Effect of Chemical and Microbial Additives on Fermentation Profile, Chemical Composition, and Microbial Populations of Whole-Plant Soybean Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Chemical Compositions, Fermentative Profiles, and Microorganism Counts
2.3. Dry Matter Losses
2.4. In Situ Degradability
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of By-Products from Soybean (Glycine max (L.) Merr.) Processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Kent, UK, 1991. [Google Scholar]
- Yang, J.; Tan, H.; Cai, Y. Characteristics of Lactic Acid Bacteria Isolates and Their Effect on Silage Fermentation of Fruit Residues. J. Dairy Sci. 2016, 99, 5325–5334. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Da Silva, T.C.; Ribeiro, K.G.; Mantovani, H.C.; Santos, S.A. Effects of Lactic Acid Bacteria with Bacteriocinogenic Potential on the Fermentation Profile and Chemical Composition of Alfalfa Silage in Tropical Conditions. J. Dairy Sci. 2016, 99, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, B.D.; Meeske, R.; Langa, T.; Motiang, M.D.; Modiba, S.; Mkhize, N.R.; Groenewald, I.B. Effects of Ensiling Forage Soybean (Glycine max (L.) Merr.) with or without Bacterial Inoculants on the Fermentation Characteristics, Aerobic Stability and Nutrient Digestion of the Silage by Damara Rams. Small Rumin. Res. 2016, 134, 90–96. [Google Scholar] [CrossRef]
- De Morais, J.P.G.; Cantoia Júnior, R.; Garcia, T.M.; Capucho, E.; Campana, M.; Gandra, J.R.; Ghizzi, L.G.; Del Valle, T.A. Chitosan and Microbial Inoculants in Whole-Plant Soybean Silage. J. Agric. Sci. 2021, 159, 227–235. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Wu, S.; Zou, X.; Chen, X.; Ge, L.; Zhang, Q. Effects of Gallic Acid on Fermentation Parameters, Protein Fraction, and Bacterial Community of Whole Plant Soybean Silage. Front. Microbiol. 2021, 12, 662966. [Google Scholar] [CrossRef] [PubMed]
- Castle, M.E.; Watson, J.N. Silage and Milk Production, a Comparison between Grass Silages Made with and without Formic acid. Grass Forage Sci. 1970, 25, 65–71. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Auerbach, H.U.; Gomes, A.L.M.; Weiss, K. Applying the Benzoate Equivalent Concept in Rehydrated Corn Grain Silage. Anim. Feed Sci. Technol. 2022, 294, 115482. [Google Scholar] [CrossRef]
- de, S. Martins, A.; de Oliveira, J.R.; Lederer, M.L.; Moletta, J.L.; Galetto, S.L.; Pedrosa, V.B. Níveis de Inclusão de Glicerol Nas Silagens de Milho e Girassol. Ciência Agrotecnologia 2014, 38, 497–505. [Google Scholar] [CrossRef]
- Wei, S.N.; Li, Y.F.; Jeong, E.C.; Kim, H.J.; Kim, J.G. Effects of Formic Acid and Lactic Acid Bacteria Inoculant on Main Summer Crop Silages in Korea. J. Anim. Sci. Technol. 2021, 63, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Fehr, W.R.; Caviness, C.E. Stage of Soybean Development; Special Report 80; Iowa State University: Ames, IA, USA, 1977. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 7th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Undersander, D.; Mertens, D.R.; Thiex, N. Forage Analyses Procedures; National Forage Testing Association: Omaha, NE, USA, 1993. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Kung, L.; Grieve, D.B.; Thomas, J.W.; Huber, J.T. Added Ammonia or Microbial Inocula for Fermentation and Nitrogenous Compounds of Alfalfa Ensiled at Various Percents of Dry Matter. J. Dairy Sci. 1984, 67, 299–306. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Pryce, J.D. A Modification of the Barker-Summerson Method for the Determination of Lactic Acid. Analyst 1969, 94, 1151–1152. [Google Scholar] [CrossRef] [PubMed]
