GC-Olfactometric Analysis as a Tool for Comprehensive Characterization of Aromatic Profiles in Cocoa-Based Beverages with a Natural Chocolate Substitute
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Beverage Formulations
2.3. SPME-GC-MS and GC-O Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Final Considerations about the GC-Olfactometric Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A10 | phenylacetaldehyde |
A11 | trimethylpyrazine |
A12 | 2,3-dimethyl-5-ethylpyrazine |
A14 | eucalyptol |
A15 | methylpropylpyrazine |
A16 | 4-terpineol |
A17 | 3-methylbutyl-methylpyrazine |
A20 | 2,3,5-Trimethyl-6-isopentylpyrazine |
A4 | 2-methyl butanal and 3-methyl butanal |
A6 | heptanal |
A8 | 2,3-dimethylpyrazine |
B15 | 2,3-diethyl-5methylpyrazine |
B4 | 2,3-butanediol |
B8 | 2-phenylethyl ester |
CTRLBev | control formulation containing non-alkaline cocoa powder |
DJS | dry jackfruit seed flour |
DJSBev | beverage formulation containing dry jackfruit seed flour |
FJS | fermented jackfruit seed flour |
FJSBev | beverage formulation containing fermented jackfruit seed flour |
GC-MS | gas chromatography-mass spectrometry |
GC-O | gas chromatography-olfactometry |
LRIs | linear retention indices |
PCA | principal components analysis |
SPME | solid-phase microextraction |
Z28, A13, and A15 | methyl-2-methylpropylpyrazine compounds |
Z32 | ethyl 2-methylpropylpyrazine |
Z36 | ethyl (3-methylbutyl)pyrazine |
Z37 | ethyl-3-(2-methylbutyl) pyrazine |
References
- Barišić, V.; Icyer, N.C.; Akyil, S.; Toker, O.S.; Flanjak, I.; Ačkar, Đ. Cocoa based beverages—Composition, nutritional value, processing, quality problems and new perspectives. Trends Food Sci. Technol. 2023, 132, 65–75. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef]
- Montoya, C.C.; Valencia, W.G.; Sierra, J.A.; Penagos, L. Enhanced pink-red hues in processed powders from unfermented cacao beans. LWT 2021, 138, 110671. [Google Scholar] [CrossRef]
- Spada, F.P.; Balagiannis, D.P.; Purgatto, E.; do Alencar, S.M.; Canniatti-Brazaca, S.G.; Parker, J.K. Characterisation of the chocolate aroma in roast jackfruit seeds. Food Chem. 2021, 354, 129537. [Google Scholar] [CrossRef]
- Donald, P.F. Biodiversity Impacts of Some Agricultural Commodity Production Systems. Conserv. Biol. 2004, 18, 17–38. [Google Scholar] [CrossRef]
- Igawa, T.K.; de Toledo, P.M.; Anjos, L.J.S. Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050. PLoS ONE 2022, 17, e0262729. [Google Scholar] [CrossRef] [PubMed]
- Heming, N.M.; Schroth, G.; Talora, D.C.; Faria, D. Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agron. Sustain. Dev. 2022, 42, 48. [Google Scholar] [CrossRef]
- Fadel, H.M.; Abdel Mageed, M.A.; Abdel Kader, M.E.; Abdel Samad, M.E.; Lotfy, S.N. Cocoa substitute: Evaluation of sensory qualities and flavour stability. Eur. Food Res. Technol. 2006, 223, 125–131. [Google Scholar] [CrossRef]
- Fruits, I.T.; Jackfruit Heralded as Miracle Crop. International Tropical Foods Network. Available online: www.itfnet.org/v1/2014/04/jackfruit-heralded-as-miracle-food-crop (accessed on 30 January 2024).
