A Review of the Production of Hyaluronic Acid in the Context of Its Integration into GBAER-Type Biorefineries
Abstract
:- Introduction
- Biorefineries that process organic wastes
- 2.1.
- General context
- 2.2.
- Biorefineries of GBAER type and the potential for integration of the microbial hyaluronic acid production
- Microbial production of hyaluronic acid
- 3.1.
- Hyaluronic acid and its significance/importance
- 3.2.
- Native hyaluronic acid-producing bacteria
- 3.3.
- Recombinant bacteria that produce hyaluronic acid
- 3.4.
- Microbial production of hyaluronic acid using organic waste
- Scale-up of hyaluronic acid production
- 4.1.
- Antecedents so far
- 4.2.
- Concluding remarks
- Economic aspects of hyaluronic acid production
- 5.1.
- Hyaluronic market and price
- 5.2.
- Cost and economic feasibility of microbial hyaluronic production of hyaluronic acid
- 5.3.
- Concluding remarks
- Environmental sustainability studies of HA production
- Conclusion and perspective
1. Introduction
2. Biorefineries That Process Organic Waste
2.1. General Context
2.2. Biorefineries of the GBAER Type and the Potential for the Integration of Microbial Hyaluronic Acid Production
3. Microbial Production of Hyaluronic Acid
3.1. Hyaluronic Acid and Its Significance/Importance
3.2. Native Hyaluronic Acid-Producing Bacteria
3.3. Recombinant Bacteria That Produce Hyaluronic Acid
3.4. Microbial Production of Hyaluronic Acid Using Organic Waste
4. Scale-Up of Hyaluronic Acid Production
4.1. Antecedents So Far
4.2. Concluding Remarks
5. Economic Aspects of Hyaluronic Acid Production
5.1. Hyaluronic Acid Market and Price
5.2. Costs and Economic Feasibility of Microbial Production of Hyaluronic Acid
5.3. Concluding Remarks
6. Environmental Sustainability Studies of Hyaluronic Acid Production
7. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation
BG+ | Gram-positive bacteria |
BG− | Gram-negative bacteria |
BNBPs | Bionanobioparticles |
BPs | Bioparticles |
BRFs | Biorefineries |
CO2e | Carbon dioxide-equivalent |
E | Extraction stage in a biorefinery (producing a concentrate of low-molecular-weight organic acids and solvents) |
GBAER | Environmental Biotechnology and Renewable Energies Group |
GRAS | Generally recognized as safe |
GT | Genetic transformation |
GHG | Greenhouse gas |
H | Biohydrogen-producing stage in a biorefinery |
HA | Hyaluronic acid |
M | Methane-producing stage in a biorefinery |
MRI | Magnetic resonance imaging |
LCA | Life cycle assessment |
MW | Molecular weight |
MSW | Municipal solid waste |
MPHA | Microbial production of hyaluronic acid |
NN | Bionanobioparticle-producing stage in a biorefinery |
OFMSW | Organic fraction of municipal solid waste |
S | Saccharified liquor-producing stage in a biorefinery |
VAPs | Value-added products |
Z | Enzyme-producing stage in a biorefinery |
References
- Vilochani, S.; McAloone, T.C.; Pigosso, D.C.A. Consolidation of Management Practices for Sustainable Product Development: A Systematic Literature Review. Sustain. Prod. Consum. 2024, 45, 115–125. [Google Scholar] [CrossRef]
- Gawel, E.; Pannicke, N.; Hagemann, N. A Path Transition towards a Bioeconomy-The Crucial Role of Sustainability. Sustainability 2019, 11, 3005. [Google Scholar] [CrossRef]
- Wagh, M.S.; Sowjanya, S.; Chandra, P.; Chakraborty, A.; Amrit, R.; Mishra, B.; Kumar, A.; Kishore, Y. Valorisation of Agro-Industrial Wastes: Circular Bioeconomy and Biorefinery Process–A Sustainable Symphony. Process Saf. Environ. Prot. 2024, 183, 708–725. [Google Scholar] [CrossRef]
- Energy Institute. Oil Reserves, 1980 to 2020. Available online: https://ourworldindata.org/grapher/oil-proved-reserves?tab=chart (accessed on 8 January 2024).
- IPCC. Summary for Policymakers: Climate Change 2022–Impacts, Adaptation and Vulnerability_Working Group II Contribution to the Sixth Assessment Report of the Intergovernamental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, X.; Tan, Z.; Liu, C.; Hu, H.; Yuan, H.; Peng, S.; Cai, X. Assessment of the Global Energy Transition: Based on Trade Embodied Energy Analysis. Energy 2023, 273, 127274. [Google Scholar] [CrossRef]
- Grande-Acosta, G.; Islas-Samperio, J. Towards a Low-Carbon Electric Power System in Mexico. Energy Sustain. Dev. 2017, 37, 99–109. [Google Scholar] [CrossRef]
- Pérez, G.; Islas-Samperio, J.M. Sustainability Evaluation of Non-Toxic Jatropha Curcas in Rural Marginal Soil for Obtaining Biodiesel Using Life-Cycle Assessment. Energies 2021, 14, 2746. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, L.; Khoo, K.S.; Gupta, V.K.; Sharma, M.; Show, P.L.; Yap, P.S. Exploitation of Lignocellulosic-Based Biomass Biorefinery: A Critical Review of Renewable Bioresource, Sustainability and Economic Views. Biotechnol. Adv. 2023, 69, 108265. [Google Scholar] [CrossRef]
- Culaba, A.B.; Mayol, A.P.; San Juan, J.L.G.; Ubando, A.T.; Bandala, A.A.; Concepcion, R.S.; Alipio, M.; Chen, W.H.; Show, P.L.; Chang, J.S. Design of Biorefineries towards Carbon Neutrality: A Critical Review. Bioresour. Technol. 2023, 369, 128256. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.H. Biorefineries in Circular Bioeconomy: A Comprehensive Review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Palandri, C.; Giner, C.; Debnath, D. Biofuels’ Contribution to Date to Greenhouse Gas Emission Savings. In Biofuels, Bioenergy and Food Security; Academic Press: New York, NY, USA, 2019; pp. 145–162. [Google Scholar] [CrossRef]
- Busch, P.; Kendall, A.; Lipman, T. A Systematic Review of Life Cycle Greenhouse Gas Intensity Values for Hydrogen Production Pathways. Renew. Sustain. Energy Rev. 2023, 184, 113588. [Google Scholar] [CrossRef]
- Burg, V.; Bowman, G.; Haubensak, M.; Baier, U.; Thees, O. Valorization of an Untapped Resource: Energy and Greenhouse Gas Emissions Benefits of Converting Manure to Biogas through Anaerobic Digestion. Resour. Conserv. Recycl. 2018, 136, 53–62. [Google Scholar] [CrossRef]
- Narayanan, M. Promising Biorefinery Products from Marine Macro and Microalgal Biomass: A Review. Renew. Sustain. Energy Rev. 2024, 190, 114081. [Google Scholar] [CrossRef]
- Dharmaraja, J.; Shobana, S.; Arvindnarayan, S.; Francis, R.R.; Jeyakumar, R.B.; Saratale, R.G.; Ashokkumar, V.; Bhatia, S.K.; Kumar, V.; Kumar, G. Lignocellulosic Biomass Conversion via Greener Pretreatment Methods towards Biorefinery Applications. Bioresour. Technol. 2023, 369, 128328. [Google Scholar] [CrossRef]
- Zhao, Y.; Shakeel, U.; Saif, M.; Rehman, U.; Li, H.; Xu, X.; Xu, J. Lignin-Carbohydrate Complexes (LCCs ) and Its Role in Biore Fi Nery. J. Clean. Prod. 2020, 253, 120076. [Google Scholar] [CrossRef]
- Sotelo-Navarro, P.X.; Poggi-Varaldo, H.M.; Chargoy-Amador, J.P.; Sojo-Benitez, A.; Pérez-Angón, M.A.; Sánchez-Pérez, R. Impactos Ambientales de Una Biorrefinería Tipo HMEZS-NN. Rev. Int. Contam. Ambient. 2022, 38, 48–57. [Google Scholar]