- Graciela Briceño, A.; Martínez, R. Comparison of Methodologies for the Detection and Enumeration of Lactic Acid Bacteria in Yogurt. Arch. Latinoam. Nutr. 1995, 45, 207–212. [Google Scholar]
- Rabie, C.J.; Lübben, A.; Marais, G.J.; Jansen Van Vuuren, H. Enumeration of Fungi in Barley. Int. J. Food Microbiol. 1997, 35, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Avanços Metodológicos na Avaliação da Qualidade da Forragem Conservada. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- Casali, A.O.; Detmann, E.; Valadares Filho, S.D.C.; Pereira, J.C.; Henriques, L.T.; De Freitas, S.G.; Paulino, M.F. Influência do Tempo de Incubação e do Tamanho de Partículas Sobre os Teores de Compostos Indigestíveis em Alimentos e Fezes Bovinas Obtidos por Procedimentos in Situ. Rev. Bras. Zootec. 2008, 37, 335–342. [Google Scholar] [CrossRef]
- Jiang, F.G.; Cheng, H.J.; Liu, D.; Wei, C.; An, W.J.; Wang, Y.F.; Sun, H.T.; Song, E.L. Treatment of Whole-Plant Corn Silage with Lactic Acid Bacteria and Organic Acid Enhances Quality by Elevating Acid Content, Reducing PH, and Inhibiting Undesirable Microorganisms. Front. Microbiol. 2020, 11, 593088. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, M.; Liu, Y.; Wang, J.; He, X.; Zhao, Y.; Chen, Y.; Cheng, Q.; Chen, C. Lactic Acid Bacteria and Formic Acid Improve Fermentation Quality and Beneficial Predicted Functional Characteristics in Mixed Silage Consisting of Alfalfa and Perennial Ryegrass. Fermentation 2024, 10, 43. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 7th ed.; W.H. Freeman: New York, NY, USA, 2017. [Google Scholar]
- Kung, L., Jr.; Stokes, M.R.; Lin, C.J. Silage Additives. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Inc.; Crop Science Society of America, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 2003; pp. 305–360. [Google Scholar]
- Gheller, L.S.; Ghizzi, L.G.; Takiya, C.S.; Grigoletto, N.T.S.; Silva, T.B.P.; Marques, J.A.; Dias, M.S.S.; Freu, G.; Rennó, F.P. Different Organic Acid Preparations on Fermentation and Microbiological Profile, Chemical Composition, and Aerobic Stability of Whole-Plant Corn Silage. Anim. Feed Sci. Technol. 2021, 281, 115083. [Google Scholar] [CrossRef]
- Filya, I.; Sucu, E.; Karabulut, A. The Effect of Propionibacterium Acidipropionici, with or without Lactobacillus plantarum, on the Fermentation and Aerobic Stability of Wheat, Sorghum and Maize Silages. J. Appl. Microbiol. 2004, 97, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Moon, N.J. Inhibition of the Growth of Acid Tolerant Yeasts by Acetate, Lactate and Propionate and Their Synergistic Mixtures. J. Appl. Bacteriol. 1983, 55, 453–460. [Google Scholar] [CrossRef]
