Models for Wine Fermentation and Their Suitability for Commercial Applications
Abstract
:1. Introduction
1.1. Cell Growth Kinetics
1.2. Substrate Consumption Kinetics
1.3. Product Formation Kinetics
1.4. Cell Death Kinetics
1.5. Fermentation Energy Accumulation
1.6. Juice Density from Solution Properties
1.7. Calculation from Carbon Dioxide and Ethanol Release Rates
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, J.; Boulton, R.; Knoesen, A. Automated Density Measurement with Real-Time Predictive Modeling of Wine Fermentations. IEEE Trans. Instrum. Meas. 2022, 71, 1–7. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Low-Cost Sensor for Continuous Measurement of Brix in Liquids. Sensors 2022, 22, 9169. [Google Scholar] [CrossRef] [PubMed]
- Schanderl, H. Mikrobiologie Des Mostes Und Weines. Handbuch Der Kellerwitschaft II; Verlag Eugen Ulmer: Stuttgart, Germany, 1959. [Google Scholar]
- Ribéreau-Gayon, J.; Peynaud, E. Traite d’Oenologie I.; Librairie Polytechnique Beranger: Paris, France, 1964. [Google Scholar]
- Castor, J.G.B.; Archer, T.E. The Free Amino Acids of Musts and Wines. III. Effect of Added Ammonia and of Fermentation Temperature on the Fate of Amino Acids During Fermentation. J. Food Sci. 1959, 24, 167–175. [Google Scholar] [CrossRef]
- Castor, J.G.B. The Free Amino Acids of Musts and Wines. II. The Fate of Amino Acids of Must During Alcoholic Fermentation. J. Food Sci. 1953, 18, 146–151. [Google Scholar] [CrossRef]
- Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Luedeking, R.; Piret, E.L. A Kinetic Study of the Lactic Acid Fermentation. Batch Process at Controlled pH. Biotechnol. Bioeng. 1959, 1, 393–412. [Google Scholar] [CrossRef]
- Marr, A.G.; Nilson, E.H.; Clark, D.J. The Maintenance Requirement of Escherichia Coli. Ann. N.Y. Acad. Sci. 1963, 102, 536–548. [Google Scholar] [CrossRef]
- Pirt, S.J. The Maintenance Energy of Bacteria in Growing Cultures. Proc. R. Soc. Lond. B. 1965, 163, 224–231. [Google Scholar] [CrossRef]
- Sinclair, D.; Mills, K.; Guarente, L. Aging in Saccharomyces Cerevisiae. Annu. Rev. Microbiol. 1998, 52, 533–560. [Google Scholar] [CrossRef]
- Topiwala, H.; Sinclair, C.G. Temperature Relationship in Continuous Culture. Biotech. Bioeng. 1971, 13, 795–813. [Google Scholar] [CrossRef]
- Aiba, S.; Humphrey, A.E.; Millis, N.F. Biochemical Engineering, 1st ed.; Academic Press: New York, NY, USA, 1965; ISBN 978-0-12-045052-7. [Google Scholar]
- Aiyar, A.S.; Luedeking, R. A Kinetic Study of the Alcoholic Fermentation of Glucose by Saccharomyces Cerevisiae. Chem. Eng. Prog. Symp. Ser. 1966, 62, 55–59. [Google Scholar]
- Fredrickson, A.G.; Megee, R.D.; Tsuchiya, H.M. Mathematical Models for Fermentation Processes. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 1970; Volume 13, pp. 419–465. ISBN 978-0-12-002613-5. [Google Scholar]
- Pirt, S.J. Principles of Microbe and Cell Cultivation; Wiley: New York, NY, USA, 1975; ISBN 978-0-470-69038-3. [Google Scholar]
- Sawada, T.; Kojima, Y.; Takamatsu, T. Growth Model and Control of Biochemical Reaction. J. Chem. Eng. Jpn. 1974, 7, 368–373. [Google Scholar] [CrossRef]
- Mukataka, S.; Kobayashi, J. A Kinetic Model in Alcohol Fermentation. Kagaku Kogaku Ronbunshu 1976, 2, 572–576. [Google Scholar] [CrossRef]