- Sierra-Gachuz, H.; Sotelo-Navarro, P.X.; Poggi-Varaldo, H.M.; Escamilla-Alvarado, C.; Sojo-Benitez, A.; Barrera-Cortés, J.; Gonzáles-Cardoso, G. Capítulo 1.1. Evaluación de La Sostenibilidad Ambiental de Las Biorrefinerías de La Familia H-M-Z-S. In Ambiente y Bioenergía. Perspectivas y Avances de La Sostenibilidad; Sotelo-Navarro, P.X., Tecorralco-Bobadilla, A.L., Escamilla-Alvarado, C., Hernández-Flores, G., Nava-Bravo, I., López-Díaz, J.A., Poggi-Varaldo, H.M., Eds.; ABIAER: Ciudad de México, Mexico, 2022. [Google Scholar]
- Duan, Y.; Tarafdar, A.; Kumar, V.; Ganeshan, P.; Rajendran, K.; Shekhar Giri, B.; Gómez-García, R.; Li, H.; Zhang, Z.; Sindhu, R.; et al. Sustainable Biorefinery Approaches towards Circular Economy for Conversion of Biowaste to Value Added Materials and Future Perspectives. Fuel 2022, 325, 124846. [Google Scholar] [CrossRef]
- Ladakis, D.; Stylianou, E.; Ioannidou, S.-M.; Koutinas, A.; Pateraki, C. Biorefinery Development, Techno-Economic Evaluation and Environmental Impact Analysis for the Conversion of the Organic Fraction of Municipal Solid Waste into Succinic Acid and Value-Added Fractions. Bioresour. Technol. 2022, 354, 127172. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental Life Cycle Assessment of Different Biorefinery Platforms Valorizing Municipal Solid Waste to Bioenergy, Microbial Protein, Lactic and Succinic Acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [Google Scholar] [CrossRef]
- Shah, A.V.; Singh, A.; Sabyasachi Mohanty, S.; Kumar Srivastava, V.; Varjani, S. Organic Solid Waste: Biorefinery Approach as a Sustainable Strategy in Circular Bioeconomy. Bioresour. Technol. 2022, 349, 126835. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M.; Munoz-Paez, K.M.; Escamilla-Alvarado, C.; Robledo-Narváez, P.N.; Ponce-Noyola, M.T.; Calva-Calva, G.; Ríos-Leal, E.; Galíndez-Mayer, J.; Estrada-Vázquez, C.; Ortega-Clemente, A.; et al. Biohydrogen, Biomethane and Bioelectricity as Crucial Components of Biorefinery of Organic Wastes: A Review. Waste Manag. Res. 2014, 32, 353–365. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Poggi-Varaldo, H.M.; Ponce-Noyola, M.T. Bioenergy and Bioproducts from Municipal Organic Waste as Alternative to Landfilling: A Comparative Life Cycle Assessment with Prospective Application to Mexico. Environ. Sci. Pollut. Res. 2017, 24, 25602–25617. [Google Scholar] [CrossRef]
- Li, R. Techno-Economic and Environmental Characterization of Municipal Food Waste-to-Energy Biorefineries: Integrating Pathway with Compositional Dynamics. Renew. Energy 2024, 223, 120038. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Maroneze, M.M.; Deprá, M.C.; Sartori, R.B.; Dias, R.R.; Zepka, L.Q. Bioactive Food Compounds from Microalgae: An Innovative Framework on Industrial Biorefineries. Curr. Opin. Food Sci. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Grand View Research. Hyaluronic Acid Market Size, Share & Trends Analysis Report By Application (Dermal Fillers, Osteoarthritis, Ophthalmic, Vesicoureteral Reflux), By Region (MEA, EU, North America, APAC), And Segment Forecasts, 2023–2030 Fuente. Available online: https://www.grandviewresearch.com/industry-analysis/hyaluronic-acid-market%0A (accessed on 25 July 2023).
- Ucm, R.; Aem, M.; Lhb, Z.; Kumar, V.; Taherzadeh, M.J.; Garlapati, V.K.; Chandel, A.K. Comprehensive Review on Biotechnological Production of Hyaluronic Acid: Status, Innovation, Market and Applications. Bioengineered 2022, 13, 9645–9661. [Google Scholar] [CrossRef]
- de Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic Basis for Hyper Production of Hyaluronic Acid in Natural and Engineered Microorganisms. Microb. Cell Fact. 2016, 15, 119. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, Y.; Huang, Y.; Li, S.; Xu, H.; Su, E. Current Advances in the Biosynthesis of Hyaluronic Acid with Variable Molecular Weights. Carbohydr. Polym. 2021, 269, 118320. [Google Scholar] [CrossRef]
- Shikina, E.V.; Kovalevsky, R.A.; Shirkovskaya, A.I.; Toukach, P.V. Prospective Bacterial and Fungal Sources of Hyaluronic Acid: A Review. Comput. Struct. Biotechnol. J. 2022, 20, 6214–6236. [Google Scholar] [CrossRef]
- Rigo, D.; da Silva, L.M.; Fischer, B.; Colet, R.; Dallago, R.M.; Zeni, J. Hyaluronic Acid–from Production to Application: A Review. Biointerface Res. Appl. Chem. 2023, 13. [Google Scholar] [CrossRef]
- Chahuki, F.F.; Aminzadeh, S.; Jafarian, V.; Tabandeh, F.; Khodabandeh, M. Hyaluronic Acid Production Enhancement via Genetically Modification and Culture Medium Optimization in Lactobacillus Acidophilus. Int. J. Biol. Macromol. 2019, 121, 870–881. [Google Scholar] [CrossRef]
- Cheng, F.; Yu, H.; Stephanopoulos, G. Engineering Corynebacterium Glutamicum for High-Titer Biosynthesis of Hyaluronic Acid. Metab. Eng. 2019, 55, 276–289. [Google Scholar] [CrossRef]
- Jin, P.; Kang, Z.; Yuan, P.; Du, G.; Chen, J. Production of Specific-Molecular-Weight Hyaluronan by Metabolically Engineered Bacillus Subtilis 168. Metab. Eng. 2016, 35, 21–30. [Google Scholar] [CrossRef]
- Huang, W.C.; Chen, S.J.; Chen, T.L. The Role of Dissolved Oxygen and Function of Agitation in Hyaluronic Acid Fermentation. Biochem. Eng. J. 2006, 32, 239–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, J.; Xu, G.; Han, R.; Zhou, J.; Ni, Y. Efficient Production of Hyaluronic Acid by Streptococcus Zooepidemicus Using Two-Stage Semi-Continuous Fermentation. Bioresour. Technol. 2023, 377, 128896. [Google Scholar] [CrossRef]
- Yoshimura, T.; Shibata, N.; Hamano, Y.; Yamanaka, K. Heterologous Production of Hyaluronic Acid in an ε-Poly-L-Lysine Producer, Streptomyces Albulus. Appl. Environ. Microbiol. 2015, 81, 3631–3640. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, F.; Zheng, B.; Yu, H. Enhancing Single-Cell Hyaluronic Acid Biosynthesis by Microbial Morphology Engineering. Synth. Syst. Biotechnol. 2020, 5, 316–323. [Google Scholar] [CrossRef]
- Aristizábal-Marulanda, V.; Cardona Alzate, C.A. Methods for Designing and Assessing Biorefineries: Review. Biofuels, Bioprod. Biorefining 2019, 13, 789–808. [Google Scholar] [CrossRef]
- Cherubini, F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Fava, F.; Totaro, G.; Diels, L.; Reis, M.; Duarte, J.; Carioca, O.B.; Poggi-Varaldo, H.M.; Ferreira, B.S. Biowaste Biorefinery in Europe: Opportunities and Research & Development Needs. N. Biotechnol. 2015, 32, 100–108. [Google Scholar] [CrossRef]
- Sills, D.L.; Van Doren, L.G.; Beal, C.; Raynor, E. The Effect of Functional Unit and Co-Product Handling Methods on Life Cycle Assessment of an Algal Biorefinery. Algal Res. 2020, 46, 101770. [Google Scholar] [CrossRef]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Integrated Biorefinery Processes for Conversion of Lignocellulosic Biomass to Value Added Materials: Paving a Path towards Circular Economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef]
- Wu, W.; Chang, J.S. Integrated Algal Biorefineries from Process Systems Engineering Aspects: A Review. Bioresour. Technol. 2019, 291, 121939. [Google Scholar] [CrossRef]
- Javed, M.U.; Mukhtar, H.; Hayat, M.T.; Rashid, U.; Mumtaz, M.W.; Ngamcharussrivichai, C. Sustainable Processing of Algal Biomass for a Comprehensive Biorefinery. J. Biotechnol. 2022, 352, 47–58. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Hemalatha, M.; Chakraborty, D.; Chatterjee, S.; Ranadheer, P.; Kona, R. Algal Biorefinery Models with Self-Sustainable Closed Loop Approach: Trends and Prospective for Blue-Bioeconomy. Bioresour. Technol. 2020, 295, 122128. [Google Scholar] [CrossRef]
