Ensiling of High-Moisture Plant By-Products: Fermentation Quality, Nutritional Values, and Animal Performance
Abstract
:1. Introduction
2. Dry Matter and Water-Soluble Carbohydrate Contents in Various HMPBs
3. Absorbents’ Effects on HMPBs Silage Fermentation and Nutrient Utilization by Ruminants
4. HMPBs as Silage Additives
5. Silage Additives on the Fermentation Characteristics and Aerobic Stability of HMBP Silage
5.1. Chemical Additives
By-Products | Chemical/Feed | Response | Reference | |
---|---|---|---|---|
Fermentation | Aerobic Stability | |||
Sugar beet pulp | Kem | Increased LA, reduced AA and ethanol | ND | [52] |
Sugar beet pulp | Sodium formate/formic acid | Increased NFE | Improved | [64] |
Sugar beet pulp | Konsil | Restricted | Improved | [55] |
Sugar beet pulp | Formalin, sodium, and propionic acid | Restricted | Improved | [57] |
Sugar beet pulp | Corn steep liquor | Increased effluent production | ND | [48] |
Citrus pulp | Sorbic acid | Reduced silage DM losses, improved silage fermentation, and reduced ethanol production | ND | [21] |
Citrus pulp | Urea | Increased ammonia-N and gas production | NS | [21] |
Citrus pulp | Urea | Restricted | ND | [30] |
Tomato pomace | Alkali | Increased pH | ND | [60] |
Tomato pomace | Formic acid | Improved silage fermentation | ND | [19] |
Brewer’s grain | Formic acid | Increased AA and DM losses | ND | [51] |
Sugarcane bagasse | Alkali | Reduced pH | Improved | [62] |
Banana waste | Urea | Increased pH, VFA, and NH3-N | Impaired | [34] |
Grape pomace | Urea | Reduced IVOMD | ND | [59] |
5.2. Microbial Inoculants
By-Products | Microbial Type | Response | Reference | ||
---|---|---|---|---|---|
Fermentation | Nutrients | Aerobic Stability | |||
Citrus | Enzyme (ZADO®: Mixture of cellulase, xylanase, α-amylase, and protease). | Increased LA and ethanol | Improved CP + ME | ND | [8] |
Citrus | LAB + enzyme (Lalsil: Lactobacillus plantarum and Propionibacterium acidipropionici + Natuzyme Plus: mixture of cellulase, xylanase, β-qlucanase, α-amylase, pectinase, phytase, proteases, and lipase). | Increased LA and reduced pH | Improved ME + OMD | ND | [68] |
Citrus | LAB (Propionic acid-producing bacteria). | Reduced LA | ND | Poor | [66] |
Brewer’s grain | LAB (Mixture of Lactobacillus plantarum, Enterococcus faecium, and Pediococcus pentosaceus and fermentation extract from Aspergillus oryzae, Trichoderma longibrachiatum, and Bacillus subtilis. | Increased LA and AA, reduced pH, BA and NH3-N | NS | ND | [67] |
Yakon | LAB (Lactobacillus plantarum). | Reduced pH and NH3-N | Increased ruminal methane | ND | [44] |
Sugar beet pulp | LAB (Maize All: mixture of Lactobacillus plantarum, Pediococcus acidilactic, and Lactobacillus salivarius + α-amylase. Sil All: mixture of Enterococcus faecuim, Pediococcus acidilactic, and Lactobacillus salivarius + of cellulase, hemicellulose, Pentosanase, and amylase). | Improved | Reduced in vitro gas production | ND | [24] |
Sugar beet pulp | LAB (Lalsil fresh: Lactobacillus plantarum). | Reduced pH and NH3-N, increased LA | Reduced fiber IVDMD improved | ND | [31] |
Sugar cane bagasse | Enzyme (Cellulase). | Increased LA and reduced pH | Increased degradation of DM and fiber | ND | [73] |
Mulberry pomace | LAB (Mixture of Lactobacillus plantarum and Streptococcus). | Reduced pH and increased LA | Increased gas production | ND | [25] |
Potato pulp | LAB (Lalsil fresh: Lactobacillus buchneri and Bonsilage forte: Lactobacillus paracasei, Lactobacillus lactis, Pediococcus acidilactici). | Increased AA | Digestibility not affected | Improved | [71] |
Potato pulp | LAB/enzyme (Novozyme: fibrolytic enzyme containing cellulose from Trichoderma reesei). | Reduced pH and increased LA | Reduced fiber | Impaired | [72] |
Potato pulp | LAB (Silosolve: Lactobacillus plantarum, Enterococcus faecium and Lactobacillus buchneri). | Reduced pH and increased LA | Improved DM and CP degradability | ND | [77] |