- Boulton, R. Kinetic Model for the Control of Wine Fermentations. Biotechnol. Bioeng. Symp. 1979, 9, 167–177. [Google Scholar]
- Boulton, R. The Prediction of Fermentation Behavior by a Kinetic Model. Am. J. Enol. Vitic. 1980, 31, 40–45. [Google Scholar] [CrossRef]
- Williams, L.A.; Boulton, R. Modeling and Prediction of Evaporative Ethanol Loss During Wine Fermentations. Am. J. Enol. Vitic. 1983, 34, 234–242. [Google Scholar] [CrossRef]
- Williams, L.A. Heat Release in Alcoholic Fermentation: A Critical Reappraisal. Am. J. Enol. Vitic. 1982, 33, 149–153. [Google Scholar] [CrossRef]
- Hansen, H.D. A Study of Fermentation Behavior and Alcohol Dehydrogenase Activity in the Yeast Saccharomyces Cerevisiae; University of California: Davis, CA, USA, 1986. [Google Scholar]
- Wright, D.N.; Lockhart, W.R. Environmental Control of Cell Composition in Escherichia Coli. J. Bacteriol. 1965, 89, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Megee Iii, R.D.; Drake, J.F.; Fredrickson, A.G.; Tsuchiya, H.M. Studies in Intermicrobial Symbiosis. Saccharomyces Cerevisiae and Lactobacillus Casei. Can. J. Microbiol. 1972, 18, 1733–1742. [Google Scholar] [CrossRef]
- Tsao, G.T.; Hanson, T.P. Extended Monod Equation for Batch Cultures with Multiple Exponential Phases. Biotech. Bioeng. 1975, 17, 1591–1598. [Google Scholar] [CrossRef]
- Bader, F.G. Analysis of Double-substrate Limited Growth. Biotech. Bioeng. 1978, 20, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.L.; Ataai, M.M.; Shuler, M.L. Double-substrate-limited Growth of Escherichia Coli. Biotech. Bioeng. 1984, 26, 1398–1401. [Google Scholar] [CrossRef] [PubMed]
- Egli, T. On Multiple-Nutrient-Limited Growth of Microorganisms, with Special Reference to Dual Limitation by Carbon and Nitrogen Substrates. Antonie Van Leeuwenhoek 1991, 60, 225–234. [Google Scholar] [CrossRef] [PubMed]
- De Andrés-Toro, B.; Girón-Sierra, J.M.; Fernández-Conde, C.; Peinado, J.M.; Garcia-Ochoa, F. A Kinetic Model for Beer Production: Simulation Under Industrial Operational Conditions. IFAC Proc. Vol. 1997, 30, 203–208. [Google Scholar] [CrossRef]
- Arellano-Plaza, M.; Herrera-López, E.J.; Diaz-Montaño, D.; Moran, A.; Ramírez-Córdova, J. Unstructured Kinetic Model for Tequila Batch Fermentation. Int. J. Math. Comput. Simul. 2007, 1, 1–6. [Google Scholar]
- Kelkar, S.; Dolan, K. Modeling the Effects of Initial Nitrogen Content and Temperature on Fermentation Kinetics of Hard Cider. J. Food Eng. 2012, 109, 588–596. [Google Scholar] [CrossRef]
- Marín, M.R. Alcoholic Fermentation Modelling: Current State and Perspectives. Am. J. Enol. Vitic. 1999, 50, 166–178. [Google Scholar] [CrossRef]
- Miller, K.V.; Block, D.E. A Review of Wine Fermentation Process Modeling. J. Food Eng. 2020, 273, 109783. [Google Scholar] [CrossRef]
- Yamané, T.; Shiotani, T. Interrelationship among Specific Rates of Cell Growth, Substrate Consumption, and Metabolite Formation in Some Simple Microbial Reactions Producing Primary Metabolites. Biotech. Bioeng. 1981, 23, 1373–1387. [Google Scholar] [CrossRef]
- Novak, M.; Strehaiano, P.; Moreno, M.; Goma, G. Alcoholic Fermentation: On the Inhibitory Effect of Ethanol. Biotech. Bioeng. 1981, 23, 201–211. [Google Scholar] [CrossRef]