- Balina, K.; Romagnoli, F.; Blumberga, D. Seaweed Biorefinery Concept for Sustainable Use of Marine Resources. Energy Procedia 2017, 128, 504–511. [Google Scholar] [CrossRef]
- Llano, T.; Arce, C.; Gallart, L.E.; Perales, A.; Coz, A. Techno-Economic Analysis of Macroalgae Biorefineries: A Comparison between Ethanol and Butanol Facilities. Fermentation 2023, 9, 340. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kabir, M.; Mehjabin, A.; Oishi, F.T.Z.; Ahmed, S.; Mannan, S.; Mofijur, M.; Almomani, F.; Badruddin, I.A.; Kamangar, S. Waste Biorefinery to Produce Renewable Energy: Bioconversion Process and Circular Bioeconomy. Energy Rep. 2023, 10, 3073–3091. [Google Scholar] [CrossRef]
- Adetunji, A.I.; Oberholster, P.J.; Erasmus, M. From Garbage to Treasure: A Review on Biorefinery of Organic Solid Wastes into Valuable Biobased Products. Bioresour. Technol. Rep. 2023, 24, 101610. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Y.; Tian, J.; Zhao, J.; Ye, N.; Zhang, Y.; Chen, L. Review of Waste Biorefinery Development towards a Circular Economy: From the Perspective of a Life Cycle Assessment. Renew. Sustain. Energy Rev. 2021, 139, 110716. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Singh, A.K.; Sonkar, S.; Shadangi, K.P.; Srivastava, R.K.; Gupta, V.K.; Parikh, J.; Sahoo, U.K.; Govarthanan, M. Biorefinery Solutions for Food Processing Wastes: A Sustainable Bioeconomic Perspective. Ind. Crops Prod. 2023, 205, 117488. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Pérez-Pimienta, J.A.; Ponce-Noyola, T.; Poggi-Varaldo, H.M. An Overview of the Enzyme Potential in Bioenergy-Producing Biorefineries. J. Chem. Technol. Biotechnol. 2017, 92, 906–924. [Google Scholar] [CrossRef]
- Chakraborty, D.; Chatterjee, S.; Althuri, A.; Palani, S.G.; Venkata Mohan, S. Sustainable Enzymatic Treatment of Organic Waste in a Framework of Circular Economy. Bioresour. Technol. 2023, 370, 128487. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Nikhil, G.N.; Chiranjeevi, P.; Nagendranatha Reddy, C.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste Biorefinery Models towards Sustainable Circular Bioeconomy: Critical Review and Future Perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales. Diagnóstico Básico Para la Gestión Integral de Los Residuos; Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de México, Mexico, 2020. [Google Scholar]
- Olay-Romero, E.; Turcott-Cervantes, D.E.; Hernández-Berriel, M.d.C.; Lobo-García de Cortázar, A.; Cuartas-Hernández, M.; de la Rosa-Gómez, I. Technical Indicators to Improve Municipal Solid Waste Management in Developing Countries: A Case in Mexico. Waste Manag. 2020, 107, 201–210. [Google Scholar] [CrossRef]
- Reyna-Bensusan, N.; Wilson, D.C.; Smith, S.R. Uncontrolled Burning of Solid Waste by Households in Mexico Is a Significant Contributor to Climate Change in the Country. Environ. Res. 2018, 163, 280–288. [Google Scholar] [CrossRef]
- Sánchez-Arias, M.; Riojas-Rodríguez, H.; Catalán-Vázquez, M.; Terrazas-Meraz, M.A.; Rosas, I.; Espinosa-García, A.C.; Santos-Luna, R.; Siebe, C. Socio-Environmental Assessment of a Landfill Using a Mixed Study Design: A Case Study from México. Waste Manag. 2019, 85, 42–59. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Ponce-Noyola, M.T.; Poggi-Varaldo, H.M.; Ríos-Leal, E.; García-Mena, J.; Rinderknecht-Seijas, N. Energy Analysis of In-Series Biohydrogen and Methane Production from Organic Wastes. Int. J. Hydrogen Energy 2014, 39, 16587–16594. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Ponce-Noyola, T.; Ríos-Leal, E.; Poggi-Varaldo, H.M. A Multivariable Evaluation of Biohydrogen Production by Solid Substrate Fermentation of Organic Municipal Wastes in Semi-Continuous and Batch Operation. Int. J. Hydrog. Energy 2013, 38, 12527–12538. [Google Scholar] [CrossRef]
- Escamilla-Alvarado, C.; Poggi-Varaldo, H.M.; Ponce-Noyola, T.; Ríos-Leal, E.; Robles-Gonzalez, I.; Rinderknecht-Seijas, N. Saccharification of Fermented Residues as Integral Part in a Conceptual Hydrogen-Producing Biorefinery. Int. J. Hydrogen Energy 2015, 40, 17200–17211. [Google Scholar] [CrossRef]
- Romero-Cedillo, L.; Poggi-Varaldo, H.M.; Santoyo-Salazar, J.; Escamilla-Alvarado, C.; Matsumoto-Kuwabara, Y.; Ponce-Noyola, M.T.; Bretón-Deval, L.; García-Rocha, M. Biological Synthesis of Iron Nanoparticles Using Hydrolysates from a Waste-Based Biorefinery. Environ. Sci. Pollut. Res. 2020, 27, 28649–28669. [Google Scholar] [CrossRef]
- Garibay-Orijel, C.; Hoyo-Vadillo, C.; Ponce-Noyola, T.; García-Mena, J.; Poggi-Varaldo, H.M. Impact of Long-Term Partial Aeration on the Removal of 2,4,6-Trichlorophenol in an Initially Methanogenic Fluidized Bed Bioreactor. Biotechnol. Bioeng. 2006, 94, 949–960. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M.; Bárcenas-Torres, J.D.; Moreno-Medina, C.U.; García-Mena, J.; Garibay-Orijel, C.; Ríos-Leal, E.; Rinderknecht-Seijas, N. Influence of Discontinuing Feeding Degradable Cosubstrate on the Performance of a Fluidized Bed Bioreactor Treating a Mixture of Trichlorophenol and Phenol. J. Environ. Manag. 2012, 113, 527–537. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M. Análisis de Ciclo de Vida de Una Biorrefinería Que Procesa La Fracción Orgánica de Residuos Urbanos y Produce Bioenergías, Ácidos Orgánicos, Enzimas, y Nanobiopartículas, Limited ed. Final Report, Diploma, Available upon request; CADISAC: Ciudad de México, México, 2019. [Google Scholar]
- Bretón-Deval, L.; Rios-Leal, E.; Poggi-Varaldo, H.M.; Ponce-Noyola, T. Biodegradability of Nonionic Surfactant Used in the Remediation of Groundwaters Polluted with PCE. Water Environ. Res. 2016, 88, 2159–2168. [Google Scholar] [CrossRef]
- Breton-Deval, L.; Rossetti, S.; Ríos-Leal, E.; Matturro, B.; Poggi-Varaldo, H.M. Effect of Coupling Zero-Valent Iron Side Filters on the Performance of Bioreactors Fed with a High Concentration of Perchloroethylene. J. Environ. Eng. 2016, 142, 986–994. [Google Scholar] [CrossRef]
- Moreno-Medina, C.U.; Poggi-Varaldo, H.M.; Breton-Deval, L.; Rinderknecht-Seijas, N. Effect of Sudden Addition of PCE and Bioreactor Coupling to ZVI Filters on Performance of Fluidized Bed Bioreactors Operated in Simultaneous Electron Acceptor Modes. Environ. Sci. Pollut. Res. 2017, 24, 25534–25549. [Google Scholar] [CrossRef]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Desing and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Ferreira, R.G.; Azzoni, A.R.; Santana, M.H.A.; Petrides, D. Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation. Processes 2021, 9, 241. [Google Scholar] [CrossRef]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Chong, B.F.; Blank, L.M.; Mclaughlin, R.; Nielsen, L.K. Microbial Hyaluronic Acid Production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 24759. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/24759 (accessed on 4 June 2024).