Avocado pulp | LAB/enzyme (Emsilage: Lactobacillus plantarum, Enterococcus faecium and Lactobacillus buchneri. Sil-All: Lactobacillus plantarum, Pediococcus acidilactici, Pendiococcus pentosaceus, and Propionibacterium acidipropionici). | Increased LA and pH not affected | Reduced fiber and DM, improved degradability | Impaired | [23] |
Grape pomace | LAB (Lactobacillus plantarum). | Reduced pH and increased LA | - | Improved | [78] |
Grape pomace | LAB (Lactobacillus plantarum and Lactobacillus buchneri). | Reduced pH and polyphenol | Reduced fiber | Improved | [46] |
6. Effects of Dietary Addition of Silages from HMPBs on Animal Growth Performance and Products
By-Product | Inclusion Rate | Animal Response | Reference | ||
---|---|---|---|---|---|
Animal | Growth Performance | Milk/Carcass | |||
Spearmint | - | Steers | Poor | ND | [101] |
Carnation | - | Goats | Improved DMI | ND | [102] |
Sugar beet | - | Cows | Reduced DMI | ND | [79] |
Sugar beet | 20% | Sheep | Improved OMD | NS | [79] |
Potato waste | 15% | Cows | NS | Increased milk vaccenic acid and conjugated linoleic acid | [99] |
Pineapple pulp | 20% | Sheep | Performance unaffected | ND | [22] |
Pine apple pulp | - | Sheep | Improved in situ disappearance of DM and CP | Improved degradability | [90] |
Pineapple pulp | - | Sheep | Improved nutrient digestibility | Improved warm and cold carcass yield | [91] |
Pineapple pulp | 25% | Cattle | Improved DM, CP, and ADG intake | ND | [77] |
Pineapple pulp | 62% | Cows | Improved nutrient intake | Increased milk yield and composition | [89] |
Tomato pomace | Alfalfa hay | Sheep | Reduced OM and CP digestibility | ND | [88] |
Tomato pomace | 50% Berseen hay | Goats | Improved nutrient digestibility | Improved milk yield and milk fat content | [87] |
Tomato pomace + Apple pomace | 30% | Cows | Improved OM and DM digestibility | ND | [86] |
Tomato pomace | - | Cows | Nutrient digestibility unaffected | Milk production and composition unaffected | [105] |
Tomato pomace | Alfalfa hay | Sheep | Reduced OM and CP digestibility | ND | [88] |
Apple pomace | - | Sheep | Reduced DM and CP degradability | ND | [82] |
Grape pomace | - | Sheep | Reduced DMI and weight gains | Reduced carcass fat | [93] |
Citrus | - | Sheep | NS | Reduced carcass fat content | [81] |
Citrus | - | Heifers | Improved LWG and FE | ND | [8] |
Brewer’s grains | - | Heifers | Improved FE | ND | [28] |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Mirzaei-Aghsaghali, A.; Maheri-Sis, N. Nutritive value of some agro-industrial by-products for ruminants—A review. World J. Zool. 2008, 3, 40–46. [Google Scholar]
- Charmley, E. Towards improved silage quality—A review. Can. J. Anim. Sci. 2001, 81, 157–168. [Google Scholar] [CrossRef]
- Banerjee, S.; Ranganathan, V.; Patti, A.; Arora, A. Valorisation of pineaple wastes for food and therapeutic applications. Trends Food Sci. Technol. 2018, 82, 60–70. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Prentice Hall Pearson: Harlow, UK, 2011. [Google Scholar]
- Muck, R.E. Silage microbiology and its control through silage additives. R. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Ridla, M.; Uchida, S. Fermentation quality and nutritive value of barley straw and wet brewers grains silage. Asian-Austr. J. Anim. Sci. 1994, 7, 517–522. [Google Scholar] [CrossRef]
- Gado, H.M.; Salem, A.Z.M.; Odongo, N.E.; Borhami, B.E. Influence of exogenous enzymes ensiled with orange pulp on digestion and growth performance in lambs. Anim. Feed Sci. Technol. 2011, 165, 131–136. [Google Scholar] [CrossRef]
- Nishino, N.; Wada, H.; Yoshida, M.; Shiota, H. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation of Lactobacillus casein or Lactobacillus buchneri. J. Dairy Sci. 2004, 87, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, B.D.; Meeske, R. Effects of ensiling totally mixed potato hash ration with or without a heterofermentative bacterial inoculant on silage fermentation, aerobic stability, growth performance and digestibility in lambs. Anim. Feed Sci. Technol. 2010, 161, 38–48. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Silage. Chapter 19: Silage. In Analysis and Clinical Assessment of Silage; Chalcombe Publications: Marlow, UK, 2005. [Google Scholar]