- Gandra, J.R.; Takiya, C.S.; Del Valle, T.A.; Oliveira, E.R.; de Goes, R.H.T.B.; Gandra, E.R.S.; Batista, J.D.O.; Araki, H.M.C. Soybean Whole-Plant Ensiled with Chitosan and Lactic Acid Bacteria: Microorganism Counts, Fermentative Profile, and Total Losses. J. Dairy Sci. 2018, 101, 7871–7880. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Hristov, A.N. The Fundamentals of Making Good Quality Silages. Adv. Dairy Technol. 2000, 12, 381–399. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, E.; Laudadio, V.; Corleto, A.; Tufarelli, V. Effects of Harvest Date, Wilting and Inoculation on Yield and Forage Quality of Ensiling Safflower (Carthamus tinctorius L.) Biomass. J. Sci. Food Agric. 2011, 91, 2298–2302. [Google Scholar] [CrossRef] [PubMed]
- Pordeus, N.M.; Oliveira, E.R.; Takiya, C.S.; Rennó, F.P.; Silva, M.S.J.; Peixoto, E.L.T.; Oliveira, K.M.P.; Marques, O.F.C.; Silva, J.T.; Neves, N.F.; et al. Snaplage with Microbial Inoculant or Organic Acids Has Altered Fermentative Losses, Microorganism Counts, Starch Content and Improves Feed Intake, Digestibility and Modulates Ruminal Fermentation in Lambs. N. Z. J. Agric. Res. 2022, 66, 349–365. [Google Scholar] [CrossRef]
- Grajewski, J.; Potkański, A.; Raczkowska-Werwinska, K.; Twarużek, M.; Miklaszewska, B.; Gubala, A.; Selwet, M. Hygienic Quality of Corn Silage with a Biological and Chemical Additive. Med. Weter. 2007, 63, 205–208. [Google Scholar]
- Selwet, M. Effect of Propionic and Formic Acid Mixtures on the Fermentation, Fungi Development and Aerobic Stability of Maize Silage. Polish J. Agron. 2009, 1, 37–42. [Google Scholar]
- Rowghani, E.; Zamiri, M.J. The Effects of a Microbial Inoculant and Formic Acid as Silage Additives on Chemical Composition, Ruminal Degradability and Nutrient Digestibility of Corn Silage in Sheep. Iran. J. Vet. Res. 2009, 10, 110–118. [Google Scholar]
- Junges, D.; Morais, G.; Spoto, M.H.F.; Santos, P.S.; Adesogan, A.T.; Nussio, L.G.; Daniel, J.L.P. Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. J. Dairy Sci. 2017, 100, 9048–9051. [Google Scholar] [CrossRef] [PubMed]
- Slottner, D.; Bertilsson, J. Effect of ensiling technology on protein degradation during ensilage. Anim. Feed Sci. Technol. 2006, 127, 101–111. [Google Scholar] [CrossRef]
- Herremans, S.; Decruyenaere, V.; Beckers, Y.; Froidmont, E. Silage additives to reduce protein degradation during ensiling and evaluation of in vitro ruminal nitrogen degradability. Grass Forage Sci. 2018, 74, 86–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Item (% DM) | Mean | SD |
---|---|---|
Chemical | ||
Dry matter | 36.7 | 0.23 |
Organic matter | 93.6 | 0.13 |
Crude protein | 16.5 | 0.02 |
Neutral detergent insoluble nitrogen | 4.44 | 0.56 |
Acid detergent insoluble nitrogen | 2.73 | 0.04 |
Ether extract | 7.90 | 0.15 |
Neutral detergent fiber | 39.4 | 0.43 |
Acid detergent fiber | 29.9 | 0.19 |
Lignin | 7.06 | 0.69 |
Non-fiber carbohydrate | 29.6 | 0.23 |
Total digestible nutrient | 67.5 | 0.36 |
NEL (Mcal/kg) 1 | 1.53 | 0.02 |
Degradation | ||
A-fraction 2 | 314 | 45.4 |
B-fraction 3 | 398 | 40.1 |
C-fraction 4 | 288 | 23.5 |
Kdb (g/kg/h) 5 | 92.9 | 9.74 |
Effective degradability 6 | ||
20 | 641 | 29.2 |