- Chang, W.H.; Liu, P.Y.; Lin, M.H.; Lu, C.J.; Chou, H.Y.; Nian, C.Y.; Jiang, Y.T.; Hsu, Y.H.H. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021, 26, 2485. [Google Scholar] [CrossRef]
- Greenberg, D.D.; Stoker, A.; Kane, S.; Cockrell, M.; Cook, J.L. Biochemical Effects of Two Different Hyaluronic Acid Products in a Co-Culture Model of Osteoarthritis. Osteoarthr. Cartil. 2006, 14, 814–822. [Google Scholar] [CrossRef]
- Zhai, P.; Peng, X.; Li, B.; Liu, Y.; Sun, H.; Li, X. The Application of Hyaluronic Acid in Bone Regeneration. Int. J. Biol. Macromol. 2020, 151, 1224–1239. [Google Scholar] [CrossRef]
- Zhong, W.; Pang, L.; Feng, H.; Dong, H.; Wang, S.; Cong, H.; Shen, Y.; Bing, Y. Recent Advantage of Hyaluronic Acid for Anti-Cancer Application: A Review of “3S” Transition Approach. Carbohydr. Polym. 2020, 238, 116204. [Google Scholar] [CrossRef]
- Kim, S.; Moon, M.J.; Poilil Surendran, S.; Jeong, Y.Y. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 2019, 11, 306. [Google Scholar] [CrossRef]
- Wen, Q.L.; Pu, Z.F.; Yang, Y.J.; Wang, J.; Wu, B.C.; Hu, Y.L.; Liu, P.; Ling, J.; Cao, Q. Hyaluronic Acid as a Material for the Synthesis of Fluorescent Carbon Dots and Its Application for Selective Detection of Fe3+ Ion and Folic Acid. Microchem. J. 2020, 159, 105364. [Google Scholar] [CrossRef]
- Martin, A.A.; Sassaki, G.L.; Sierakowski, M.R. Effect of Adding Galactomannans on Some Physical and Chemical Properties of Hyaluronic Acid. Int. J. Biol. Macromol. 2020, 144, 527–535. [Google Scholar] [CrossRef]
- Moradi, M.; Guimarães, J.T.; Sahin, S. Current Applications of Exopolysaccharides from Lactic Acid Bacteria in the Development of Food Active Edible Packaging. Curr. Opin. Food Sci. 2021, 40, 33–39. [Google Scholar] [CrossRef]
- Billon, R.; Hersant, B.; Meningaud, J.P. Rhéologie Des Acides Hyaluroniques: Principes Fondamentaux et Applications Cliniques En Rajeunissement Facial. Ann. Chir. Plast. Esthétique 2017, 62, 261–267. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, X.; Jia, Y.; Ho, C.T.; Huang, Q. Applications and Delivery Mechanisms of Hyaluronic Acid Used for Topical/Transdermal Delivery–A Review. Int. J. Pharm. 2020, 578, 119127. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic Acid, a Promising Skin Rejuvenating Biomedicine: A Review of Recent Updates and Pre-Clinical and Clinical Investigations on Cosmetic and Nutricosmetic Effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Duan, X.J.; Yang, L.; Zhang, X.; Tan, W.S. Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 2008, 18, 718–724. [Google Scholar]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan Fragments: An Information-Rich System. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef]
- Ke, C.; Wang, D.; Sun, Y.; Qiao, D.; Ye, H.; Zeng, X. Immunostimulatory and Antiangiogenic Activities of Low Molecular Weight Hyaluronic Acid. Food Chem. Toxicol. 2013, 58, 401–407. [Google Scholar] [CrossRef]
- Kogan, G.; Šoltés, L.; Stern, R.; Gemeiner, P. Hyaluronic Acid: A Natural Biopolymer with a Broad Range of Biomedical and Industrial Applications. Biotechnol. Lett. 2007, 29, 17–25. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic Acid (Hyaluronan): A Review. Vet. Med. 2008, 53, 397–411. [Google Scholar] [CrossRef]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological Production of Hyaluronic Acid: A Mini Review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef]
- Rangaswamy, V.; Jain, D. An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus. Biotechnol. Lett. 2008, 30, 493–496. [Google Scholar] [CrossRef]
- Blank, L.M.; McLaughlin, R.L.; Nielsen, L.K. Stable Production of Hyaluronic Acid in Streptococcus Zooepidemicus Chemostats Operated at High Dilution Rate. Biotechnol. Bioeng. 2005, 90, 685–693. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, Z.; Wang, B.; Wu, L.; Zhang, L. Process Control and Optimization of Hyaluronic Acid Production by Streptococcus zooepidemicus. Agric. Biotechnol. 2015, 56–60. [Google Scholar]
- Liu, L.; Wang, M.; Du, G.; Chen, J. Enhanced Hyaluronic Acid Production of Streptococcus Zooepidemicus by an Intermittent Alkaline-Stress Strategy. Lett. Appl. Microbiol. 2008, 46, 383–388. [Google Scholar] [CrossRef]
- Jagannath, S.; Ramachandran, K.B. Influence of Competing Metabolic Processes on the Molecular Weight of Hyaluronic Acid Synthesized by Streptococcus zooepidemicus. Biochem. Eng. J. 2010, 48, 148–158. [Google Scholar] [CrossRef]
- Chong, B.F.; Nielsen, L.K. Aerobic Cultivation of Streptococcus Zooepidemicus and the Role of NADH Oxidase. Biochem. Eng. J. 2003, 16, 153–162. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, L.; Huang, H.; Wang, H.; Zhang, T.; Chen, J.; Du, G.; Kang, Z. Eliminating the Capsule-like Layer to Promote Glucose Uptake for Hyaluronan Production by Engineered Corynebacterium Glutamicum. Nat. Commun. 2020, 11, 3120. [Google Scholar] [CrossRef]
- Woo, J.E.; Seong, H.J.; Lee, S.Y.; Jang, Y.S. Metabolic Engineering of Escherichia Coli for the Production of Hyaluronic Acid From Glucose and Galactose. Front. Bioeng. Biotechnol. 2019, 7, 351. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, Z.; Ren, Y.; Zhao, Y.; Zhao, G. Efficient Production of High-Molecular-Weight Hyaluronic Acid with a Two-Stage Fermentation. RSC Adv. 2018, 8, 36167–36171. [Google Scholar] [CrossRef]
- Güngör, G.; Gedikli, S.; Toptaş, Y.; Akgün, D.E.; Demirbilek, M.; Yazıhan, N.; Aytar Çelik, P.; Denkbaş, E.B.; Çabuk, A. Bacterial Hyaluronic Acid Production through an Alternative Extraction Method and Its Characterization. J. Chem. Technol. Biotechnol. 2019, 94, 1843–1852. [Google Scholar] [CrossRef]