- O’Doherty, J.V.; Crosby, T.F. Effects of molassed sugar beet pulp and formic acid on silage fermentation, intake and digestion, and rumen fermentation of sheep. Ir. J. Agric. Food Res. 1997, 36, 11–22. [Google Scholar]
- Hameleers, A.; Leach, K.A.; Offer, N.W.; Roberts, D.J. The effects of incorporating sugar beet pulp with forage maize at ensiling on silage fermentation and effluent output using drum silos. Grass Forage Sci. 1999, 54, 322–335. [Google Scholar] [CrossRef]
- Kaewpila, C.; Thip-uten, S.; Cherdhong, A.; Khota, W. Impact of cellulose and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage. Agriculture 2021, 11, 66. [Google Scholar] [CrossRef]
- Mutavhatsindi, T.F.; Nkosi, B.D.; Baloyi, J.J.; Langa, T. Effects of a fibrolytic enzyme and a bacterial inoculant on the fermentation, chemical composition and aerobic stability of ensiled potato hash. S. Afr. J. Anim. Sci. 2018, 48, 244–252. [Google Scholar] [CrossRef]
- Eliyahu, D.; Yosef, E.; Weinberg, Z.W.; Hen, Y.; Nikbachat, M.; Solomon, R.; Mabjeesh, S.J.; Miron, J. Composition, preservation and digestibility by sheep of wet by-products from the food industry. Anim. Feed Sci. Technol. 2015, 207, 1–9. [Google Scholar] [CrossRef]
- Nkosi, B.D.; Meeske, R.; Muya, M.C.; Langa, T.; Thomas, R.S.; Malebana, I.M.M.; Motiang, M.D.; van Niekerk, J.A. Microbial additives affect silage quality and ruminal dry matter degradability of avocado (Persia americana) pulp silage. S. Afr. J. Anim. Sci. 2019, 49, 997–1007. [Google Scholar] [CrossRef]
- Denek, N.; Can, A. Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small Rumin. Res. 2006, 65, 260–265. [Google Scholar] [CrossRef]
- Álvarez, S.; Martínez-Fernández, A.; Méndez, P. Ensiling potential of fresh tomato waste with dehydrated beet pulp and cereal straw as additives. Anim. Nutr. Feed Technol. 2020, 20, 381–392. [Google Scholar] [CrossRef]
- Gallo, J.; Fernye, C.; Orosz, S.; Katona, K.; Szemethy, L. Tomato pomace silage as a potential new supplementary food for game species. Agric. Food Sci. 2017, 26, 80–90. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Pahlow, G.; Dinter, B.; Ashbell, G. The effect of treatment with urea, sorbic acid, or dehydration on orange peel silage. Anim. Feed Sci. Technol. 1988, 20, 335–342. [Google Scholar] [CrossRef]
- Riestra, S.P.; Carias, A.A.R.; Chin, E.M.V.; Randel, P.F. Pineapple and citrus silage as potential feed for small ruminant diets: Fermentation characteristics, intake, nutrient digestibility, and aerobic stability. Rev. Colomb. Cienc. Pecu. 2014, 27, 37–46. [Google Scholar] [CrossRef]
- Guler, T.; Cerci, I.H.; Ciftci, M.; Ertas, O.N. Can apples be used as a source of fermentable carbohydrate when making alfalfa silage? Rev. Med. Vet. 2006, 157, 163–167. [Google Scholar]
- Hu, X.; Hao, W.; Wang, H.; Ning, T.; Zheng, M.; Xu, C. Fermentation characteristics and lactic acid bacteria succession of total mixed ration silages formulated with peach pomace. Asian-Austr. J. Anim. Sci. 2015, 28, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Meng, Q.X.; Ren, L.P.; Shi, F.H.; Wei, Z.; Zhou, Z.M. Evaluation of chemical composition, in situ degradability and in vitro gas production of ensiled and sun-dried mulberry pomace. J. Anim. Feed Sci. 2012, 21, 188–197. [Google Scholar] [CrossRef]
- Alvarez, S.; Mendez, P.; Martinez-Fernandez, A. Fermentative and nutritive quality of banana by-product silage for goats. J. Appl. Anim. Res. 2014, 43, 396–401. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Bai, S.; Yan, L.; You, M.; Gou, W.; Li, P.; Gao, F. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community of alfalfa. Biores. Technol. 2020, 314, 123773. [Google Scholar] [CrossRef]
- Anderson, J.L.; Kalscheur, K.F.; Garcia, A.D.; Schingoethe, D.J.; Hippen, A.R. Ensiling characteristics of wet distillers’ grains mixed with soybean hulls and evaluation of the feeding value for growing Holstein heifers. J. Anim. Sci. 2009, 87, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Leterme, O.; Thewis, A.; Culot, M. Supplementation of pressed sugar beet pulp silage with molasses and urea, laying hen excreta or soybean mean in ruminant nutrition. Anim. Feed Sci. Technol. 1992, 39, 209–225. [Google Scholar] [CrossRef]