- Bovee, J.P.; Strehaiano, P.; Goma, G.; Sevely, Y. Alcoholic Fermentation: Modelling Based on Sole Substrate and Product Measurement. Biotech. Bioeng. 1984, 26, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Shukla, H.; Viswanathan, L.; Shukla, N.P. Reaction Kinetics of D-Glucose Fermentation by Saccharomyces Cerevisiae. Enzym. Microb. Technol. 1984, 6, 560–564. [Google Scholar] [CrossRef]
- Nanba, A.; Nishizawa, Y.; Tsuchiya, Y.; Nagai, S. Kinetic Analysis for Batch Ethanol Fermentation of Saccharomyces Cerevisiae. J. Ferment. Technol. 1987, 65, 277–283. [Google Scholar] [CrossRef]
- Gòdia, F.; Casas, C.; Solà, C. Batch Alcoholic Fermentation Modelling by Simultaneous Integration of Growth and Fermentation Equations. J. Chem. Tech. Biotech. 1988, 41, 155–165. [Google Scholar] [CrossRef]
- Caro, I.; Pérez, L.; Cantero, D. Development of a Kinetic Model for the Alcoholic Fermentation of Must. Biotechnol. Bioeng. 1991, 38, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Thatipamala, R.; Rohani, S.; Hill, G.A. Effects of High Product and Substrate Inhibitions on the Kinetics and Biomass and Product Yields during Ethanol Batch Fermentation. Biotech. Bioeng. 1992, 40, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Starzak, M.; Kryzstek, L.; Nowicki, L.; Michalski, H. Macroapproach Kinetics of Ethanol Fermentation by Saccharomyces Cerevisiae: Experimental Studies and Mathematical Modelling. Chem. Eng. J. Biochem. Eng. J. 1994, 54, 221–240. [Google Scholar] [CrossRef]
- Scaglia, G.J.E.; Aballay, P.M.; Mengual, C.A.; Vallejo, M.D.; Ortiz, O.A. Improved Phenomenological Model for an Isothermal Winemaking Fermentation. Food Control 2009, 20, 887–895. [Google Scholar] [CrossRef]
- Aballay, P.M.; Vallejo, M.D.; Scaglia, G.J.E.; Serrano, M.; Romoli, S.; Ortiz, O.A. Phenomenological Modeling for Non-Isothermal Wine Fermentation; Centro de Convenciones de la Torre de los Profesionales: Montevideo, Uruguay, 2012. [Google Scholar]
- Francesca Venturi, A.Z. The Kinetics of Alcoholic Fermentation by Two Yeast Strains in High Sugar Concentration Media. J. Bioprocess. Biotech. 2013, 3, 1–5. [Google Scholar] [CrossRef]
- Báleš, V.; Timár, P.; Baláž, J.; Timár, P. Wine Fermentation Kinetic Model Verification and Simulation of Refrigeration Malfunction during Wine Fermentation. Acta Chim. Slovaca 2016, 9, 58–61. [Google Scholar] [CrossRef]
- Donaton, M.C.V.; Holsbeeks, I.; Lagatie, O.; Van Zeebroeck, G.; Crauwels, M.; Winderickx, J.; Thevelein, J.M. The Gap1 General Amino Acid Permease Acts as an Amino Acid Sensor for Activation of Protein Kinase A Targets in the Yeast Saccharomyces Cerevisiae. Mol. Microbiol. 2003, 50, 911–929. [Google Scholar] [CrossRef] [PubMed]
- Bely, M.; Sablayrolles, J.-M.; Barre, P. Automatic Detection of Assimilable Nitrogen Deficiencies during Alcoholic Fermentation in Oenological Conditions. J. Ferment. Bioeng. 1990, 70, 246–252. [Google Scholar] [CrossRef]
- Bely, M.; Sablayrolles, J.M.; Barre, P. Description of Alcoholic Fermentation Kinetics: Its Variability and Significance. Am. J. Enol. Vitic. 1990, 41, 319–324. [Google Scholar] [CrossRef]