50 | 572 | 35.9 |
80 | 527 | 39.6 |
Item | Treatment 1 | SEM | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | INO | FA Type | PA Type | Trt | Time | Trt × Time | C1 | C2 | C3 | ||
pH | 5.38 | 5.54 | 4.33 | 4.74 | 0.053 | <0.0001 | 0.039 | 0.002 | <0.0001 | <0.0001 | <0.0001 |
NH3-N (g/kg total N) | 43.7 | 45.6 | 30.5 | 32.7 | 2.658 | 0.002 | <0.0001 | 0.001 | 0.021 | <0.0001 | 0.578 |
Ethanol (g/kg DM) | 0.897 | 1.00 | 0.846 | 0.812 | 0.039 | 0.005 | <0.0001 | <0.0001 | 0.783 | <0.0001 | 0.468 |
Lactic acid (g/kg DM) | 9.90 | 11.8 | 12.6 | 12.4 | 0.767 | 0.021 | 0.421 | 0.254 | 0.001 | 0.214 | 0.547 |
Acetic acid (g/kg DM) | 3.85 | 3.90 | 3.17 | 3.03 | 0.091 | <0.0001 | <0.0001 | <0.0001 | 0.009 | <0.0001 | 0.422 |
Propionic acid (g/kg DM) | 0.991 | 1.15 | 0.977 | 1.17 | 0.037 | 0.008 | <0.0001 | <0.0001 | 0.063 | 0.205 | 0.007 |
Butyric acid (g/kg DM) | 6.68 | 9.26 | 7.31 | 8.16 | 0.660 | 0.006 | <0.0001 | <0.0001 | 0.003 | 0.006 | 0.184 |
Isobutyric acid (g/kg DM) | 0.427 | 0.523 | 0.394 | 0.465 | 0.033 | 0.006 | <0.0001 | <0.0001 | 0.196 | 0.008 | 0.024 |
Valeric acid (g/kg DM) | 0.694 | 0.988 | 0.711 | 0.865 | 0.062 | <0.0001 | <0.0001 | 0.608 | <0.0001 | <0.0001 | 0.167 |
Isovaleric acid (g/kg DM) | 0.694 | 0.865 | 0.663 | 0.841 | 0.060 | 0.002 | <0.0001 | <0.0001 | 0.031 | 0.016 | 0.001 |
BCFA 3 (g/kg DM) | 1.81 | 2.37 | 1.76 | 2.17 | 0.152 | 0.004 | <0.0001 | <0.0001 | 0.027 | 0.003 | 0.012 |
Microorganism counts (log10) | |||||||||||
Lactic acid bacteria | 7.24 | 7.58 | 6.38 | 6.73 | 0.067 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Anaerobic bacteria | 6.27 | 5.90 | 4.99 | 6.43 | 0.120 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Mold and yeast | 5.20 | 4.92 | 5.64 | 3.65 | 0.201 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Item | Treatment 1 | SEM | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | INO | FA Type | PA Type | Trt | Time | Trt × Time | C1 | C2 | C3 | ||
Losses | |||||||||||
Gas (% DM) | 13.8 | 16.5 | 4.96 | 6.51 | 0.546 | <0.0001 | <0.0001 | 0.008 | <0.0001 | <0.0001 | 0.032 |
Effluent (kg/ton) | 9.55 | 10.8 | 10.2 | 6.16 | 0.436 | 0.001 | <0.0001 | 0.913 | 0.562 | 0.005 | 0.002 |
Total (% DM) | 14.7 | 17.4 | 5.96 | 7.09 | 0.556 | <0.0001 | <0.0001 | 0.006 | <0.0001 | <0.0001 | 0.127 |
DM recovery (%) | 86.2 | 83.5 | 95.0 | 93.5 | 0.546 | <0.0001 | <0.0001 | 0.003 | <0.0001 | <0.0001 | 0.032 |
Item | Treatment 1 | SEM | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | INO | FA Type | PA Type | Trt | Time | Trt × Time | C1 | C2 | C3 | ||
Dry matter | 332 | 323 | 362 | 355 | 1.929 | <0.0001 | <0.0001 | 0.017 | <0.0001 | <0.0001 | 0.214 |
Organic matter | 920 | 919 | 929 | 929 | 0.606 | <0.0001 | 0.081 | 0.004 | <0.0001 | <0.0001 | 0.518 |
Crude protein | 174 | 176 | 192 | 195 | 1.788 | <0.0001 | <0.0001 | 0.028 | <0.0001 | <0.0001 | 0.566 |
Ether extract | 83.6 | 81.9 | 81.3 | 84.6 | 0.835 | 0.114 | <0.0001 | <0.0001 | 0.405 | 0.402 | 0.132 |
Neutral detergent fiber | 435 | 409 | 375 | 410 | 3.535 | <0.0001 | 0.006 | <0.0001 | <0.0001 | 0.019 | <0.0001 |
Acid detergent fiber | 278 | 277 | 294 | 282 | 2.732 | 0.003 | <0.0001 | 0.001 | 0.067 | 0.002 | 0.004 |