- Chen, S.J.; Chen, J.L.; Huang, W.C.; Chen, H.L. Fermentation Process Development for Hyaluronic Acid Production by Streptococcus Zooepidemicus ATCC 39920. Korean J. Chem. Eng. 2009, 26, 428–432. [Google Scholar] [CrossRef]
- Schulte, S.; Doss, S.S.; Jeeva, P.; Ananth, M.; Blank, L.M.; Jayaraman, G. Exploiting the Diversity of Streptococcal Hyaluronan Synthases for the Production of Molecular Weight–Tailored Hyaluronan. Appl. Microbiol. Biotechnol. 2019, 103, 7567–7581. [Google Scholar] [CrossRef]
- Cavalcanti, A.D.D.; Melo, B.A.G.; Oliveira, R.C.; Santana, M.H.A. Recovery and Purity of High Molar Mass Bio-Hyaluronic Acid Via Precipitation Strategies Modulated by PH and Sodium Chloride. Appl. Biochem. Biotechnol. 2019, 188, 527–539. [Google Scholar] [CrossRef]
- Morris, C.G. Academic Press Dictionary of Science and Technology; Gulf Professional Publishing: Houston, TX, USA, 1992. [Google Scholar]
- Cavalcanti, A.D.D.; de Melo, B.A.G.; Ferreira, B.A.M.; Santana, M.H.A. Performance of the Main Downstream Operations on Hyaluronic Acid Purification. Process Biochem. 2020, 99, 160–170. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial Production of Hyaluronic Acid: Current State, Challenges, and Perspectives. Microb. Cell Fact. 2011, 10, 99. [Google Scholar] [CrossRef]
- Blank, L.M.; Hugenholtz, P.; Nielsen, L.K. Evolution of the Hyaluronic Acid Synthesis (Has) Operon in Streptococcus Zooepidemicus and Other Pathogenic Streptococci. J. Mol. Evol. 2008, 67, 13–22. [Google Scholar] [CrossRef]
- Crater, D.L.; Dougherty, B.A.; Van de Rijn, I. Molecular Characterization of HasC from an Operon Required for Hyaluronic Acid Synthesis in Group A Streptococci. Demonstration of UDP-Glucose Pyrophosphorylase Activity. J. Biol. Chem. 1995, 270, 28676–28680. [Google Scholar] [CrossRef]
- Crater, D.L.; Van de Rijn, I. Hyaluronic Acid Synthesis Operon (Has) Expression in Group A Streptococci. J. Biol. Chem. 1995, 270, 18452–18458. [Google Scholar] [CrossRef]
- Dougherty, B.A.; van de Rijn, I. Molecular Characterization of HasB from an Operon Required for Hyaluronic Acid Synthesis in Group A Streptococci. Demonstration of UDP-Glucose Dehydrogenase Activity. J. Biol. Chem. 1993, 268, 7118–7124. [Google Scholar] [CrossRef]
- Huang, W.C.; Chen, S.J.; Chen, T.L. Production of Hyaluronic Acid by Repeated Batch Fermentation. Biochem. Eng. J. 2008, 40, 460–464. [Google Scholar] [CrossRef]
- Badle, S.S.; Jayaraman, G.; Ramachandran, K.B. Ratio of Intracellular Precursors Concentration and Their Flux Influences Hyaluronic Acid Molecular Weight in Streptococcus Zooepidemicus and Recombinant Lactococcus Lactis. Bioresour. Technol. 2014, 163, 222–227. [Google Scholar] [CrossRef]
- Liu, L.; Du, G.; Chen, J.; Wang, M.; Sun, J. Enhanced Hyaluronic Acid Production by a Two-Stage Culture Strategy Based on the Modeling of Batch and Fed-Batch Cultivation of Streptococcus zooepidemicus. Bioresour. Technol. 2008, 99, 8532–8536. [Google Scholar] [CrossRef]
- Liu, L.; Du, G.; Chen, J.; Wang, M.; Sun, J. Comparative Study on the Influence of Dissolved Oxygen Control Approaches on the Microbial Hyaluronic Acid Production of Streptococcus zooepidemicus. Bioprocess Biosyst. Eng. 2009, 32, 755–763. [Google Scholar] [CrossRef]
- Lu, J.F.; Zhu, Y.; Sun, H.L.; Liang, S.; Leng, F.F.; Li, H.Y. Highly Efficient Production of Hyaluronic Acid by Streptococcus Zooepidemicus R42 Derived from Heterologous Expression of Bacterial Haemoglobin and Mutant Selection. Lett. Appl. Microbiol. 2016, 62, 316–322. [Google Scholar] [CrossRef]
- Im, J.H.; Song, J.M.; Kang, J.H.; Kang, D.J. Optimization of Medium Components for High-Molecular-Weight Hyaluronic Acid Production by Streptococcus Sp. ID9102 via a Statistical Approach. J. Ind. Microbiol. Biotechnol. 2009, 36, 1337–1344. [Google Scholar] [CrossRef]
- Pourzardosht, N.; Rasaee, M.J. Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus Zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene. Mol. Biotechnol. 2017, 59, 192–199. [Google Scholar] [CrossRef]
- Zakeri, A.; Rasaee, M.J.; Pourzardosht, N. Enhanced Hyluronic Acid Production in Streptococcus Zooepidemicus by over Expressing HasA and Molecular Weight Control with Niscin and Glucose. Biotechnol. Rep. 2017, 16, 65–70. [Google Scholar] [CrossRef]
- Izawa, N.; Serata, M.; Sone, T.; Omasa, T.; Ohtake, H. Hyaluronic Acid Production by Recombinant Streptococcus Thermophilus. J. Biosci. Bioeng. 2011, 111, 665–670. [Google Scholar] [CrossRef]
- Cheng, F.; Gong, Q.; Yu, H.; Stephanopoulos, G. High-Titer Biosynthesis of Hyaluronic Acid by Recombinant Corynebacterium Glutamicum. Biotechnol. J. 2016, 11, 574–584. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, J.; Chen, X.; Tang, D.; Su, D.; Yao, W.; Gao, X. Metabolic Engineering of Bacillus Subtilis for the Efficient Biosynthesis of Uniform Hyaluronic Acid with Controlled Molecular Weights. Bioresour. Technol. 2013, 132, 427–431. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Zhao, X.; Shao, Y.; Wu, M.; Ma, T. Regulation of Hyaluronic Acid Molecular Weight and Titer by Temperature in Engineered Bacillus Subtilis. 3 Biotech. 2019, 9, 225. [Google Scholar] [CrossRef]
- Jeeva, P.; Shanmuga Doss, S.; Sundaram, V.; Jayaraman, G. Production of Controlled Molecular Weight Hyaluronic Acid by Glucostat Strategy Using Recombinant Lactococcus Lactis Cultures. Appl. Microbiol. Biotechnol. 2019, 103, 4363–4375. [Google Scholar] [CrossRef]
- Sunguroğlu, C.; Sezgin, D.E.; Aytar Çelik, P.; Çabuk, A. Higher Titer Hyaluronic Acid Production in Recombinant Lactococcus Lactis. Prep. Biochem. Biotechnol. 2018, 48, 734–742. [Google Scholar] [CrossRef]
