Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria
Abstract
:1. Introduction
- Feeding the plant with manure and plant substrates that are supplied from several nearby farms;
- Specification of the technological process for the production of biogas by anaerobic fermentation of animal and vegetable waste raw materials in the bioreactor;
- Application of the produced biogas.
2. Research Materials and Methods
2.1. Experimental Details and Methodology
2.2. Installation Supply
2.3. Fermentation Process
2.4. Purification of Sulfur Oxides
2.5. Cogeneration
3. Results
3.1. Produced Methane
3.2. Systematization of Gas and Gross Energy Production
3.3. Emission Analysis
4. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rutz, D.; Mergner, R.; Janssen, R. Sustainable Heat Use of Biogas Plants: A Handbook, 2nd ed.; WIP Renewable Energies: Munich, Germany, 2015. [Google Scholar]
- Ignatowicz, K.; Filipczak, G.; Dybek, B.; Wałowski, G. Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies 2023, 16, 798. [Google Scholar] [CrossRef]
- Khan, I.U. Biogas as a Renewable Energy Fuel—A Review of Biogas Upgrading, Utilisation and Storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Pollard, S.J.T.; Smith, R.; Longhurst, P.J.; Eduljee, G.H.; Hall, D. Recent developments in the application of risk analysis to waste technologies. Environ. Int. 2006, 32, 1010–1020. [Google Scholar] [CrossRef]
- Bardi, U.; Pierini, V.; Lavacchi, A.; Mangeant, C. Peak Waste? The Other Side of the Industrial Cycle. Sustainability 2014, 6, 4119–4132. [Google Scholar] [CrossRef]
- Mahjoub, B.; Domscheit, E. Chances and challenges of an organic waste–based bioeconomy. Curr. Opin. Green Sustain. Chem. 2020, 25, 100388. [Google Scholar] [CrossRef]
- Olabi, A.G. Circular economy and renewable energy. Energy 2019, 181, 450–454. [Google Scholar] [CrossRef]
- Clark, J.H. Green biorefinery technologies based on waste biomass. Green Chem. 2019, 21, 1168–1170. [Google Scholar] [CrossRef]
- Shemfe, M.; Ng, K.S.; Sadhukhan, J. Bioelectrochemical Systems for biofuel (electricity, hydrogen, and methane) and valuable chemical production. In Green Chemistry for Sustainable Biofuel Production; Gude, V.G., Ed.; Apple Academic Press: New York, NY, USA, 2018; Chapter 11. [Google Scholar]
- Huttunen, S.; Manninen, K.; Leskinen, P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. J. Clean. Prod. 2014, 80, 5–16. [Google Scholar] [CrossRef]
- Banja, M.; Jégard, M.; Motola, V.; Sikkema, R. Support for biogas in the EU electricity sector—A comparative analysis. Biomass Bioenergy 2019, 128, 105313. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization. Processes 2021, 9, 736. [Google Scholar] [CrossRef]
- Del Río, P.; Mir-Artigues, P. Combinations of support instruments for renewable electricity in Europe: A review. Renew. Sustain. Energy Rev. 2014, 40, 287–295. [Google Scholar] [CrossRef]
- EC. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028 (accessed on 27 March 2024).
- Republic of Bulgaria—State Gazette, Ministry of Energy, Ministry of Environment and Water. Integrated Plan in the Field of Energy and Climate of the Republic of Bulgaria 2021–2030. 2020. Available online: https://faolex.fao.org/docs/pdf/bul212381.pdf (accessed on 27 March 2024).