Lignin | 81.5 | 80.4 | 86.7 | 82.6 | 0.881 | 0.008 | <0.0001 | 0.008 | 0.179 | 0.003 | 0.010 |
Non-fiber carbohydrate | 227 | 253 | 280 | 240 | 4.059 | <0.0001 | <0.0001 | 0.595 | <0.0001 | 0.319 | <0.0001 |
Total digestible nutrient | 653 | 657 | 671 | 667 | 1.290 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.085 |
NEL 3 (Mcal/kg) | 1.58 | 1.59 | 1.63 | 1.62 | 0.003 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.095 |
Item | Treatment 1 | Storage Length (d) | SEM | p-Value 2 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | INO | FA Type | PA Type | 30 | 60 | 90 | 120 | 150 | 180 | Trt | Time | Trt × Time | C1 | C2 | C3 | C1 × Time | C2 × time | C3 × Time | ||
Protein fractions (g/kg CP) 3 | ||||||||||||||||||||
A-fraction | 274 | 252 | 345 | 367 | 326 | 326 | 296 | 315 | 305 | 325 | 34.0 | <0.001 | 0.587 | 0.093 | 0.006 | <0.001 | 0.273 | 0.064 | 0.110 | 0.537 |
B-fraction | 354 | 379 | 328 | 318 | 355 | 357 | 333 | 351 | 338 | 336 | 6.7 | <0.001 | 0.623 | 0.273 | 0.301 | <0.001 | 0.441 | 0.489 | 0.089 | 0.558 |
C-fraction | 372 | 369 | 326 | 315 | 320 | 348 | 352 | 359 | 357 | 338 | 30.1 | <0.001 | 0.164 | 0.028 | 0.002 | <0.001 | 0.401 | 0.058 | 0.023 | 0.390 |
Kdb 4 (g/kg/h) | 115 | 97 | 298 | 112 | 180 | 215 | 133 | 115 | 150 | 138 | 32.4 | 0.002 | 0.743 | 0.980 | 0.268 | 0.034 | 0.002 | 0.949 | 0.957 | 0.643 |
Effective degradability 5 | ||||||||||||||||||||
20 | 558 | 560 | 625 | 623 | 625 | 604 | 577 | 582 | 575 | 587 | 26.1 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.734 | 0.026 | 0.001 | 0.189 |
50 | 501 | 495 | 585 | 570 | 574 | 555 | 520 | 526 | 521 | 531 | 23.1 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.012 | 0.002 | <0.001 | 0.276 |
80 | 465 | 453 | 558 | 537 | 540 | 522 | 485 | 489 | 487 | 498 | 22.1 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | 0.001 | 0.002 | 0.001 | 0.580 |
Item/Storage Length | Treatment 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|
CON | INO | FA Type | PA Type | Trt | C1 | C2 | C3 | |
A | ||||||||
30 | 342 | 312 | 318 | 331 | 0.927 | 0.586 | 0.766 | 0.795 |
60 | 272 | 245 | 316 | 351 | 0.148 | 0.416 | 0.041 | 0.481 |
90 | 257 | 219 | 358 | 425 | <0.001 | 0.058 | <0.001 | 0.177 |
120 | 219 | 265 | 344 | 334 | 0.041 | 0.020 | 0.083 | 0.850 |
150 | 210 | 239 | 408 | 365 | 0.001 | 0.009 | 0.001 | 0.381 |
180 | 343 | 231 | 329 | 399 | 0.011 | 0.554 | 0.003 | 0.154 |
B | ||||||||
30 | 345 | 390 | 353 | 330 | 0.353 | 0.648 | 0.109 | 0.502 |
60 | 342 | 375 | 365 | 344 | 0.719 | 0.490 | 0.491 | 0.540 |
90 | 361 | 415 | 285 | 271 | <0.001 | 0.186 | <0.001 | 0.682 |
120 | 375 | 364 | 346 | 318 | 0.380 | 0.258 | 0.293 | 0.406 |
150 | 368 | 372 | 280 | 330 | 0.042 | 0.222 | 0.028 | 0.147 |
180 | 333 | 360 | 340 | 312 | 0.568 | 0.880 | 0.256 | 0.409 |
C | ||||||||
30 | 313 | 298 | 329 | 339 | 0.600 | 0.736 | 0.203 | 0.746 |
60 | 387 | 380 | 319 | 305 | 0.027 | 0.054 | 0.019 | 0.680 |
90 | 382 | 366 | 356 | 304 | 0.102 | 0.139 | 0.203 | 0.110 |
120 | 406 | 372 | 310 | 348 | 0.032 | 0.020 | 0.131 | 0.245 |
150 | 424 | 389 | 313 | 305 | 0.003 | 0.007 | 0.006 | 0.813 |
180 | 324 | 409 | 331 | 289 | 0.005 | 0.465 | 0.001 | 0.200 |