- Lai, Z.W.; Teo, C.H. Cloning and Expression of Hyaluronan Synthase (HasA) in Recombinant Escherichia Coli BL21 and Its Hyaluronic Acid Production in Shake Flask Culture. Malays. J. Microbiol. 2019, 15, 575–582. [Google Scholar] [CrossRef]
- Yu, H.; Stephanopoulos, G. Metabolic Engineering of Escherichia Coli for Biosynthesis of Hyaluronic Acid. Metab. Eng. 2008, 10, 24–32. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, R.R. Recombinant Synthesis of Hyaluronan by Agrobacterium Sp. Biotechnol. Prog. 2007, 23, 1038–1042. [Google Scholar] [CrossRef]
- Gomes, A.M.V.; Netto, J.H.C.M.; Carvalho, L.S.; Parachin, N.S. Heterologous Hyaluronic Acid Production in Kluyveromyces Lactis. Microorganisms 2019, 7, 294. [Google Scholar] [CrossRef]
- Jeong, E.; Shim, W.Y.; Kim, J.H. Metabolic Engineering of Pichia Pastoris for Production of Hyaluronic Acid with High Molecular Weight. J. Biotechnol. 2014, 185, 28–36. [Google Scholar] [CrossRef]
- Manfrão-Netto, J.H.C.; Queiroz, E.B.; Rodrigues, K.A.; Coelho, C.M.; Paes, H.C.; Rech, E.L.; Parachin, N.S. Evaluation of Ogataea (Hansenula) Polymorpha for Hyaluronic Acid Production. Microorganisms 2021, 9, 312. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, X.; Yang, L.; Kong, Z. A Serum-Free Medium for Colony Growth and Hyaluronic Acid Production by Streptococcus Zooepidemicus NJUST01. Appl. Microbiol. Biotechnol. 2006, 72, 168–172. [Google Scholar] [CrossRef]
- Pires, A.M.B.; Macedo, A.C.; Eguchi, S.Y.; Santana, M.H.A. Microbial Production of Hyaluronic Acid from Agricultural Resource Derivatives. Bioresour. Technol. 2010, 101, 6506–6509. [Google Scholar] [CrossRef]
- Pan, N.C.; Pereira, H.C.B.; da Silva, M.L.C.; Vasconcelos, A.F.D.; Celligoi, M.A.P.C. Improvement Production of Hyaluronic Acid by Streptococcus Zooepidemicus in Sugarcane Molasses. Appl. Biochem. Biotechnol. 2017, 182, 276–293. [Google Scholar] [CrossRef]
- Rohit, S.G.; Jyoti, P.K.; Subbi, R.R.T.; Naresh, M.; Senthilkumar, S. Kinetic Modeling of Hyaluronic Acid Production in Palmyra Palm (Borassus Flabellifer) Based Medium by Streptococcus Zooepidemicus MTCC 3523. Biochem. Eng. J. 2018, 137, 284–293. [Google Scholar] [CrossRef]
- Duffeck, H.C.B.P.; Pan, N.C.; Saikawa, G.I.A.; da Rocha, S.P.D.; Baldo, C.; Celligoi, M.A.P.C. Biomedical Potential of Hyaluronic Acid from Streptococcus Zooepidemicus Produced in Sugarcane Molasses. Brazilian J. Dev. 2020, 6, 49963–49980. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Pastrana, L.; Piñeiro, C.; Teixeira, J.A.; Pérez-Martín, R.I.; Amado, I.R. Production of Hyaluronic Acid by Streptococcus Zooepidemicus on Protein Substrates Obtained from Scyliorhinus Canicula Discards. Mar. Drugs 2015, 13, 6537–6549. [Google Scholar] [CrossRef]
- Amado, I.R.; Vázquez, J.A.; Pastrana, L.; Teixeira, J.A. Cheese Whey: A Cost-Effective Alternative for Hyaluronic Acid Production by Streptococcus zooepidemicus. Food Chem. 2016, 198, 54–61. [Google Scholar] [CrossRef]
- Amado, I.R.; Vázquez, J.A.; Pastrana, L.; Teixeira, J.A. Microbial Production of Hyaluronic Acid from Agro-Industrial by-Products: Molasses and Corn Steep Liquor. Biochem. Eng. J. 2017, 268, 181–187. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Montemayor, M.I.; Fraguas, J.; Murado, M.A. Hyaluronic Acid Production by Streptococcus Zooepidemicus in Marine By-Products Media from Mussel Processing Wastewaters and Tuna Peptone Viscera. Microb. Cell Fact. 2010, 9, 46. [Google Scholar] [CrossRef]
- Arslan, N.P.; Aydogan, M.N. Evaluation of Sheep Wool Protein Hydrolysate and Molasses as Low-Cost Fermentation Substrates for Hyaluronic Acid Production by Streptococcus Zooepidemicus ATCC 35246. Waste Biomass Valorization 2021, 12, 925–935. [Google Scholar] [CrossRef]
- Cerminati, S.; Leroux, M.; Anselmi, P.; Peirú, S.; Alonso, J.C.; Priem, B.; Menzella, H.G. Correction to: Low Cost and Sustainable Hyaluronic Acid Production in a Manufacturing Platform Based on Bacillus Subtilis 3NA Strain (Applied Microbiology and Biotechnology, (2021), 105, 8, (3075-3086), 10.1007/S00253-021-11246-6). Appl. Microbiol. Biotechnol. 2021, 105, 6529. [Google Scholar] [CrossRef]
- Kloepffer, W. Life Cycle Sustainability Assessment of Products. Int. J. LCA 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Guinée, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Arias, A.; Rebolledo-Leiva, R.; Feijoo, G.; González-García, S.; Moreira, M.T. Monitoring the Bioeconomy: Value Chains under the Framework of Life Cycle Assessment Indicators. Clean. Circ. Bioeconomy 2024, 7, 100072. [Google Scholar] [CrossRef]
- Valdivia, S.; Ugaya, C.M.L.; Hildenbrand, J.; Traverso, M.; Mazijn, B.; Sonnemann, G. A UNEP/SETAC Approach towards a Life Cycle Sustainability Assessment–Our Contribution to Rio+20. Int. J. Life Cycle Assess 2013, 18, 1673–1685. [Google Scholar] [CrossRef]
- Costa, D.; Quinteiro, P.; Dias, A.C. A Systematic Review of Life Cycle Sustainability Assessment: Current State, Methodological Challenges, and Implementation Issues. Sci. Total Environ. 2019, 686, 774–787. [Google Scholar] [CrossRef]
- Sinkko, T.; Sanyé-Mengual, E.; Corrado, S.; Giuntoli, J.; Sala, S. The EU Bioeconomy Footprint: Using Life Cycle Assessment to Monitor Environmental Impacts of the EU Bioeconomy. Sustain. Prod. Consum. 2023, 37, 169–179. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management–Life Cycle Assessment—Principles and Framework. International Standard Organization: Geneva, Switzerland, 2006.
- ISO 14044:2006 + A1:2018; Environmental Management–Life Cycle Assessment–Requirements and Guidelines. International Standard Organization: Geneva, Switzerland, 2018.
