Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli
Abstract
:1. Introduction
2. Inducer
3. Glucose, Lactose and Glycerol
4. Osmolytes and Osmoprotectants
5. Ethanol
6. Cofactors
7. Optimization
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tripathi, N.K.; Shrivastava, A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front. Bioeng. Biotechnol. 2019, 7, 420. [Google Scholar] [CrossRef] [PubMed]
- Mital, S.; Christie, G.; Dikicioglu, D. Recombinant expression of insoluble enzymes in Escherichia coli: A systematic review of experimental design and its manufacturing implications. Microb. Cell Factoties 2021, 20, 208. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Upadhyay, V.; Upadhyay, A.K.; Singh, S.M.; Panda, A.K. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Factoties 2015, 14, 41. [Google Scholar] [CrossRef]
- Bhatwa, A.; Wang, W.; Hassan, Y.I.; Abraham, N.; Li, X.Z.; Zhou, T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 630551. [Google Scholar] [CrossRef]
- Fink, A.L. Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Fold. Des. 1998, 3, R9–R23. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yamamoto, E.; Mannen, T.; Nagamune, T. Protein refolding using chemical refolding additives. Biotechnol. J. 2013, 8, 17–31. [Google Scholar] [CrossRef]
- Nishihara, K.; Kanemori, M.; Kitagawa, M.; Yanagi, H.; Yura, T. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 1998, 64, 1694–1699. [Google Scholar] [CrossRef]
- Tong, Y.; Feng, S.; Xin, Y.; Yang, H.; Zhang, L.; Wang, W.; Chen, W. Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression. J. Biotechnol. 2016, 218, 75–84. [Google Scholar] [CrossRef]
- Imamoglu, R.; Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Nat. Commun. 2020, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Burgess-Brown, N.A.; Sharma, S.; Sobott, F.; Loenarz, C.; Oppermann, U.; Gileadi, O. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expr. Purif. 2008, 59, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.L.; Ceccarelli, E.A. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb. Cell Factoties 2009, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Song, J.M.; An, Y.J.; Kang, M.H.; Lee, Y.-H.; Cha, S.-S. Cultivation at 6–10 °C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Protein Expr. Purif. 2012, 82, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Chernikova, T.N.; Yakimov, M.M.; Golyshin, P.N.; Timmis, K.N. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 2003, 21, 1266–1267. [Google Scholar] [CrossRef] [PubMed]
- Chu, I.-T.; Speer, S.L.; Pielak, G.J. Rheostatic Control of Protein Expression Using Tuner Cells. Biochemistry 2020, 59, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Marbach, A.; Bettenbrock, K. Lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. J. Biotechnol. 2012, 157, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Behravan, A.; Hashemi, A. RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle T7 E. coli. Iran. J. Pharm. Res. 2021, 20, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.J.; Lee, S.Y. High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl. Environ. Microbiol. 1999, 65, 3027–3032. [Google Scholar] [CrossRef]
- Einsfeldt, K.; Severo Junior, J.B.; Correa Argondizzo, A.P.; Medeiros, M.A.; Alves, T.L.; Almeida, R.V.; Larentis, A.L. Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: Study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine 2011, 29, 7136–7143. [Google Scholar] [CrossRef]
- Malik, A.; Alsenaidy, A.M.; Elrobh, M.; Khan, W.; Alanazi, M.S.; Bazzi, M.D. Optimization of expression and purification of HSPA6 protein from Camelus dromedarius in E. coli. Saudi J. Biol. Sci. 2016, 23, 410–419. [Google Scholar] [CrossRef]
- Soleymani, B.; Mostafaie, A. Analysis of Methods to Improve the Solubility of Recombinant Bovine Sex Determining Region Y Protein. Rep. Biochem. Mol. Biol. 2019, 8, 227–235. [Google Scholar]
- Larentis, A.L.; Nicolau, J.F.M.Q.; Esteves, G.d.S.; Vareschini, D.T.; de Almeida, F.V.R.; dos Reis, M.G.; Galler, R.; Medeiros, M.A. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res. Notes 2014, 7, 671. [Google Scholar] [CrossRef]
- Papaneophytou, C.P.; Rinotas, V.; Douni, E.; Kontopidis, G. A statistical approach for optimization of RANKL overexpression in Escherichia coli: Purification and characterization of the protein. Protein Expr. Purif. 2013, 90, 9–19. [Google Scholar] [CrossRef]
- Rasooli, F.; Hashemi, A. Efficient expression of EpEX in the cytoplasm of Escherichia coli using thioredoxin fusion protein. Res. Pharm. Sci. 2019, 14, 554–565. [Google Scholar] [CrossRef]
- Lozano Terol, G.; Gallego-Jara, J.; Sola Martinez, R.A.; Martinez Vivancos, A.; Canovas Diaz, M.; de Diego Puente, T. Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front. Microbiol. 2021, 12, 682001. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Hall, D.; Eiteman, M.A.; Altman, E. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biotechnol. 2003, 63, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Farshdari, F.; Ahmadzadeh, M.; Nematollahi, L.; Mohit, E. The improvement of anti-HER2 scFv soluble expression in Escherichia coli. Braz. J. Pharm. Sci. 2020, 56, e17861. [Google Scholar] [CrossRef]
- Hartinger, D.; Heinl, S.; Schwartz, H.E.; Grabherr, R.; Schatzmayr, G.; Haltrich, D.; Moll, W.-D. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1. Microb. Cell Factoties 2010, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.; Holst, O.; Karlsson, E.N. Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expr. Purif. 2005, 39, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Schleif, R. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 2000, 16, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Siegele, D.A.; Hu, J.C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl. Acad. Sci. USA 1997, 94, 8168–8172. [Google Scholar] [CrossRef] [PubMed]