- Lashkari, S.; Taghizadeh, A.; Seifdavati, J.; Salem, A.Z.M. Qualitative characteristics, microbial populations and nutritive values of orange pulp ensiled with nitrogen supplementation. Slovak J. Anim. Sci. 2014, 47, 90–99. [Google Scholar]
- Sun, Q.; Wang, H. The effect of additives on mixed silage quality of sugar beet and corn stalks. In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; Michalk, D.L., Millar, G.D., Warwick, W.B., Bradfoot, K.M., Eds.; pp. 749–750. [Google Scholar]
- De Souza, L.C.; Zambom, M.A.; Alcalde, C.R.; Fernandes, T.; Castagnara, D.D.; Radis, A.C.; de Almeida Santos, S.M.; Possamai, A.P.; Pasqualotto, M. Feed intake, nutrient digestibility, milk production and composition in dairy cows fed silage of wet brewers grain. Semin. Cienc. Agra. Londrina 2016, 37, 1069–1080. [Google Scholar] [CrossRef]
- Kordi, M.; Naserain, A.A. Influence of wheat bran as a silage additive on chemical composition, in situ degradability and in vitro gas production of citrus pulp silage. Afr. J. Biotechnol. 2012, 11, 12669–12674. [Google Scholar]
- Elahi, M.Y.; Yusuf, A.O.; Torshabi, A.; Fazaeli, H.; Dehghani, M.R.; Salem, A.Z.M. Ensiling pretreatment of banana waste by-products: Influences on chemical composition and environmental rumen biogas and fermentation. Waste Biom. Valor. 2019, 10, 3363–3371. [Google Scholar] [CrossRef]
- Schneider, R.M.; Harrison, J.H.; Loney, K.A. The effects of bacterial inoculants, beet pulp and propionic acid on ensiled wet brewers grains. J. Dairy Sci. 1995, 78, 1096–1105. [Google Scholar] [CrossRef]
- Grizotto, R.G.; Siqueira, G.R.; Campos, A.F.; Modesto, R.T.; de Resende, F.D. Fermentative parameters and aerobic stability of orange peel silage with pelleted citrus pulp. R. Bras. Zootec. 2020, 49, e20190265. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azriel, A. The effect of applying lactic acid bacteria on the aerobic stability of silages. J. Appl. Bacteriol. 1993, 75, 512–518. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Albuquerque, P.M.; Streit, F.; Esposito, E.; Ninow, J.L. Apple pomace: A versatile substrate for biotechnological applications. Crit. Rev. Biotechnol. 2008, 28, 1–12. [Google Scholar]
- Haigh, P.M.; Parker, J.W.G. Effect of silage additives and wilting on silage fermentation, digestibility and intake, and on live weight change of young cattle. Grass Forage Sci. 1985, 40, 429–436. [Google Scholar] [CrossRef]
- Besharati, M.; Karimi, M.; Taghizadeh, A.; Nemati, Z.; Kaygisz, A. Improve quality of alfalfa silage ensiled with orange pulp and bacterial additive. KSU J. Agric. Nat. 2020, 23, 1669–1677. [Google Scholar] [CrossRef]
- Ferris, C.P.; Mayne, C.S. The effects of incorporating sugar beet pulp with herbage and ensiling on silage fermentation, effluent output and in-silo losses. Grass Forage Sci. 1994, 49, 216–228. [Google Scholar] [CrossRef]
- Moore, C.A.; Kennedy, S.J. The effect of sugar beet pulp-based silage additives on effluent production, fermentation, in silo-losses, silage intake and animal performance. Grass Forage Sci. 1994, 49, 54–64. [Google Scholar]
- Cummins, B.; O’Kiely, P.; Keane, M.G.; Kenny, D.A. Conservation characteristics of grass and dry sugar beet pulp co-ensiled after different degrees of mixing. Ir. J. Agric. Food Res. 2007, 46, 181–193. [Google Scholar]
- Wang, L.; Guan, L.; Fang, J.; Cai, Y.; Cao, Y. Fermentation characteristics and in vitro ruminal digestion of yacon residue silage with lactic acid bacteria inoculant or beet pulp. R. Bras. Zootec. 2019, 48, e20180152. [Google Scholar] [CrossRef]
- Ke, W.C.; Yang, F.Y.; Undersander, D.J.; Guo, X.S. Fermentation characteristics, aerobic stability, proteolysis and lipid composition of alfalfa silage ensiled with apple or grape pomace. Anim. Feed Sci. Technol. 2015, 202, 12–19. [Google Scholar] [CrossRef]
- Li, P.; Shen, Y.; You, M.; Zhang, Y.; Yan, J.; Li, D.; Bai, S. Effect of grape pomace on fermentation and aerobic stability of sweet sorghum silage. Anim. Sci. J. 2017, 88, 1523–1530. [Google Scholar] [CrossRef]
