Hassan SWM, Ibrahim HAH, Awad MF, Abdul-Raouf UM, Song Y. In Vitro Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Potential Coupled with Molecular Docking Simulation of the Dynamic Fermentation Characteristics of Marine-Derived Bacterium Halomonas saccharevitans. Fermentation. 2024; 10(8):433. https://doi.org/10.3390/fermentation10080433
Chicago/Turabian StyleMohamed, Hassan, Mohamed A. A. Abdrabo, Sahar W. M. Hassan, Hassan A. H. Ibrahim, Mohmed F. Awad, Usama M. Abdul-Raouf, and Yuanda Song. 2024. "In Vitro Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Potential Coupled with Molecular Docking Simulation of the Dynamic Fermentation Characteristics of Marine-Derived Bacterium Halomonas saccharevitans" Fermentation 10, no. 8: 433. https://doi.org/10.3390/fermentation10080433
APA StyleMohamed, H., Abdrabo, M. A. A., Hassan, S. W. M., Ibrahim, H. A. H., Awad, M. F., Abdul-Raouf, U. M., & Song, Y. (2024). In Vitro Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Potential Coupled with Molecular Docking Simulation of the Dynamic Fermentation Characteristics of Marine-Derived Bacterium Halomonas saccharevitans. Fermentation, 10(8), 433. https://doi.org/10.3390/fermentation10080433