- Cramer, A.C.; Vlassides, S.; Block, D.E. Kinetic Model for Nitrogen-Limited Wine Fermentations. Biotechnol. Bioeng. 2002, 77, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, S.; Fromion, V.; Hilgert, N.; Sablayrolles, J.-M. Modeling the Effects of Assimilable Nitrogen and Temperature on Fermentation Kinetics in Enological Conditions. Biotechnol. Bioeng. 2004, 86, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Colombié, S.; Latrille, E.; Sablayrolles, J.-M. Online Estimation of Assimilable Nitrogen by Electrical Conductivity Measurement during Alcoholic Fermentation in Enological Conditions. J. Biosci. Bioeng. 2007, 103, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Charnomordic, B.; David, R.; Dochain, D.; Hilgert, N.; Mouret, J.-R.; Sablayrolles, J.-M.; Vande Wouwer, A. Two Modelling Approaches of Winemaking: First Principle and Metabolic Engineering. Math. Comput. Model. Dyn. Syst. 2010, 16, 535–553. [Google Scholar] [CrossRef]
- Assar, R.; Vargas, F.A.; Sherman, D.J. Reconciling Competing Models: A Case Study of Wine Fermentation Kinetics. In Algebraic and Numeric Biology; Horimoto, K., Nakatsui, M., Popov, N., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 6479, pp. 98–116. ISBN 978-3-642-28066-5. [Google Scholar]
- David, R.; Dochain, D.; Mouret, J.-R.; Vande Wouwer, A.; Sablayrolles, J.-M. Nitrogen-Backboned Modeling of Wine-Making in Standard and Nitrogen-Added Fermentations. Bioprocess. Biosyst. Eng. 2014, 37, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, A.; David, R.; Dochain, D.; Harmand, J.; Nidelet, T. Consideration of Maintenance in Wine Fermentation Modeling. Foods 2022, 11, 1682. [Google Scholar] [CrossRef]
- Levenspiel, O. The Monod Equation: A Revisit and a Generalization to Product Inhibition Situations. Biotech. Bioeng. 1980, 22, 1671–1687. [Google Scholar] [CrossRef]
- Moulin, G.; Boze, H.; Galzy, P. Inhibition of Alcoholic Fermentation by Substrate and Ethanol. Biotech. Bioeng. 1980, 22, 2375–2381. [Google Scholar] [CrossRef]
- Luong, J.H.T. Kinetics of Ethanol Inhibition in Alcohol Fermentation. Biotech. Bioeng. 1985, 27, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Phisalaphong, M.; Srirattana, N.; Tanthapanichakoon, W. Mathematical Modeling to Investigate Temperature Effect on Kinetic Parameters of Ethanol Fermentation. Biochem. Eng. J. 2006, 28, 36–43. [Google Scholar] [CrossRef]
- Coleman, M.C.; Fish, R.; Block, D.E. Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations. Appl. Env. Environ. Microbiol. 2007, 73, 5875–5884. [Google Scholar] [CrossRef] [PubMed]
- Lip, K.Y.F.; García-Ríos, E.; Costa, C.E.; Guillamón, J.M.; Domingues, L.; Teixeira, J.; Van Gulik, W.M. Selection and Subsequent Physiological Characterization of Industrial Saccharomyces Cerevisiae Strains during Continuous Growth at Sub- and- Supra Optimal Temperatures. Biotechnol. Rep. 2020, 26, e00462. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A. Theory and Modelling of Ethanol Evaporative Losses during Batch Alcoholic Fermentation. Biotechnol. Bioeng. 1983, 25, 1597–1612. [Google Scholar] [CrossRef]
- Australian Wine Research Institute the AWRI Ferment Simulator. Available online: https://www.awri.com.au/industry_support/winemaking_resources/wine_fermentation/awri-ferment-simulator/ (accessed on 12 December 2023).