- Dos Santos Belem, C.; de Souza, A.M.; de Lima, P.R.; de Carvalho, F.A.L.; Queiroz, M.A.A.; da Costa, M.M. Digestibility, fermentation and microbiological characteristics of Calotropis precera silage with different quantities of grape pomace. Cencia Agrotecnol. 2016, 40, 698–705. [Google Scholar] [CrossRef]
- Leupp, J.L.; Encinias, A.M.; Bauer, J.S.; Caton, T.C.; Gilbery, T.C.; Carlson, J.; Lardy, G.P. Ensiling properties of wet sugar beet pulp and the addition of liquid feedstuffs or urea. J. Sugar Beet Res. 2006, 43, 85–97. [Google Scholar] [CrossRef]
- Vieira, D.A.; Cezário, A.S.; Valente, T.N.P.; Ribeiro, J.C.; Santos, W.B.R.; Ferreira, P.R.N. Evaluation of the addition of urea or calcium oxide (CaO) on the recovery of dry matter of the by-product of sweet corn silage. J. Agric. Sci. 2017, 9, 141–148. [Google Scholar] [CrossRef]
- Kung, L.; Stokes, M.; Lin, C.J. Silage Additives. In Silage Science and Technology; Buxton, R., Muckand, R., Harrison, J., Eds.; Soil Science Society of America, Inc. Publishers: Madison, WI, USA, 2003; pp. 305–360. [Google Scholar]
- Allen, W.R.; Stevenson, K.R.; Buchanan-Smith, J. Influence of additives on short-term preservation of wet brewers grain stored in uncovered piles. Can. J. Anim. Sci. 1975, 55, 609–618. [Google Scholar] [CrossRef]
- Dolezal, P.; Pyrochta, V.; Dolezal, J. Effects of chemical preservative and pressing of ensiled sugar beet pulp on the quality of fermentation process. Czech. J. Anim. Sci. 2005, 50, 553–560. [Google Scholar] [CrossRef]
- Cervera, C.; Fernandez-Carmona, J.; Marti, J. Effect of urea on the ensiling process of orange pulp. Anim. Feed Sci. Technol. 1985, 12, 233–238. [Google Scholar] [CrossRef]
- Potthast, C.; Brinker, S.; Maier, K. Assessment of the effects of chemical silage additives in pressed pulp silage. In Proceedings of the 74th IRB Congress, Dresden, Germany, July 2014; pp. 116–121. [Google Scholar]
- Auerbach, H.; Weber, G.; Nadeau, E.; Weber, U.; Weiss, K.; Potthast, C. Effects of delayed filling and additive use on the quality of pressed sugar beet pulp. In Proceedings of the 17th International Conference on Forage Conservation, Horny Smokovec, Slovak Republic, 27–29 September 2016; pp. 131–132. [Google Scholar]
- Schneider, M.; Auerbach, H.; Eklund, M.; Rossi, G.; Spiekers, H. Effects of dry matter, silage additive and bagging technology on fungal counts and aerobic stability of pressed sugar beet pulp silage. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26 July 2018; Gerlach, K., Sudekum, K.-H., Eds.; pp. 136–137. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20193167999 (accessed on 1 August 2024).
- Courtin, M.G.; Spoelstra, S.F. Counteracting structure loss in pressed sugar beet pulp silage. Anim. Feed Sci. Technol. 1989, 24, 97–109. [Google Scholar] [CrossRef]
- Nikolic, J.A.; Jovanovic, M. Some properties of apple pomace ensiled with and without additives. Anim. Feed Sci. Technol. 1986, 15, 57–67. [Google Scholar] [CrossRef]
- Massaro, F.L., Jr.; Bumbieris, V.H., Jr.; Zanini, E.; da Silva, L.; Galbeiro, S.; Peraira, E.S.; Neumann, M.; Mizubuti, I.Y. Effect of storage time and use of additives on the quality of grape pomace silages. J. Food Preserv. 2020, 44, e14373. [Google Scholar] [CrossRef]
- Hampden, K.A.; Wilson, L.L.; Long, T.A.; Palmer, W.L. Ensiling of tomato pulper waste for a ruminant feed. Compost. Sci. 1977, 18, 22–24. [Google Scholar]
- So, S.; Cherdthong, A.; Wanapat, M. Improving sugarcane bagasse quality as ruminant feed with Lactobacillus, cellulose and molasses. J. Anim. Sci. Technol. 2020, 62, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.; Boza, J.; Aguilera, J.F. Nutritive value for ruminants of sugarcane bagasse ensiled after spray treatment with different levels of NaOH. Anim. Feed Sci. Technol. 1983, 9, 1–17. [Google Scholar] [CrossRef]
- Wys, U. Ensiling apple and apple pomace. Agrarforschung 2003, 10, 104–109. [Google Scholar]