- Cheng, F.; Luozhong, S.; Guo, Z.; Yu, H.; Stephanopoulos, G. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium Glutamicum Via Metabolic Pathway Regulation. Biotechnol. J. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Hmar, R.V.; Prasad, S.B.; Jayaraman, G.; Ramachandran, K.B. Chromosomal Integration of Hyaluronic Acid Synthesis (Has) Genes Enhances the Molecular Weight of Hyaluronan Produced in Lactococcus Lactis. Biotechnol. J. 2014, 9, 1554–1564. [Google Scholar] [CrossRef]
Strains | Bioreactor Type and Capacity | Growth Conditions | C and N Sources (g L−1) | Supplements and Additives (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|
Streptococcus zooepidemicus ATCC 39920 | Batch 2–10 L | Temperature: 37 °C pH: 7 Stirring: 200–400 rpm Aeration: 1–2 vvm | Glucose or saccharose: 20–60 Yeast extract: 3.2–12.5 Tryptone: 1.7 Soytone: 0.3 Casein enzyme hydrolysate: 25 | MgSO4: 0.2–1.5 K2HPO4: 0.5–2.5 KH2PO4: 0.5–1.5 NaCl: 1–2 Na2HPO4: 1.5 Ascorbic acid: 0.5 Glutamine: 5.6 CaCl2 FeSO4 (NH4)SO4 MnCl2 ZnSO4 CuSO4 | 0.6–5 | 1.4–3.9 | [38,95,99,115,116] |
Streptococcus zooepidemicus ATCC 35246 | Batch and continuous 2–2.5 L | Temperature: 35–37 °C pH: 6–7 Stirring: 180–600 rpm Aeration: 1–2 vvm | Glucose or maltose: 15–45 Yeast extract: 10 Tryptone: 12 | MgSO4: 0.2–0.5 K2HPO4: 0.2 KH2PO4: 2 Na2HPO4: 2.5 (NH4)2SO4: 0.4 Beta-glycerophosphate: 18.0 Glutamine: 5.6 Lipoic acid | 0.3–2.14 | 2.1 | [96,100] |
Streptococcus zooepidemicus WSH-24 | Batch and fed-batch 7 L | Temperature: 37 °C pH: 7–8.5 Stirring: 200 rpm Aeration: 0.5 vvm | Saccharose: 70 Yeast extract: 25 | MgSO4: 2 K2SO4: 1.3 Na2HPO4: 6.2 FeSO4: 0.005 | 5.5–6.6 | NA | [98,117,118] |
Streptococcus zooepidemicus HA-13-06 | Batch 10 L | Temperature: 37 °C pH: 7 Stirring: 600 rpm Aeration: 1 vvm | Glucose: 70 Yeast extract: 10 Tryptone: 5 | MgSO4: 0.4 K2HPO4: 1.8 | 4.75 | 2.46 | [103] |
S. equi ssp. equi RSKK 677 | Batch 0.25 L | Temperature: 33 °C pH: 7.8 Stirring: 187 rpm Aeration: NA | Saccharose: 80 Yeast extract: 28 Peptone: 9.9 | K2SO4: 0.51 MgSO4: 1.25 Na2HPO4: 10.38 FeSO4: 0.008 NaCl: 1.23 | 12.01 | 0.079 | [104] |
Strains | Bioreactor Type and Capacity | Growth Conditions | C and N Sources (g L−1) | Supplements and Additives (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|
Streptococcus zooepidemicus G1, R42 ATCC 39920 a | Batch 5 L | Temperature: 37 °C pH: 7–7.2 Stirring: 150–600 rpm Aeration: 0.6 vvm | Glucose or saccharose: 40–60 Yeast extract: 5–10 Polypeptone: 20 Casein hydrolysate: 15 | MgSO4: 1–2 K2HPO4: 2.5 K2SO4: 1.3 NaCl: 2–5 MnSO4: 0.1 KH2PO4: 2–6.2 FeSO4: 0.005 CaCl2: 2 ZnCl2: 0.046 CuSO4: 0.019 | 3.48–6.7 | 0.43–2.19 | [89,119] |
Streptococcus zooepidemicus ID9102 KCTC 11935BP a | Batch 75 L | Temperature: 36 °C pH: 7 Stirring: 400 rpm Aeration: 0.5 vvm | Glucose Yeast extract Casein peptone | MgCl2 K2HPO4 Glutamine Glutamate Oxalic acid | 6.94 | 5.9 | [120] |
Streptococcus zooepidemicus SZ07 ATCC 39920 b | Semi- continuo 3 L | Temperature: 37 °C pH: 7.4 Stirring: 200–600 rpm Aeration: 2 vvm | Glucose: 80 Yeast extract: 6 Peptone: 20 | MgSO4: 3 K2HPO4:12.5 Pyruvate: 10 N-acetylglucosamine: 1 Phosphatidylcholine:0.08 | 29.38 | NA | [39] |
Streptococcus zooepidemicus IBRC-M10919 c | Batch 0.2 L | Temperature: 37 °C pH: NA Stirring: 200 rpm Aeration: NA | TSB medium | NA | 8.5 | 3.8 | [121] |
Streptococcus zooepidemicus d | Batch 5 L | Temperature: 37 °C pH: NA Stirring: 300 rpm Aeration: NA | TSB medium | NA | 6.02 | 1.7 | [122] |
Streptococcus thermophilus e | Batch 2 L | Temperature: 40 °C pH: 6.8 Stirring: 100 rpm Aeration: NA | 1 L of 10% skim milk | 1% Hinute DH Erythromycin | 1.2 | 1 | [123] |
Strains | Bioreac-tor Type and Capacity | Growth Conditions | C and N Sources (g L−1) | Supplements and Additives (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|
Lactobacillus acidophilus PTCC 1643 a | Batch | Temperature: 38 °C pH: NA Stirring: NA Aeration: NA | Lactose: 20 Yeast extract: 3 | Pyruvate: 12 Urea: 3 (NH4)2SO4: 3 | 1.7 | 0.027 | [35] |
Corynebacterium Glutamicum ATCC 13032 b | Fed-Batch 5 L | Temperature: 28 °C pH: 7 Stirring: 200–600 rpm Aeration: 0.5–5 vvm | Glucose: 40 Yeast extract or Corn syrup powder: 11–20 | MgSO4: 0.25–5 K2HPO4: 0.5–1 KH2PO4: 0.5–1 (NH4)2SO4: 20–30 FeSO4: 0.01 MnSO4: 0.01 Kanamycin N-morpholino acid propanesulfonic Isopropyl-β-D-thiogalactoside | 8.2–74.1 | 0.053–1.3 | [36,101,124] |
Streptomyces albulus c | Batch 3 L | Temperature: 30 °C pH: 4.2 Stirring: 500 rpm Aeration: 3.5 vvm | Glucose: 60 M3G medium | ND | 6.2 | 2.20 | [40] |
Bacillus subtilis 168, WB 600, 1A751 d | Fed-Batch Batch 0.5–5 L | Temperature: 32–37 °C 47 pH: 7 Stirring: 200–800 rpm Aeration: 2 vvm | Glucose or saccharose: 20–50 Yeast extract: 10–20 Tryptone: 2 LB medium | MgSO4: 1.5–3 K2HPO4: 2.5 KH2PO4: 6.5 (NH4)2SO4: 3 Na2HPO4: 4.5 CaCl2: 0.5 FeSO4: 20 MnSO4: 5 CuSO4: 2 ZnCl2: 2 Citric acid:100 | 3.65–19.38 | 0.22–6.97 | [37,125,126] |
Lactococcus lactis NZ9000 e | Batch 0.25–2.4 L | Temperature: 30 °C pH: 7 Stirring: 200 rpm Aeration: NA | Glucose: 10–30 Yeast extract: 5 BHI: 5 M17 medium | MgSO4: 0.5 K2HPO4: 1.5 KH2PO4: 0.5 Ascorbic acid: 0.5 | 0.23–6.9 | 0.4–1.4 | [106,127,128] |
Strains | Bioreactor Type and Capacity | Growth Conditions | C and N Sources (g L−1) | Supplements and Additives (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|
Escherichia Coli BL21, K12W3110, Top 10 a | Batch 0.5 L | Temperature: 37 °C pH: 7–7.5 Stirring: 200 rpm Aeration: NA | Glucose: 3–50 Yeast extract: 5 Tryptone: 15 Peptone: 10 | MgSO4: 0.5 K2HPO4: 2–2.5 KH2PO4: 2.0 NaCl: 10.0 Isopropyl β-D-1-thiogalactopyranoside Chloramphenicol Ampicillin Kanamycin | 0.03–0.532 | 0.001–1.9 | [102,129,130] |
Agrobacterium ATCC 31749 b | Batch 0.25 L | Temperature: 30 °C pH: ND Stirring: 250 rpm Aeration: NA | Saccharose Lactose N-Acetylglucosamine | MgSO4 K2HPO4 Casamino acid Sodium citrate | 0.30 | 1.56 | [131] |