- Das, A.; Das, S.; Das, N.; Pandey, P.; Ingti, B.; Panchenko, V.; Bolshev, V.; Kovalev, A.; Pandey, P. Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials. Agriculture 2023, 13, 1689. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Hu, J.; Zhao, J.; Xu, G.; Dong, D.; Jia, Y.; Shao, T. Fermentation Quality and Aerobic Stability Evaluation of Rice Straw Silage with Different Ensiling Densities. Fermentation 2024, 10, 20. [Google Scholar] [CrossRef]
- Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation 2021, 7, 169. [Google Scholar] [CrossRef]
- Ghosh, P.; Shah, G.; Sahota, S.; Singh, L.; Vijay, V.K. Chapter 7—Biogas Production from Waste: Technical Overview, Progress, and Challenges. In Bioreactors; Singh, L., Yousuf, A., Mahapatra, D.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 89–104. [Google Scholar]
- Lalak, J.; Kasprzycka, A.; Martyniak, D.; Tys, J. Effect of biological pretreatment of Agropyron elongatum ‘BAMAR’ on biogas production by anaerobic digestion. Bioresour. Technol. 2016, 200, 194–200. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Bampenrat, A.; Sukkathanyawat, H.; Prommuak, C. Enhanced Energy Recovery from Food Waste by Co-Production of Bioethanol and Biomethane Process. Fermentation 2021, 7, 265. [Google Scholar] [CrossRef]
- Iliev, I.; Terziev, A. Environmental impact and risk analysis of the implementation of cogeneration power plants through biomass processing. In Innovative Renewable Waste Conversion Technologies; Springer: Cham, Switzerland, 2021; pp. 385–394. ISBN 978-303081431-1. [Google Scholar] [CrossRef]
- Pérez, I.; Garfí, M.; Cadena, E.; Ferrer, I. Technicai economic and environmental assessment of household biogas digesters for rural communities. Renew. Energy 2014, 62, 313–318. [Google Scholar] [CrossRef]
- Xu, Q.; Tian, Y.; Kim, H.; Ko, J.H. Comparison of biogas recovery from MSW using different aerobic-anaerobic operation modes. Waste Manag. 2016, 56, 190–195. [Google Scholar] [CrossRef]
- Ghosh, P.; Sengupta, S.; Singh, L.; Sahay, A. Chapter 8—Life Cycle Assessment of Waste-to-Bioenergy Processes: A Review. In Bioreactors; Singh, L., Yousuf, A., Mahapatra, D.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–122. [Google Scholar]
- Lauer, M.; Dotzauer, M.; Hennig, C.; Lehmann, M.; Nebel, E.; Postel, J.; Szarka, N.; Thrän, D. Flexible power generation scenarios for biogas plants operated in Germany: Impacts on economic viability and GHG emissions. Int. J. Energy Res. 2017, 41, 63–80. [Google Scholar] [CrossRef]
- Bolkesjø, T.F.; Eltvig, P.T.; Nygaard, E. An econometric analysis of support scheme effects on renewable energy investments in Europe. Energy Procedia 2014, 58, 2–8. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L.; Liu, X.; Zong, M.; Yao, D. Anaerobic Digestion Technology for Methane Production Using Deer Manure under Different Experimental Conditions. Energies 2019, 12, 1819. [Google Scholar] [CrossRef]
- Brémond, U.; de Buyer, R.; Steyer, J.-P.; Bernet, N.; Carrere, H. Biological pretreatments of biomass for improving biogas production: An overview from lab scale to full-scale. Renew. Sustain. Energy Rev. 2018, 90, 583–604. [Google Scholar] [CrossRef]
- Sen, B.; Aravind, J.; Kanmani, P.; Lay, C.H. State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 2016, 53, 547–557. [Google Scholar] [CrossRef]