- Johnson, K.A.; Goody, R.S. The Original Michaelis Constant: Translation of the 1913 Michaelis–Menten Paper. Biochemistry 2011, 50, 8264–8269. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Amino Acid and Ammonium Utilization by Saccharomyces Cerevisiae Wine Yeasts from a Chemically Defined Medium. Am. J. Enol. Vitic. 1995, 46, 75–83. [Google Scholar] [CrossRef]
- Butzke, C.E. Survey of Yeast Assimilable Nitrogen Status in Musts from California, Oregon, and Washington. Am. J. Enol. Vitic. 1998, 49, 220–224. [Google Scholar] [CrossRef]
- Aiba, S.; Shoda, M.; Nagatani, M. Kinetics of Product Inhibition in Alcohol Fermentation. Biotech. Bioeng. 1968, 10, 845–864. [Google Scholar] [CrossRef]
- Aiba, S.; Shoda, M. Reassessment of the Product Inhibitionin Aloohol Fermentation. J. Ferment. Technol. 1969, 47, 790–794. [Google Scholar]
- Johnston, J. Substrate Preference in Wine Yeast; University of California: Davis, CA, USA, 1983. [Google Scholar]
- Boulton, R. The Heat Transfer Characteristics of Wine Fermentors. Am. J. Enol. Vitic. 1979, 30, 152–156. [Google Scholar] [CrossRef]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4757-6255-6. [Google Scholar]
- Bates, F.J. Circular of the Bureau of Standards No. 440: Polarimetry, Saccharimetry and the Sugars; National Bureau of Standards: Gaithersburg, MD, USA, 1942; p. NBS CIRC 440. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, ISBN 978-3-540-10558-9. [Google Scholar]
- Kwolek-Mirek, M.; Zadrag-Tecza, R. Comparison of Methods Used for Assessing the Viability and Vitality of Yeast Cells. FEMS Yeast Res. 2014, 14, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Moreno, R.; Morales, P.; Gonzalez, R.; Mas, A.; Beltran, G. Biomass Production and Alcoholic Fermentation Performance of Saccharomyces Cerevisiae as a Function of Nitrogen Source. FEMS Yeast Res. 2012, 12, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Torija, M. Effects of Fermentation Temperature on the Strain Population of Saccharomyces Cerevisiae. Int. J. Food Microbiol. 2003, 80, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Grenson, M.; Hou, C.; Crabeel, M. Multiplicity of the Amino Acid Permeases in Saccharomyces Cerevisiae IV. Evidence for a General Amino Acid Permease. J. Bacteriol. 1970, 103, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.L.A.; Halvorson, H.O. Periodic Changes in Rate of Amino Acid Uptake During Yeast Cell Cycle. J. Cell Biol. 1973, 58, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Thorne, R.S.W. Nitrogen Metabolism of Yeast. A Consideration of the Mode of Assimilation of Amino Acids. J. Inst. Brew. 1949, 55, 201–222. [Google Scholar] [CrossRef]
- Jones, M.; Pierce, J.S. Absorption of Amino Acids from Word by Yeasts. J. Inst. Brew. 1964, 70, 307–315. [Google Scholar] [CrossRef]
- Jones, M.; Pragnell, M.J.; Pierce, J.S. Absorption of Amino Acids by Yeasts from a Semi-Defined Medium Simulation Wort. J. Inst. Brew. 1969, 75, 520–536. [Google Scholar] [CrossRef]
- Busturia, A.; Lagunas, R. Catabolite Inactivation of the Glucose Transport System in Saccharomyces Cerevisiae. Microbiology 1986, 132, 379–385. [Google Scholar] [CrossRef]
- Salmon, J.M. Effect of Sugar Transport Inactivation in Saccharomyces Cerevisiae on Sluggish and Stuck Enological Fermentations. Appl. Environ. Microbiol. 1989, 55, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.M.; Vincent, O.; Mauricio, J.C.; Bely, M.; Barre, P. Sugar Transport Inhibition and Apparent Loss of Activity in Saccharomyces Cerevisiae as a Major Limiting Factor of Enological Fermentations. Am. J. Enol. Vitic. 1993, 44, 56–64. [Google Scholar] [CrossRef]