- Hartati, F.K. Utilization of Jackfruit (Artocarpus Heterophyllus) Seeds as Raw Material for Vegetable Milk. Int. J. Curr. Sci. Res. Rev. 2022, 5, 3134–3140. Available online: https://ijcsrr.org/single-view/?id=7201&pid=7006 (accessed on 30 January 2024). [CrossRef]
- Spada, F.P.; Zerbeto, L.M.; Ragazi, G.B.C.; Gutierrez, É.M.R.; Souza, M.C.; Parker, J.K.; Canniatti-Brazaca, S.G. Optimization of Postharvest Conditions To Produce Chocolate Aroma from Jackfruit Seeds. J. Agric. Food Chem. 2017, 65, 1196–1208. [Google Scholar] [CrossRef]
- Spada, F.P.; da Silva, P.P.M.; Mandro, G.F.; Margiotta, G.B.; Spoto, M.H.F.; Canniatti-Brazaca, S.G. Physicochemical characteristics and high sensory acceptability in cappuccinos made with jackfruit seeds replacing cocoa powder. PLoS ONE 2018, 13, e0197654. [Google Scholar] [CrossRef]
- Kyraleou, M.; Herb, D.; O’reilly, G.; Conway, N.; Bryan, T.; Kilcawley, K.N. The impact of terroir on the flavour of single malt whisk(E)y new make spirit. Foods 2021, 10, 443. [Google Scholar] [CrossRef]
- Hausch, B.J.; Arpaia, M.L.; Kawagoe, Z.; Walse, S.; Obenland, D. Chemical Characterization of Two California-Grown Avocado Varieties (Persea americana Mill.) over the Harvest Season with an Emphasis on Sensory-Directed Flavor Analysis. J. Agric. Food Chem. 2020, 68, 15301–15310. [Google Scholar] [CrossRef]
- Lara-Hidalgo, C.; Belloch, C.; Dorantes-Alvarez, L.; Flores, M. Contribution of autochthonous yeasts with probiotic potential to the aroma profile of fermented Guajillo pepper sauce. J. Sci. Food Agric. 2020, 100, 4940–4949. [Google Scholar] [CrossRef]
- Witrick, K.; Pitts, E.R.; O’keefe, S.F. Analysis of lambic beer volatiles during aging using gas chromatography–mass spectrometry (Gcms) and gas chromatography–olfactometry (gco). Beverages 2020, 6, 31. [Google Scholar] [CrossRef]
- d’Acampora Zellner, B.; Dugo, P.; Dugo, G.; Mondello, L. Gas chromatography-olfactometry in food flavour analysis. J. Chromatogr. A 2008, 1186, 123–143. [Google Scholar] [CrossRef]
- Kowalska, J.; Kowalska, H.; Cieślak, B.; Majewska, E.; Ciecierska, M.; Derewiaka, D.; Lenart, A. Influence of sucrose substitutes and agglomeration on volatile compounds in powdered cocoa beverages. J. Food Sci. Technol. 2020, 57, 350–363. [Google Scholar] [CrossRef]
- Guerra, P.V.; Yaylayan, V.A. Dimerization of azomethine ylides: An alternate route to pyrazine formation in the maillard reaction. J. Agric. Food Chem. 2010, 58, 12523–12529. [Google Scholar] [CrossRef]
- Yaylayan, V.A. Recent Advances in the Chemistry of Strecker Degradation and Amadori Rearrangement: Implications to Aroma and Color Formation. Food Sci. Technol. Res. 2003, 9, 1–6. [Google Scholar] [CrossRef]
- Low, M.Y.; Parker, J.K.; Mottram, D.S. Mechanisms of alkylpyrazine formation in a potato model system containing added glycine. J. Agric. Food Chem. 2007, 55, 4087–4094. [Google Scholar] [CrossRef]
- Frauendorfer, F.; Schieberle, P. Changes in key aroma compounds of Criollo cocoa beans during roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef]
- Cometto-Muñiz, J.E.; Abraham, M.H. Structure-activity relationships on the odor detectability of homologous carboxylic acids by humans. Exp. Brain Res. 2010, 207, 75–84. [Google Scholar] [CrossRef]