- Kilic, U.; Saricicek, B.Z. The effects of different silage additives on in vitro gas production, digestibility and energy values of sugar beet pulp silage. Asian J. Anim. Vet. Adv. 2010, 5, 566–574. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Goncalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability and performance of dairy cows. J. Dairy Sci. 2016, 100, 4587–4603. [Google Scholar] [CrossRef]
- Alio, V.B.; Oleas, T.B.; Dawson, T.E.; Ullrey, D.E.; Cook, R.M. Effect of sorghum grain and propionic acid bacteria on fermentation pattern, dry matter loss, and aerobic stability of orange pulp silage. J. Agric. Food Chem. 1994, 42, 762–765. [Google Scholar] [CrossRef]
- Marston, S.P.; Spangler, D.A.; Whitehouse, N.L.; Erickson, P.S. Case study: Addition of a silage preservative reduces the spoilage in wet brewers grain. Prof. Anim. Sci. 2009, 25, 388–392. [Google Scholar] [CrossRef]
- Paya, H.; Taghizadeh, A.; Lashkari, S. Effects of Lactobacillus plantarum and hydrolytic enzymes on fermentation and ruminal degradability of orange pulp silage. J. Biosci. Biotechnol. 2015, 4, 349–357. [Google Scholar]
- Oda, Y.; Saito, K.; Yamauchi, H.; Mori, M. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr. Microbiol. 2002, 45, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Oshita, T.; Mitani, T.; Miyaji, M.; Aoki, Y.; Akiyama, F. Chemical composition, characteristics of silage fermentation and nutritive value of potato pulp silages with or without lactic acid bacterial inoculants. Jpn. J. Grassl. Sci. 2007, 53, 201–207. [Google Scholar]
- Nkosi, B.D.; Meeske, R.; Van der Merwe, H.J.; Groenewald, I.B. Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Anim. Feed Sci. Technol. 2010, 57, 195–200. [Google Scholar] [CrossRef]
- Nkosi, B.D.; Meeske, R.; Langa, T.; Motiang, M.D.; Mutavhatsindi, T.F.; Thomas, R.S.; Groenewald, I.B.; Baloyi, J.J. The influence of ensiling potato hash waste with enzyme/bacterial inoculant mixtures on the fermentation characteristics, aerobic stability and nutrient digestion of the resultant silage by rams. Small Rumin. Res. 2015, 127, 28–35. [Google Scholar] [CrossRef]
- Xu, D.; Ding, Z.; Bai, J.; Ke, W.; Zhang, Y.; Li, F.; Guo, X. Evaluation of the effect of feruloyl esterase-producing Lactobacillus plantarum and cellulose pretreatments on lignocellulosic degradation and cellulose conversion of co-ensiled corn stalk and potato pulp. Biores. Technol. 2020, 310, 123476. [Google Scholar] [CrossRef]
- Gado, H.M.; Metwally, H.M.; El Basiony, A.Z.; Soliman, H.S.; Etab, R.I.; El Galili, A.B.D. Effect of biological treatments of sugarcane bagasse on digestibility and performance of Baladi goats. Egypt. J. Nutr. Feeds 2007, 10, 535–551. [Google Scholar]
- Kholif, A.E.; Elghandour, M.M.Y.; Rodriguez, G.B.; Olafadehan, O.A.; Salem, A.Z.M. Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod. 2017, 142, 2649–2655. [Google Scholar] [CrossRef]
- So, S.; Wanapat, M.; Cherdthong, A. Effect of sugarcane bagasse as industrial by-product treated with Lactobacillus casei TH14, cellulose and molasses on feed utilization, ruminal ecology and milk production of mid-lactating Holstein Friesian cows. J. Sci. Food Agric. 2021, 101, 4481–4489. [Google Scholar] [CrossRef]
- Okine, A.; Hanada, M.; Aibibula, Y.; Okamoto, M. Ensiling potato pulp with or without bacterial inoculants and its effect on fermentation quality, nutrient composition and nutritive value. Anim. Feed Sci. Technol. 2005, 121, 329–343. [Google Scholar] [CrossRef]
- Kyawt, Y.Y.; Win, K.S.; Mu, K.S.; Aung, M. Feeding pineapple waste silage as roughage source improved the nutrient intake, energy status and growth performances of growing Myanmar local cattle. J. Adv. Vet. Anim. Res. 2020, 7, 436–441. [Google Scholar] [CrossRef]
- Karalazos, A.; Giouzeljannis, A. A note on the use of sugar-beet pulp silage and molasses in the diet of lactating dairy cows. Anim. Feed Sci. Technol. 1988, 20, 13–18. [Google Scholar] [CrossRef]
- Boguhn, J.; Kluth, H.; Bulang, M.; Engelhard, T.; Rodehutscord, M. Effects of pressed beet pulp silage inclusion in maize based rations on performance of high yielding dairy cows and parameters of rumen fermentation. Animal 2010, 4, 30–39. [Google Scholar] [CrossRef]