- Backhus, L.E.; DeRisi, J.; Brown, P.O.; Bisson, L.F. Functional Genomic Analysis of a Commercial Wine Strain of Saccharomyces Cerevisiae under Differing Nitrogen Conditions. FEMS Yeast Res. 2001, 1, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Van’T Klooster, J.S.; Ruiz, S.J.; Poolman, B. Regulation of Amino Acid Transport in Saccharomyces Cerevisiae. Microbiol. Mol. Biol. Rev. 2019, 83, e00024–e19. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martà , E.; Del Olmo, M. Addition of Ammonia or Amino Acids to a Nitrogen-Depleted Medium Affects Gene Expression Patterns in Yeast Cells during Alcoholic Fermentation. FEMS Yeast Res. 2008, 8, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Tesnière, C.; Brice, C.; Blondin, B. Responses of Saccharomyces Cerevisiae to Nitrogen Starvation in Wine Alcoholic Fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 7025–7034. [Google Scholar] [CrossRef] [PubMed]
- Sainz, J.; Pizarro, F.; Pérez-Correa, J.R.; Agosin, E. Modeling of Yeast Metabolism and Process Dynamics in Batch Fermentation: Modeling Yeast Metabolism. Biotechnol. Bioeng. 2003, 81, 818–828. [Google Scholar] [CrossRef]
- Marini, A.-M.; Soussi-Boudekou, S.; Vissers, S.; Andre, B. A Family of Ammonium Transporters in Saccharomyces Cerevisiae †. Mol. Cell. Biol. 1997, 17, 4282–4293. [Google Scholar] [CrossRef]
- Van Nuland, A.; Vandormael, P.; Donaton, M.; Alenquer, M.; Lourenço, A.; Quintino, E.; Versele, M.; Thevelein, J.M. Ammonium Permease-based Sensing Mechanism for Rapid Ammonium Activation of the Protein Kinase A Pathway in Yeast. Mol. Microbiol. 2006, 59, 1485–1505. [Google Scholar] [CrossRef] [PubMed]
- Manginot, C.; Roustan, J.L.; Sablayrolles, J.M. Nitrogen Demand of Different Yeast Strains during Alcoholic Fermentation. Importance of the Stationary Phase. Enzym. Microb. Technol. 1998, 23, 511–517. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Chiva, R.; Sancho, M.; Beltran, G.; Arroyo-López, F.N.; Guillamon, J.M. Nitrogen Requirements of Commercial Wine Yeast Strains during Fermentation of a Synthetic Grape Must. Food Microbiol. 2012, 31, 25–32. [Google Scholar] [CrossRef]
- Von Stockar, U.; Liu, J.-S. Does Microbial Life Always Feed on Negative Entropy? Thermodynamic Analysis of Microbial Growth. Biochim. Biophys. Acta (BBA)–Bioenerg. 1999, 1412, 191–211. [Google Scholar] [CrossRef]
- Steinmeyer, D.E.; Shuler, M.L. Structured Model for Saccharomyces Cerevisiae. Chem. Eng. Sci. 1989, 44, 2017–2030. [Google Scholar] [CrossRef]
- Pizarro, F.; Varela, C.; Martabit, C.; Bruno, C.; Pérez-Correa, J.R.; Agosin, E. Coupling Kinetic Expressions and Metabolic Networks for Predicting Wine Fermentations. Biotechnol. Bioeng. 2007, 98, 986–998. [Google Scholar] [CrossRef]
- Varela, C.; Pizarro, F.; Agosin, E. Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts. Appl. Environ. Microbiol. 2004, 70, 3392–3400. [Google Scholar] [CrossRef]
- Galazzo, J.L.; Bailey, J.E. Fermentation Pathway Kinetics and Metabolic Flux Control in Suspended and Immobilized Saccharomyces Cerevisiae. Enzym. Microb. Technol. 1990, 12, 162–172. [Google Scholar] [CrossRef]
- Schenk, C. Modeling, Simulation and Optimization of Wine Fermentation; Universität Trier: Trier, Germany, 2018. [Google Scholar]
- Florea, A.; Sipos, A.; Stoisor, M.-C. Applying AI Tools for Modeling, Predicting and Managing the White Wine Fermentation Process. Fermentation 2022, 8, 137. [Google Scholar] [CrossRef]
- Vlassides, S.; Ferrier, J.G.; Block, D.E. Using Historical Data for Bioprocess Optimization: Modeling Wine Characteristics Using Artificial Neural Networks and Archived Process Information. Biotechnol. Bioeng. 2001, 73, 55–68. [Google Scholar] [CrossRef]
- El Haloui, N.E.; Corrieu, G.; Cleran, Y.; Cheruy, A. Method for On-Line Prediction of Kinetics of Alcoholic Fermentation in Wine Making. J. Ferment. Bioeng. 1989, 68, 131–135. [Google Scholar] [CrossRef]