- Afoakwa, E.O. Cocoa Cultivation, Bean Composition and Chocolate Flavour Precursor Formation. In Chocolate Science and Technology; Wiley Blackwell: Oxford, UK, 2010; pp. 12–34. [Google Scholar]
- Bonvehí, J.S. Investigation of aromatic compounds in roasted cocoa powder. Eur. Food Res. Technol. 2005, 221, 19–29. [Google Scholar] [CrossRef]
- Parker, J.K. Introduction to aroma compounds in foods. In Flavour Development, Analysis and Perception in Food and Beverages; Parker, J.K., Elmore, J.S., Methven, L., Eds.; Woodhead: Cambridge, UK, 2015; pp. 3–30. [Google Scholar]
- Counet, C.; Callemien, D.; Ouwerx, C.; Collin, S. Use of Gas Chromatography-Olfactometry to Identify Key Odorant Compounds in Dark Chocolate. Comparison of Samples before and after Conching. J. Agric. Food Chem. 2002, 50, 2385–2391. [Google Scholar] [CrossRef]
- Güntert, M.; Krammer, G.; Lambrecht, S.; Sommer, H.; Surburg, H.; Werkhoff, P. Flavor Chemistry of Peppermint Oil (Mentha Piperita L.). In Aroma Active Compounds in Foods; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 794, pp. 10–119. ISBN 9780841236943. [Google Scholar]
- Owusu, M.; Petersen, M.A.; Heimdal, H. Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. J. Food Process. Preserv. 2012, 36, 446–456. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Paraskevopoulou, A.; Pantazi, F.; Skendi, A. Cake perception, texture and aroma profile as affected by wheat flour and cocoa replacement with carob flour. Foods 2020, 9, 1586. [Google Scholar] [CrossRef]
- Siegmund, B. Biogenesis of aroma compounds: Flavour formation in fruits and vegetables. In Flavour Development, Analysis and perception in Food and Beverages, 1st ed.; Parker, J.K., Elmore, S., Methven, L., Eds.; Woodhead: Cambridge, UK, 2015; pp. 125–144. [Google Scholar]
- Bull, S.P.; Hong, Y.; Khutoryanskiy, V.V.; Parker, J.K.; Faka, M.; Methven, L. Whey protein mouth drying influenced by thermal denaturation. Food Qual. Prefer. 2015, 56, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, M.; He, C.; Song, H.; Guo, J.; Wang, Y.; Yang, H.; Su, X. A comparative study of aroma-active compounds between dark and milk chocolate: Relationship to sensory perception. J. Sci. Food Agric. 2015, 95, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Spada, F.P.; de Alencar, S.M.; Purgatto, E. Comprehensive chocolate aroma characterization in beverages containing jackfruit seed flours and cocoa powder. Future Foods 2022, 6, 100158. [Google Scholar] [CrossRef]
Ingredients (%) | CTRLBev | FJSBev | DJSBev |
---|---|---|---|
Jackfruit seed flour | 0 | 12.5 | 18.75 |
Cocoa powder | 25.0 | 12.5 | 6.25 |
Powdered sugar ** | 41.5 | 41.5 | 41.5 |
Powdered milk | 30.35 | 30.35 | 30.35 |
Sodium bicarbonate | 1.75 | 1.75 | 1.75 |
Powdered cinnamon | 0.4 | 0.4 | 0.4 |
Soy lecithin | 0.5 | 0.5 | 0.5 |
Xanthan gum | 0.5 | 0.5 | 0.5 |
Total | 100 | 100 | 100 |
ID | LRI (Calculated) | LRI (Literature) | Similarity (%) | GC-MS | GC-O Scores (Mean) | Aroma Descriptor | Ref. Aroma | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DB5 | Crtl | Dry | Fermented | Ctrl | Dry | Fermented | ||||||
Compounds typically found in chocolate or cocoa aroma | ||||||||||||
A4 | 2 or 3-methyl butanal | <650 | 642 | 90 | X | X | X | 4 | 4 | 4 | Malty cocoa | [18,19,20,21,22,23] |