Strains | Bioreactor Type and Capacity | Growth Conditions | C and N Sources (g L−1) | Supplements and Additives (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|
Kluyveromyces lactis GG799 a | Batch 1.3 L | Temperature: 30 °C pH: 6 Stirring: 200 rpm Aeration: 2 vvm | Glucose: 40 | (NH4)2SO4 Amino acids | 1.89 | 2.09 | [132] |
Pichia pastoris b | Batch 2.5 L | Temperature: 26 °C pH: 7 Stirring: 500 rpm Aeration: 0.7 vvm | Glucose: 40 Yeast extract: 7.5 Peptone: 10 | MgSO4: 0.5 K2HPO4: 2.5 NaCl: 5 Glutamine: 0.4 Glutamic acid: 0.6 Oxalic acid: 0.2 | 0.8–1.7 | 1.2–2.5 | [133] |
Ogataea polymorpha c | Batch 1 L | Temperature: 37 °C pH: NA Stirring: 200–500 rpm Aeration: NA | Glucose Yeast extract peptone | K2HPO4: 0.25% MgSO4: 0.05% NaCl: 0.5% Glutamine Glutamic acid Oxalic acid | 0.197 | NA | [134] |
Strains | Bioreactor Type and Capacity | Growth Conditions | Alternative C Source | N Source (g L−1) | Supplements and Additives (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|---|
Streptococcus zooepidemicus NJUST01 | Batch 500 mL | Temperature: 37 °C pH: 7 Stirring: 220 rpm Aeration: NA | Starch: 5% Glucose: 0.3% | Yeast extract: 5% Peptone: 0.15% | MgSO4: 0.15% K2HPO4: 0.25% | 6.7 | - | [135] |
Streptococcus zooepidemicus ATCC 39920 | Batch 250 mL | Temperature: 37 °C pH: 7 Stirring: 150 rpm Aeration: 1 vvm | Cashew apple juice: 950 L L−1 (45 g L−1 of glucose) | Yeast extract: 54 (5.8 g/L de N) | MgSO4: 1 K2SO4: 1.3 | 0.89 | 0.018 | [136] |
Streptococcus zooepidemicus ATCC 39920 | FedBatch 4.5 L | Temperature: 37 °C pH: 8 Stirring: 100 rpm Aeration: 0.5 vvm | Sugarcane molasses: 85.35 g L−1 of total sugars | Yeast extract: 50 | MgSO4: 1.5 KH2PO4: 2.5 NaCl: 2.0 | 2.83 | 0.001 | [137] |
Streptococcus zooepidemicus MTCC 3523 | Batch 3.5 L | Temperature: 37 °C pH: 7 Stirring: 200 rpm Aeration: 1 vvm | Palm sucrose: 5 g L−1 | Yeast extract: 2.5 | MgSO4: 0.25 Ascorbic acid: 0.5 | 0.50 | 0.93–0.96 | [138] |
Streptococcus zooepidemicus ATCC 39920 | Batch 5 L | Temperature: 37 °C pH: 8 Stirring: 100–300 rpm Aeration: 0.5 vvm | Sugarcane molasses: 30 g L−1 of total sugars | Yeast extract: 30 | MgSO4: 1.5 K2HPO4: 2.5 NaCl: 2 Glutamine: 8 | 2.55 | - | [139] |
Strains | Bioreactor Type and Capacity | Growth Conditions | C Source (g L−1) | Alternative N Source | Supplements (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|---|
Streptococcus zooepidemicus ATCC 35246 | Batch 2 L | Temperature: 37 °C pH: 6.7 Stirring: 500 rpm Aeration: NA | Glucose: 20 | Peptone from fish viscera: 5–23 g L−1 | MgSO4: 0.5 K2HPO4: 2.0 KH2PO4: 2.0 (NH4)2SO4: 0.5 | 2.26–2.32 | 1.8 | [140] |
Streptococcus zooepidemicus ATCC 35246 | Batch 5 L | Temperature: 37 °C pH: 6.7 Stirring: 500 rpm Aeration: 1 vvm | Glucose: 50 Lactose: 50 | Cheese whey: 2.1 Yeast extract: 5 g L−1 | MgSO4: 0.5 K2HPO4: 0.5 KH2PO4: 2.0 (NH4)2SO4: 0.5 | 4.0 | >3.00 | [141] |
Streptococcus zooepidemicus ATCC 35246 | FedBatch 0.75 L | Temperature: 37 °C pH: 6.7 Stirring: 500 rpm Aeration: 1 vvm | Glucose: 50 | Fermented corn liquor: 10% v v−1 Yeast extract: 5 g L−1 | MgSO4: 0.5 K2HPO4: 0.5 KH2PO4: 2.0 (NH4)2SO4: 0.5 | 3.48 | 3.8 | [142] |
Strains | Bioreactor Type and Capacity | Growth Conditions | Alternative C Source (g L−1) | Alternative N Source (g L−1) | Supplements (g L−1) | Production (g L−1) | Molecular Weight (MDa) | References |
---|---|---|---|---|---|---|---|---|
Streptococcus zooepidemicus ATCC 35246 | Batch 2 L | Temperature: 37 °C pH: 6.7 Stirring: 500 rpm Aeration: NA | Wastewater from mussel processing: 50 | Peptone from tuna waste: 8 Yeast extract: 5 | MgSO4: 0.5 K2HPO4: 2.0 KH2PO4: 2.0 (NH4)2SO4: 0.5 | 2.46 | 2.5 | [143] |
Streptococcus zooepidemicus ATCC 35246 | Batch 250 mL | Temperature: 37 °C pH: 8 Stirring: 200 rpm Aeration: NA | Sugarcane molasses: 5 | Sheep wool peptone: 12 | MgSO4 K2HPO4 KH2PO4 | 3.54 | - | [144] |
HA Production (g L−1) | Biomass Production (g L−1) | Acetic Acid Production (g L−1) | Lactic Acid Production (g L−1) | Formic Acid Production (g L−1) | Succinic Acid Production (g L−1) | References |
---|---|---|---|---|---|---|
28.7 | 12.6 | 3.5 | 0 | NA | 9.8 | [34] |
21.6 | 20.4 | 9.9 | 0 | NA | 19.9 | [154] |
0.68 | 4.92 | 4.9 | 1.8 | 4.7 | NA | [155] |
2.40 | 5.80 | 5.20 | 17.00 | NA | NA | [139] |
0.15 | 0.14 | NA | 1.98 | NA | NA | [138] |
0.66 | 2.12 | 0.68 | 4.31 | NA | NA | [137] |
4.02 | 6.02 | 3.29 | 50.80 | NA | NA | [141] |
2.46 | 3.67 | NA | 30.83 | NA | NA | [142] |
2.32 | 4.62 | NA | 40.74 | NA | NA | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Morales, G.; Poggi-Varaldo, H.M.; Ponce-Noyola, T.; Pérez-Valdespino, A.; Curiel-Quesada, E.; Galíndez-Mayer, J.; Ruiz-Ordaz, N.; Sotelo-Navarro, P.X. A Review of the Production of Hyaluronic Acid in the Context of Its Integration into GBAER-Type Biorefineries. Fermentation 2024, 10, 305. https://doi.org/10.3390/fermentation10060305
Pérez-Morales G, Poggi-Varaldo HM, Ponce-Noyola T, Pérez-Valdespino A, Curiel-Quesada E, Galíndez-Mayer J, Ruiz-Ordaz N, Sotelo-Navarro PX. A Review of the Production of Hyaluronic Acid in the Context of Its Integration into GBAER-Type Biorefineries. Fermentation. 2024; 10(6):305. https://doi.org/10.3390/fermentation10060305
Chicago/Turabian StylePérez-Morales, Guadalupe, Héctor Mario Poggi-Varaldo, Teresa Ponce-Noyola, Abigail Pérez-Valdespino, Everardo Curiel-Quesada, Juvencio Galíndez-Mayer, Nora Ruiz-Ordaz, and Perla Xochitl Sotelo-Navarro. 2024. "A Review of the Production of Hyaluronic Acid in the Context of Its Integration into GBAER-Type Biorefineries" Fermentation 10, no. 6: 305. https://doi.org/10.3390/fermentation10060305
APA StylePérez-Morales, G., Poggi-Varaldo, H. M., Ponce-Noyola, T., Pérez-Valdespino, A., Curiel-Quesada, E., Galíndez-Mayer, J., Ruiz-Ordaz, N., & Sotelo-Navarro, P. X. (2024). A Review of the Production of Hyaluronic Acid in the Context of Its Integration into GBAER-Type Biorefineries. Fermentation, 10(6), 305. https://doi.org/10.3390/fermentation10060305