- O’Kiely, P.; Moloney, A.P. Conservation characteristics of ensiled whole crop fodder beet and its nutritive value for beef cattle. Ir. J. Agric. Food Res. 1999, 38, 25–39. [Google Scholar]
- Scerra, V.; Caparra, P.; Foti, F.; Lanza, M.; Priolo, A. Citrus pulp and wheat straw silage as an ingredient in lamb diets: Effects on growth and carcass and meat quality. Small Rumin. Res. 2001, 40, 51–56. [Google Scholar] [CrossRef]
- Pirmohammadi, R.; Rouzbehan, Y.; Rezayazdi, K.; Zahedifar, M. Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silage. Small Rumin. Res. 2006, 66, 150–155. [Google Scholar] [CrossRef]
- Alibes, X.; Munoz, F.; Rodriguez, J. Feeding value of apple pomace silage for sheep. Anim. Feed Sci. Technol. 1984, 11, 189–197. [Google Scholar] [CrossRef]
- Xia, G.J.; Fang, J.C. Intake, digestibility and rumen fermentation pattern in wethers fed total mixed ration silage containing dry or fresh apple pomace. J. Anim. Feed Sci. 2021, 30, 26–32. [Google Scholar] [CrossRef]
- Islam, S.; Islam, M.N.; Matsuzaki, M. Nutritive value of fermented apple pomace silage and its effect in Suffolk ewes. J. Agric. Sci. Food Technol. 2018, 4, 80–91. [Google Scholar]
- Abdollahzadeh, F.; Pirmohammadi, R.; Farhoomand, P.; Fatehi, F.; Pazhoh, P.F. The effect of ensiled mixed tomato and apple pomace on Holstein dairy cow. Ital. J. Anim. Sci. 2010, 9, 212–216. [Google Scholar]
- Fayed, A.M.A. Influence of feeding mixture of tomato and apple pomace silage to lactating goats on productive performance. Egypt. J. Sheep Goat Sci. 2016, 11, 187–198. [Google Scholar]
- Ziaei, N.; Molaei, S. Evaluation of nutrient digestibility of wet tomato pomace ensiled with wheat straw compared to alfalfa hay in Kermani sheep. J. Anim. Vet. Adv. 2010, 9, 771–773. [Google Scholar] [CrossRef]
- Gowda, N.K.S.; Vallesha, N.C.; Awachat, V.B.; Anandan, S.; Pal, D.T.; Prasad, C.S. Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Trop. Anim. Health Prod. 2015, 47, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.H.; Rodriguez, N.M.; Neiva, J.N.M.; Pimentel, P.G.; Gomes, S.P.; Campos, W.E.; Lopez, F.C.F.; Mizibuti, I.Y.; Moreira, G.R. In situ degradability of elephant grass ensiled with increasing levels of pineapple agro-industrial by-product. Semin. Cienc. Agra. Londrina 2017, 37, 2807–2818. [Google Scholar] [CrossRef]
- Elias, A.K.S.; Alves, K.S.; Oliveira, L.R.S.; Cutrim, D.O.; Mezzomo, R.; Pontes, V.P.; Melo, W.O.; Gomes, D.I. Carcass yield, cuts and body components in lambs fed a pineapple by-product silage diet. Afr. J. Agric. Res. 2017, 12, 2351–2357. [Google Scholar]
- Suksathit, S.; Wachirapakorn, C.; Opatpatanakit, Y. Effects of levels of ensiled pineapple waste and Pangola hay fed as roughage sources on feed intake, nutrient digestibility and ruminal fermentation of southern Thai native cattle. Songklanakarin J. Sci. Technol. 2011, 33, 281–289. [Google Scholar]
- Flores, D.R.M.; da Fonseca, P.A.F.; Schmitt, J.; Tonetto, C.J.; Rosado, A.G., Jr.; Hammerschmitt, R.K.; Facco, D.B.; Brunetto, G.; Nornberg, J.L. Lambs fed with increasing levels of grape pomace silage: Effects on productive performance, carcass characteristics, and blood parameters. Livest. Sci. 2020, 240, 104169. [Google Scholar] [CrossRef]
- Aibibula, Y.; Okine, A.; Hanada, M.; Murata, S.; Okamoto, M.; Goto, M. Effect of replacing rolled corn with potato pulp silage in grass silage-based diets on nitrogen utilization in steers. Asian-Aust. J. Anim. Sci. 2007, 8, 1215–1221. [Google Scholar] [CrossRef]
- Okine, A.; Yimamu, A.; Hanada, M.; Izumita, M.; Zunong, M.; Okamoto, M. Ensiling characteristics of daikon (Raphanus sativus) by-product and its potential as an animal feed resource. Anim. Feed Sci. Technol. 2007, 136, 248–264. [Google Scholar] [CrossRef]
- Wang, D.; Li, F.; Zhang, Y.D.; Bu, D.P.; Sun, P.; Zhou, L.Y. Mixed silage of potato pulp and corn straw affects rumen environment and serum biochemical parameters of beef cattle. Chin. J. Anim. Nutr. 2012, 24, 1361–1367. [Google Scholar]