A11 | trimethylpyrazine | 995–998 | 997 | 96 | X | X | X | 4 | 6 | 5 | Peanuts | [18,19,20,21,22,23] |
A10 | phenylacetaldehyde | 1046–1047 | 1045 | 98 | X | X | X | 2 | 3 | 3 | Rose | [18,19,20,21,22,23] |
A12 | 2,3-dimethyl-5-ethylpyrazine | 1079 | 1080 | 96 | X | X | X | 5 | 7 | 7 | Pyrazines and cocoa | [21] |
B8 | 2-phenylethyl ester | 1262 | 1244 | 95 | X | X | X | 3 | 7 | 7 | Jam scum | [24,25,26] |
Major compounds found in the beverages | ||||||||||||
B4 | 2,3-butanediol | 800 | 795 | 95 | X | X | X | 3 | 5 | 5 | Cream, butter, and fruit | [27,28] |
A6 | heptanal | 905 | 903 | 92 | X | X | X | 3 | 7 | 2 | Green | [29,30] |
A8 | 2,3-dimethylpyrazine | 929 | 930 | 94 | X | X | X | 4 | 4 | 4 | Cocoa, hazelnut, peanut butter, and roasted | [27] |
Z28 | a methyl-2-methylpropylpyrazine | 1137 | 1138 | 96 | X | ni | 3 | ni | Carbolic soap or jackfruit seeds | [4] | ||
A13 | a methyl-2-methylpropylpyrazine | 1137 | 1140 | 96 | X | X | X | 9 | 9 | 9 | Carbolic soap or jackfruit seeds | [4] |
A15 | a methyl-2-methylpropylpyrazine | 1137 | 1149 | 96 | X | X | X | 5 | 5 | 5 | Carbolic soap or jackfruit seeds | [4] |
A14 | eucalyptol | 1140 | 1132 | 96 | X | X | X | 5 | 7 | 6 | Cool, mint, and sweet | [28] |
B15 | 2,3-diethyl-5-methylpyrazine | 1159 | 1156 | 94 | X | X | X | 5 | 4 | 4 | Chocolate, earth, and roast | [26] |
A16 | 4-terpineol | 1194 | 1182 | 96 | X | X | X | 2 | 5 | 4 | Camphoraceous and earth | |
Z32 | an ethyl-2-methylpropylpyrazine | 1245 | 1240 | 95 | X | ni | 6 | ni | Pyrazines and cocoa | [25] | ||
A17 | a (3-methylbutyl)-methylpyrazine | 1254 | 1258 | 90 | X | X | X | 4 | 6 | 5 | Pyrazines, hot dry and cocoa | [25] |
Z37 | an ethyl-3-(2-methylbutyl)pyrazine | 1320 | nf | 91 | X | X | ni | 3 | 4 | Green, roast, and sweet | [27] | |
Z36 | an ethyl (3-methylbutyl) pyrazine | 1329 | nf | 86 | X | ni | ni | ni | Carbolic soap or jackfruit seeds | [4] | ||
A20 | 2,3,5-trimethyl-6-isopentylpyrazine | 1392 | 1387 | 73 | X | X | X | 3 | 2 | 6 | Cocoa category | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spada, F.P.; de Alencar, S.M.; Junior, S.B.; Purgatto, E. GC-Olfactometric Analysis as a Tool for Comprehensive Characterization of Aromatic Profiles in Cocoa-Based Beverages with a Natural Chocolate Substitute. Fermentation 2024, 10, 228. https://doi.org/10.3390/fermentation10050228
Spada FP, de Alencar SM, Junior SB, Purgatto E. GC-Olfactometric Analysis as a Tool for Comprehensive Characterization of Aromatic Profiles in Cocoa-Based Beverages with a Natural Chocolate Substitute. Fermentation. 2024; 10(5):228. https://doi.org/10.3390/fermentation10050228
Chicago/Turabian StyleSpada, Fernanda Papa, Severino Matias de Alencar, Stanislau Bogusz Junior, and Eduardo Purgatto. 2024. "GC-Olfactometric Analysis as a Tool for Comprehensive Characterization of Aromatic Profiles in Cocoa-Based Beverages with a Natural Chocolate Substitute" Fermentation 10, no. 5: 228. https://doi.org/10.3390/fermentation10050228
APA StyleSpada, F. P., de Alencar, S. M., Junior, S. B., & Purgatto, E. (2024). GC-Olfactometric Analysis as a Tool for Comprehensive Characterization of Aromatic Profiles in Cocoa-Based Beverages with a Natural Chocolate Substitute. Fermentation, 10(5), 228. https://doi.org/10.3390/fermentation10050228