- Ozcan, M.; Öztürk, S.; Oguz, Y. Potential evaluation of biomass-based energy sources for Turkey. Eng. Sci. Technol. Int. J. 2015, 8, 178–184. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Mang, H.-P.; Huba, E.-M.; Gao, R.; Wang, X. Development and application of prefabricated biogas digesters in developing countries. Renew. Sustain. Energy Rev. 2014, 34, 387–400. [Google Scholar] [CrossRef]
- Munir, M.T.; Mansouri, S.S.; Udugama, I.A.; Baroutian, S.; Gernaey, K.V.; Young, B.R. Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges. Renew. Sustain. Energy Rev. 2018, 96, 64–75. [Google Scholar] [CrossRef]
- Jiang, X.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in China. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Gwavuya, S.G.; Abele, S.; Barfuss, I.; Zeller, M.; Müller, J. Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy. Renew Energy 2012, 48, 202–209. [Google Scholar] [CrossRef]
- Rajendran, K.; Aslanzadeh, S.; Johansson, F.; Taherzadeh, M.J. Experimental and economical evaluation of a novel biogas digester. Energy Convers. Manag. 2013, 74, 183–191. [Google Scholar] [CrossRef]
- Mang, H.P.; Li, Z.; de Porres Lebofa, M.M.; Huba, E.M.; Schwarz, D.; Schnell, R.; Luong, N.G.; Kellner, C.; Selke, J. Biogas Production developing country biogas production, Developing Countries biogas production developing countries. In Renewable Energy Systems; Springer: New York, NY, USA, 2013; pp. 218–246. [Google Scholar] [CrossRef]
- Zlateva, P.; Terziev, A.K.; Yordanov, K. Study of regime parameters of the fermenter in the production of biogas from animal liquid waste materials. E3S Web Conf. 2021, 286, 02010. [Google Scholar] [CrossRef]
- Rai, A.K.; Al Makishah, N.H.; Wen, Z.; Gupta, G.; Pandit, S.; Prasad, R. Recent Developments in Lignocellulosic Biofuels, a Renewable Source of Bioenergy. Fermentation 2022, 8, 161. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Sawyerr, N.; Trois, C.; Workneh, T.; Okudoh, V. An Overview of Biogas Production: Fundamentals, Applications and Future Research. Int. J. Energy Econ. Policy 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Babatunde, D.E.; Babatunde, O.M.; Akinbulire, T.O.; Oluseyi, P.O. Hybrid energy systems model with the inclusion of energy efficiency measures: A rural application perspective. Int. J. Energy Econ. Policy 2018, 8, 310–323. [Google Scholar]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- He, H.; Wang, Z.; Yan, J.; Wang, W.; Zhu, J.; Chen, J.; Liu, D.; Wang, H.; Cui, Z.; Yuan, X. Enhanced biomethane generation from the anaerobic digestion of wilted corn straw via control in mesophilic and thermophilic temperature intervals. Fuel 2023, 349, 128616. [Google Scholar] [CrossRef]
- He, H.; Wang, Z.; Wang, W.; He, H.; Yan, J.; Wang, H.; Cui, Z.; Yuan, X. Mitigating short-circuits through synergistic temperature and hydraulic retention time control for enhancing methane yield in continuous stirred-tank reactors. Energy 2024, 289, 129914. [Google Scholar] [CrossRef]
- Hupfauf, S.; Plattner, P.; Wagner, A.O.; Kaufmann, R.; Insam, H.; Podmirseg, S.M. Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45 °C. Bioresour. Technol. 2018, 269, 309–318. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Ren, H.; Mei, Z.; Fan, W.; Wang, Y.; Liu, F.; Luo, T.; Li, D.; Li, Z.; Feng, R. Effects of temperature on the performance of anaerobic co-digestion of vegetable waste and swine manure. Int. J. Agric. Biol. Eng. 2018, 11, 218–225. [Google Scholar] [CrossRef]
Raw Material | (t/a) | (t/m3) | (m3/d) |
---|---|---|---|