- Crépin, L.; Nidelet, T.; Sanchez, I.; Dequin, S.; Camarasa, C. Sequential Use of Nitrogen Compounds by Saccharomyces Cerevisiae during Wine Fermentation: A Model Based on Kinetic and Regulation Characteristics of Nitrogen Permeases. Appl. Environ. Microbiol. 2012, 78, 8102–8111. [Google Scholar] [CrossRef] [PubMed]
- Maisonnave, P.; Sanchez, I.; Moine, V.; Dequin, S.; Galeote, V. Stuck Fermentation: Development of a Synthetic Stuck Wine and Study of a Restart Procedure. Int. J. Food Microbiol. 2013, 163, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Julien, A.; Roustan, J.-L.; Dulau, L.; Sablayrolles, J.-M. Comparison of Nitrogen and Oxygen Demands of Enological Yeasts: Technological Consequences. Am. J. Enol. Vitic. 2000, 51, 215–222. [Google Scholar] [CrossRef]
- Blateyron, L.; Sablayrolles, J.M. Stuck and Slow Fermentations in Enology: Statistical Study of Causes and Effectiveness of Combined Additions of Oxygen and Diammonium Phosphate. J. Biosci. Bioeng. 2001, 91, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Killeen, D.J.; Boulton, R.; Knoesen, A. Advanced Monitoring and Control of Redox Potential in Wine Fermentation. Am. J. Enol. Vitic. 2018, 69, 394–399. [Google Scholar] [CrossRef]
- Tronchoni, J.; Gamero, A.; Arroyo-López, F.N.; Barrio, E.; Querol, A. Differences in the Glucose and Fructose Consumption Profiles in Diverse Saccharomyces Wine Species and Their Hybrids during Grape Juice Fermentation. Int. J. Food Microbiol. 2009, 134, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Bisson, L.F.; Fraenkel, D.G. Involvement of Kinases in Glucose and Fructose Uptake by Saccharomyces Cerevisiae. Proc. Natl. Acad. Sci. USA 1983, 80, 1730–1734. [Google Scholar] [CrossRef] [PubMed]
- Gould, G.W.; Bell, G.I. Facilitative Glucose Transporters: An Expanding Family. Trends Biochem. Sci. 1990, 15, 18–23. [Google Scholar] [CrossRef]
- Bisson, L.F.; Coons, D.M.; Kruckeberg, A.L.; Lewis, D.A. Yeast Sugar Transporters. Crit. Rev. Biochem. Mol. Biol. 1993, 28, 259–308. [Google Scholar] [CrossRef]
- Lagunas, R. Sugar Transport in Saccharomyces Cerevisiae. FEMS Microbiol. Lett. 1993, 104, 229–242. [Google Scholar] [CrossRef]
- Coons, D.M.; Boulton, R.B.; Bisson, L.F. Computer-Assisted Nonlinear Regression Analysis of the Multicomponent Glucose Uptake Kinetics of Saccharomyces Cerevisiae. J. Bacteriol. 1995, 177, 3251–3258. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Luyten, K.; Michel, R.; Riou, C.; Blondin, B. Analysis of Hexose Carrier Expression during Wine Fermentation: Both Low- and High-Affinity Hxt Transporters Are Expressed. FEMS Yeast Res. 2005, 5, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J.R.; Cirillo, V.P. Amino Acid Transport and Metabolism in Nitrogen-Starved Cells of Saccharomyces Cerevisiae. J. Bacteriol. 1977, 130, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Regenberg, B.; Düring-Olsen, L.; Kielland-Brandt, M.C.; Holmberg, S. Substrate Specificity and Gene Expression of the Amino-Acid Permeases in Saccharomyces Cerevisiae. Curr. Genet. 1999, 36, 317–328. [Google Scholar] [CrossRef]
- Garrett, J.M. Amino Acid Transport through the Saccharomyces Cerevisiae Gap1 Permease Is Controlled by the Ras/cAMP Pathway. Int. J. Biochem. Cell Biol. 2008, 40, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Grenson, M. Chapter 7 Amino Acid Transporters in Yeast: Structure, Function and Regulation. In New Comprehensive Biochemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 21, pp. 219–245. ISBN 978-0-444-89562-2. [Google Scholar]