KDB | ||||||||
30 | 116 | 91 | 307 | 207 | 0.401 | 0.453 | 0.174 | 0.473 |
60 | 163 | 111 | 456 | 129 | 0.056 | 0.544 | 0.139 | 0.023 |
90 | 84 | 94 | 301 | 52 | 0.273 | 0.570 | 0.494 | 0.079 |
120 | 121 | 88 | 138 | 115 | 0.987 | 0.951 | 0.752 | 0.866 |
150 | 166 | 93 | 246 | 97 | 0.663 | 0.878 | 0.518 | 0.290 |
180 | 42 | 106 | 337 | 70 | 0.146 | 0.262 | 0.421 | 0.061 |
ED20 | ||||||||
30 | 626 | 623 | 630 | 621 | 0.966 | 0.918 | 0.888 | 0.632 |
60 | 571 | 560 | 639 | 645 | <0.001 | 0.004 | <0.001 | 0.741 |
90 | 544 | 552 | 606 | 608 | 0.000 | 0.003 | 0.001 | 0.920 |
120 | 537 | 554 | 640 | 598 | <0.001 | <0.001 | <0.001 | 0.019 |
150 | 524 | 542 | 607 | 628 | <0.001 | <0.001 | <0.001 | 0.221 |
180 | 549 | 531 | 631 | 638 | <0.001 | 0.001 | <0.001 | 0.693 |
ED50 | ||||||||
30 | 570 | 554 | 589 | 582 | 0.069 | 0.660 | 0.011 | 0.605 |
60 | 527 | 500 | 600 | 595 | <0.001 | 0.001 | <0.001 | 0.669 |
90 | 478 | 479 | 569 | 554 | <0.001 | <0.001 | <0.001 | 0.265 |
120 | 479 | 488 | 589 | 547 | <0.001 | <0.001 | <0.001 | 0.003 |
150 | 469 | 477 | 568 | 569 | <0.001 | <0.001 | <0.001 | 0.935 |
180 | 484 | 472 | 593 | 576 | <0.001 | <0.001 | <0.001 | 0.216 |
ED80 | ||||||||
30 | 534 | 512 | 560 | 553 | 0.004 | 0.483 | <0.001 | 0.628 |
60 | 495 | 460 | 574 | 560 | <0.001 | 0.002 | <0.001 | 0.296 |
90 | 437 | 433 | 544 | 526 | <0.001 | <0.001 | <0.001 | 0.192 |
120 | 439 | 447 | 555 | 514 | <0.001 | <0.001 | <0.001 | 0.005 |
150 | 432 | 436 | 548 | 533 | <0.001 | <0.001 | <0.001 | 0.283 |
180 | 452 | 433 | 566 | 540 | <0.001 | <0.001 | <0.001 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandra, J.R.; Takiya, C.S.; Del Valle, T.A.; Pedrini, C.d.A.; Gandra, E.R.d.S.; Antônio, G.; de Oliveira, E.R.; Severo, I.K.; Rennó, F.P. Effect of Chemical and Microbial Additives on Fermentation Profile, Chemical Composition, and Microbial Populations of Whole-Plant Soybean Silage. Fermentation 2024, 10, 204. https://doi.org/10.3390/fermentation10040204
Gandra JR, Takiya CS, Del Valle TA, Pedrini CdA, Gandra ERdS, Antônio G, de Oliveira ER, Severo IK, Rennó FP. Effect of Chemical and Microbial Additives on Fermentation Profile, Chemical Composition, and Microbial Populations of Whole-Plant Soybean Silage. Fermentation. 2024; 10(4):204. https://doi.org/10.3390/fermentation10040204
Chicago/Turabian StyleGandra, Jefferson Rodrigues, Caio Seiti Takiya, Tiago Antonio Del Valle, Cibeli de Almeida Pedrini, Erika Rosendo de Sena Gandra, Giovani Antônio, Euclides Reuter de Oliveira, Igor Kieling Severo, and Francisco Palma Rennó. 2024. "Effect of Chemical and Microbial Additives on Fermentation Profile, Chemical Composition, and Microbial Populations of Whole-Plant Soybean Silage" Fermentation 10, no. 4: 204. https://doi.org/10.3390/fermentation10040204
APA StyleGandra, J. R., Takiya, C. S., Del Valle, T. A., Pedrini, C. d. A., Gandra, E. R. d. S., Antônio, G., de Oliveira, E. R., Severo, I. K., & Rennó, F. P. (2024). Effect of Chemical and Microbial Additives on Fermentation Profile, Chemical Composition, and Microbial Populations of Whole-Plant Soybean Silage. Fermentation, 10(4), 204. https://doi.org/10.3390/fermentation10040204