- Ruirui, S.; Yu, S.X.; Bo, L.; Yun, L.; Xia, G.Y.; Guo, L.J.; Feng, C.Y.; Feng, L.O. Effects of different compound micro-organism preparations on fermentation quality, nutritional components and rumen degradation rate of mixed silage of potato pulp and soybean straw. Chin. J. Anim. Nutr. 2019, 31, 3319–3329. [Google Scholar]
- Sugimoto, M.; Saito, W.; Ooi, M. The effects of urea-treated potato pulp ensiled with beet pulp or wheat bran pellets to reduce moisture of potato pulp and flake density of corn grain supplemented with the potato pulp silage on digestibility and ruminal fermentation in beef steers. Anim. Sci. J. 2010, 81, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Zunong, M.; Tuerhong, T.; Okamoto, M.; Hongo, A.; Hanada, M. Effects of a potato pulp silage supplement on the composition of milk fatty acids when fed to grazing dairy cows. Anim. Feed Sci. Technol. 2009, 152, 81–91. [Google Scholar] [CrossRef]
- Sadri, K.; Rouzbehan, Y.; Fazaeli, H.; Rezaei, J. Influence of dietary feeding different levels of mixed potato-wheat straw silage on the diet digestibility and the performance of growing lambs. Small Rumin. Res. 2018, 159, 84–89. [Google Scholar] [CrossRef]
- Mustafa, A.F.; McKinnon, J.J.; Christensen, D.A. Effects of feeding ensiled spearmint (Mentha spicata) by-product on nutrient utilization and ruminal fermentation in steers. Anim. Feed Sci. Technol. 2001, 92, 33–43. [Google Scholar] [CrossRef]
- Ceron, J.J.; Hernandez, F.; Madrid, J.; Gutierrez, C. Chemical composition and nutritive value of fresh and ensiled carnation (Dianthus caryophyllus) by-product. Small Rumin. Res. 1996, 20, 109–112. [Google Scholar] [CrossRef]
- Arun, P.N.; Chittaragi, B.; Prabhu, T.M.; Siddalingamurthy, H.K.; Suma, N.; Gouri, M.D.; Suresh, B.N.; Umashankar, B.C.; Chethan, K.P. Effect of replacing finger millet straw with jackfruit residue silage on growth performance and nutrient utilization in Mandya sheep. Anim. Nutr. Feed Technol. 2020, 20, 103–109. [Google Scholar] [CrossRef]
- Weiss, W.P.; Frobose, D.L.; Koch, M.E. Wet tomato pomace ensiled with corn plants for dairy cows. J. Dairy Sci. 1997, 80, 2896–2900. [Google Scholar] [CrossRef]
By-Products | Scientific Name | CP | DM | WSC | References |
---|---|---|---|---|---|
Molasses sugar beet pulp | Beta vulgaris | 108–114 | 100–270 | 248–252 | [12,13] |
Cassava pulp | Manihot esculenta | 196 | 188 | - | [14] |
Potato pulp | Solanum tuberosum | 85 | 188 | 33.5 | [15] |
Avocado pulp | Persea americana | 78–147 | 119–186 | 15.3–62 | [16,17] |
Tomato pomace | Solanum lycopersicum | 195–198 | 61–269 | 509 | [18,19,20] |
Citrus pulp | Citrus X sinensis | 69–92 | 170 | 246–412 | [1,21] |
Grape pulp | Vitis | 122 | 421 | 19 | [16] |
Pineapple wastes | Ananas comosus | 60 | 129 | 40 | [22] |
Apple pomace | Malus domestica | 22 | 180 | 125 | [23] |
Peach pomace | Prunus persica | 74 | 59 | 259 | [24] |
Pomegranate pulp | Punica granatum | 79 | 200 | 175 | [16] |
Mulberry pomace | Morus | 198 | 270 | 156 | [25] |
Ripe banana wastes | Musa | 60 | 213 | 505 | [26] |
Sea buckthorn pomace | Hippophae | 74 | 518 | 411 | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkosi, B.D.; Malebana, I.M.M.; Rios, S.Á.; Nkukwana, T.T.; Meeske, R. Ensiling of High-Moisture Plant By-Products: Fermentation Quality, Nutritional Values, and Animal Performance. Fermentation 2024, 10, 426. https://doi.org/10.3390/fermentation10080426
Nkosi BD, Malebana IMM, Rios SÁ, Nkukwana TT, Meeske R. Ensiling of High-Moisture Plant By-Products: Fermentation Quality, Nutritional Values, and Animal Performance. Fermentation. 2024; 10(8):426. https://doi.org/10.3390/fermentation10080426
Chicago/Turabian StyleNkosi, Bhutikini D., Ingrid M. M. Malebana, Sergio Á. Rios, Thobela T. Nkukwana, and Robin Meeske. 2024. "Ensiling of High-Moisture Plant By-Products: Fermentation Quality, Nutritional Values, and Animal Performance" Fermentation 10, no. 8: 426. https://doi.org/10.3390/fermentation10080426
APA StyleNkosi, B. D., Malebana, I. M. M., Rios, S. Á., Nkukwana, T. T., & Meeske, R. (2024). Ensiling of High-Moisture Plant By-Products: Fermentation Quality, Nutritional Values, and Animal Performance. Fermentation, 10(8), 426. https://doi.org/10.3390/fermentation10080426