- Schreve, J.L.; Garrett, J.M. Yeast Agp2p and Agp3p Function as Amino Acid Permeases in Poor Nutrient Conditions. Biochem. Biophys. Res. Commun. 2004, 313, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Chiva, R.; Baiges, I.; Mas, A.; Guillamon, J.M. The Role of GAP1 Gene in the Nitrogen Metabolism of Saccharomyces Cerevisiae during Wine Fermentation. J. Appl. Microbiol. 2009, 107, 235–244. [Google Scholar] [CrossRef]
- Jauniaux, J.; Grenson, M. GAP1, the General Amino Acid Permease Gene of Saccharomyces Cerevisiae: Nucleotide Sequence, Protein Similarity with the Other Bakers Yeast Amino Acid Permeases, and Nitrogen Catabolite Repression. Eur. J. Biochem. 1990, 190, 39–44. [Google Scholar] [CrossRef]
Model | Equations | Features |
---|---|---|
Boulton | Competitive inhibition of fructose and glucose Dual substrates of carbon (glucose, fructose) and nitrogen Ethanol inhibition Arrhenius temperature dependence of growth and death rates | |
Coleman | Substrate of only nitrogenSimple Monod growth | |
AWRI | Substrate of only nitrogenArrhenius temperature on maximum specific growth rate Ostwald–de Waale rheology model |
Model | Equations | Features |
---|---|---|
Boulton | Substrate utilization in formation of biomass and maintenance of biomass Separation of fructose and glucose Temperature-dependent maintenance term Specific maintenance rate () | |
Coleman | Substrate utilization in the formation of ethanol | |
AWRI | Substrate utilization in the formation of ethanol |
Model | Equations | Features |
---|---|---|
Boulton | 95% of theoretical yield of 92.14/180.16 | |
Coleman | Monod form with specific sugar utilization rate constant | |
AWRI | indicating no to significant mixing outside of natural mixing from CO2 formation Herschel–Bulkley rheological model |
Model | Equations | Features |
---|---|---|
Boulton | Time and ethanol dependence | |
Coleman | Exponential decay in time | |
AWRI | Exponential self-inhibition of ethanol Exponential decay in time |
Model | Equations | Features |
---|---|---|
Boulton | Describes the rate of temperature increase as a function of the enthalpy (), density (), specific heat capacity (), overall heat transfer coefficient (), heat exchange area (), volume of juice () juice temperature () and refrigerant temperature (). |
Model | Equations | Features |
---|---|---|
Boulton | Glycerol formation of 6.6% ethanol Volume components estimated from molar volume | |
AWRI | for cool climate, other or warm climate |
States | Boulton | Coleman | AWRI |
---|---|---|---|
Total Biomass | X | X | X |
Active/Viable Biomass | X | X | X |
Fructose | X | ||
Glucose | X | ||
Total Sugar | X | X | X |
Assimilable Nitrogen | X | X | X |
Ethanol | X | X | X |
Glycerol | X | ||
Density | X | X | |
Weight Loss | X | ||
Volume Change | X | ||
Energy | X | ||
Carbon Dioxide | X | ||
Ethanol Vapor | X | ||
Water Vapor | X |
Initial Biomass 1 (g/L) | Initial Nitrogen (mg/L) | Initial Sugar (g/L) | Temperature (°C) | |
---|---|---|---|---|
Dataset 1 | 0.25 | 100 | 300 | 11 |
Dataset 2 | 0.25 | 80 | 265 | 15 |
Dataset 3 | 0.25 | 330 | 265 | 30 |
Dataset 4 | 0.25 | 70 | 300 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, J.; Boulton, R. Models for Wine Fermentation and Their Suitability for Commercial Applications. Fermentation 2024, 10, 269. https://doi.org/10.3390/fermentation10060269
Nelson J, Boulton R. Models for Wine Fermentation and Their Suitability for Commercial Applications. Fermentation. 2024; 10(6):269. https://doi.org/10.3390/fermentation10060269
Chicago/Turabian StyleNelson, James, and Roger Boulton. 2024. "Models for Wine Fermentation and Their Suitability for Commercial Applications" Fermentation 10, no. 6: 269. https://doi.org/10.3390/fermentation10060269
APA StyleNelson, J., & Boulton, R. (2024). Models for Wine Fermentation and Their Suitability for Commercial Applications. Fermentation, 10(6), 269. https://doi.org/10.3390/fermentation10060269