Plant substratum | |||
corn silage | 9471 | 0.65 | 39.92 |
wheat silage | 3000 | 0.50 | 16.44 |
sum/average value | 12,471 | 0.61 | 56.36 |
Animal substratum | |||
cattle fertilizer | 2500 | 1.10 | 6.23 |
pig fertilizer | 3000 | 1.02 | 8.09 |
sum/average/t liquid | 5500 | 1.05 | 14.32 |
Dry Material | |||||
---|---|---|---|---|---|
TS, (% d.FM) | oTS, (% d.FM) | TS, (t/a) | oTS, (t/a) | oTS, (t/d) | |
Plant substratum | |||||
corn silage | 33.00% | 31.35% | 3125 | 2969 | 8.13 |
wheat silage | 35.00% | 30.80% | 1050 | 924 | 2.53 |
sum/average value | - | - | 4175 | 3893 | 10.67 |
Animal substratum | |||||
cattle fertilizer | 10.00% | 8.50% | 250 | 213 | 0.58 |
pig fertilizer | 6.00% | 5.10% | 180 | 153 | 0.42 |
sum/average/t liquid | - | - | 430 | 366 | 1.00 |
Methane production | ||
---|---|---|
(Nm3 CH4/kg oTS) | (Nm3 CH4/a) | |
Plant substratum | ||
corn silage | 0.38 | 1,128,262 |
wheat silage | 0.32 | 295,680 |
sum/average value | 0.37 | 1,423,942 |
Animal substratum | ||
cattle fertilizer | 0.22 | 46,750 |
pig fertilizer | 0.23 | 35,190 |
sum/average/t liquid | 0.22 | 81,940 |
Substratum | Methane | Energy | Power |
---|---|---|---|
1 | 2 | 3 | |
(Nm3 CH4/a) | (kWh/a) | (kWel) | |
plant substratum | 1,423,942 | 14,239,420 | 757 |
animal substratum | 81,940 | 819,400 | 44 |
Total | 1,505,882 | 15,058,820 | 801 |
Annual methane generation | (Nm3/a) | 1,505,882 |
Daily methane generation | (Nm3/d) | 4126 |
HV | (kWh/Nm3) | 10.0 |
gross electricity production/annual | (MWh/a) | 15,059 |
gross electricity production/month | (MWh/Month) | 1255 |
gross electricity production/day | (MWh/d) | 41.0 |
Heat Energy Requirements for the Fermenter | ||||||
---|---|---|---|---|---|---|
Power, kW | (kWh/month) | |||||
Heating | Losses | General | General | |||
Necessary Heat | Fermenter Bottom | Fermenter Lead | Fermenter Jacket | Total | Total | |
Jan. | 88.0 | 5.6 | 6.5 | 13.4 | 113.5 | 84,472 |
Feb. | 85.7 | 5.5 | 6.1 | 12.7 | 110.0 | 73,907 |
Mar. | 80.9 | 5.2 | 5.5 | 11.4 | 103.0 | 76,601 |
Apr. | 76.2 | 4.9 | 4.8 | 9.9 | 95.7 | 68,906 |
May | 71.4 | 4.6 | 4.1 | 8.5 | 88.5 | 65,840 |
June | 64.3 | 4.1 | 3.6 | 7.5 | 79.5 | 57,206 |
July | 59.5 | 3.8 | 3.3 | 6.9 | 73.5 | 54,687 |
Aug. | 59.5 | 3.8 | 3.4 | 7.0 | 73.7 | 54,826 |
Sept. | 66.6 | 4.3 | 3.9 | 8.2 | 83.0 | 59,768 |
Oct. | 71.4 | 4.6 | 4.8 | 9.9 | 90.6 | 67,401 |
Nov. | 80.9 | 5.2 | 5.6 | 11.6 | 103.3 | 74,365 |
Dec. | 85.7 | 5.5 | 6.2 | 12.8 | 110.2 | 81,964 |
min Temp. | 88.0 | 5.6 | 9.4 | 19.5 | 122.6 | - |
max. Temp. | 88.0 | 5.6 | 6.5 | 13.4 | 113.5 | 84,472 |
Ave. | 74.2 | 4.7 | 4.8 | 10.0 | 93.7 | 69,711 |
Minimum | 59.5 | 3.8 | 3.3 | 6.9 | 73.5 | 54,687 |
Total | 819,943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terziev, A.; Zlateva, P.; Ivanov, M. Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria. Fermentation 2024, 10, 187. https://doi.org/10.3390/fermentation10040187
Terziev A, Zlateva P, Ivanov M. Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria. Fermentation. 2024; 10(4):187. https://doi.org/10.3390/fermentation10040187
Chicago/Turabian StyleTerziev, Angel, Penka Zlateva, and Martin Ivanov. 2024. "Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria" Fermentation 10, no. 4: 187. https://doi.org/10.3390/fermentation10040187
APA StyleTerziev, A., Zlateva, P., & Ivanov, M. (2024). Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria. Fermentation, 10(4), 187. https://doi.org/10.3390/fermentation10040187