- Guzman, L.M.; Belin, D.; Carson, M.J.; Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 1995, 177, 4121–4130. [Google Scholar] [CrossRef]
- Lee, N.; Francklyn, C.; Hamilton, E.P. Arabinose-induced binding of AraC protein to araI2 activates the araBAD operon promoter. Proc. Natl. Acad. Sci. USA 1987, 84, 8814–8818. [Google Scholar] [CrossRef]
- Afroz, T.; Biliouris, K.; Kaznessis, Y.; Beisel, C.L. Bacterial sugar utilization gives rise to distinct single-cell behaviours. Mol. Microbiol. 2014, 93, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2008, 11, 87–93. [Google Scholar] [CrossRef]
- Grossman, T.H.; Kawasaki, E.S.; Punreddy, S.R.; Osburne, M.S. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 1998, 209, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005, 41, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Mansey, M.S.; Ghareeb, K.A.; Moghazy, A.N.; Tawfick, M.M.; Fouda, M.M.; Marzugi, N.E.; Othman, N.Z.; El Enshasy, H.A. Glucose concentration affects recombinant interferon α-2b production in Escherichia coli using thermo-induction system. J. Appl. Pharm. Sci. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Studier, F.W. Stable expression clones and auto-induction for protein production in E. coli. In Structural Genomics. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1091, pp. 17–32. [Google Scholar] [CrossRef]
- Eppler, T.; Postma, P.; Schutz, A.; Volker, U.; Boos, W. Glycerol-3-phosphate-induced catabolite repression in Escherichia coli. J. Bacteriol. 2002, 184, 3044–3052. [Google Scholar] [CrossRef]
- Taylor, T.; Denson, J.P.; Esposito, D. Optimizing Expression and Solubility of Proteins in E. coli Using Modified Media and Induction Parameters. In Heterologous Gene Expression in E.coli. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1586, pp. 65–82. [Google Scholar] [CrossRef]
- Ukkonen, K.; Mayer, S.; Vasala, A.; Neubauer, P. Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr. Purif. 2013, 91, 147–154. [Google Scholar] [CrossRef]
- Blommel, P.G.; Becker, K.J.; Duvnjak, P.; Fox, B.G. Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol. Prog. 2007, 23, 585–598. [Google Scholar] [CrossRef]
- Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; Rudiger, S.; Roder, D.; Langen, H.; Bukau, B. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18, 6934–6949. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.G.; Baneyx, F. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol. Microbiol. 2000, 36, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, I.; Liberek, K. Cooperative action of Escherichia coli ClpB protein and DnaK chaperone in the activation of a replication initiation protein. J. Biol. Chem. 2002, 277, 18483–18488. [Google Scholar] [CrossRef] [PubMed]
- Meury, J.; Kohiyama, M. Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli. J. Bacteriol. 1991, 173, 4404–4410. [Google Scholar] [CrossRef] [PubMed]
- Amezaga, M.R.; Booth, I.R. Osmoprotection of Escherichia coli by peptone is mediated by the uptake and accumulation of free proline but not of proline-containing peptides. Appl. Environ. Microbiol. 1999, 65, 5272–5278. [Google Scholar] [CrossRef] [PubMed]
- Bremer, E.; Kramer, R. Responses of Microorganisms to Osmotic Stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef]
- Perroud, B.; Le Rudulier, D. Glycine betaine transport in Escherichia coli: Osmotic modulation. J. Bacteriol. 1985, 161, 393–401. [Google Scholar] [CrossRef]
- Larsen, P.I.; Sydnes, L.K.; Landfald, B.; Strom, A.R. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: Betaines, glutamic acid, and trehalose. Arch. Microbiol. 1987, 147, 1–7. [Google Scholar] [CrossRef]
- Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 1999, 63, 334–348. [Google Scholar] [CrossRef]
- Oganesyan, N.; Ankoudinova, I.; Kim, S.H.; Kim, R. Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expr. Purif. 2007, 52, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, J.R.; Horgan, R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 1991, 295, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zou, R.; Stephanopoulos, G.; Too, H.-P. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb. Cell Factoties 2012, 11, 148. [Google Scholar] [CrossRef]
- Dawn, A.; Deep, S. An improved strategy of TGFβ3 expression in Escherichia coli: Exploiting folding modulators for a switch from misfolded to folded form. Int. J. Biol. Macromol. 2021, 167, 787–795. [Google Scholar] [CrossRef]
- Leandro, P.; Lechner, M.C.; de Almeida, I.T.; Konecki, D. Glycerol increases the yield and activity of human phenylalanine hydroxylase mutant enzymes produced in a prokaryotic expression system. Mol. Genet. Metab. 2001, 73, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Tarahomjoo, S.; Bandehpour, M.; Aghaebrahimian, M.; Ahangaran, S. Soluble Diphtheria Toxin Variant, CRM 197 was Obtained in Escherichia coli at High Productivity Using SUMO Fusion and an Adjusted Expression Strategy. Protein Pept. Lett. 2022, 29, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.E.; El-Far, S.W.; Embaby, A.M. Cloning, expression, and in silico structural modeling of cholesterol oxidase of Acinetobacter sp. strain RAMD in E. coli. FEBS Open Bio. 2021, 11, 2560–2575. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Khadatare, P.B.; Roy, I. Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 2011, 77, 4603–4609. [Google Scholar] [CrossRef]
- de Marco, A.; Volrath, S.; Bruyere, T.; Law, M.; Fonne-Pfister, R. Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones. Protein Expr. Purif. 2000, 20, 81–86. [Google Scholar] [CrossRef]
- Worms, D.; Maertens, B.; Kubicek, J.; Subhramanyam, U.K.T.; Labahn, J. Expression, purification and stabilization of human serotonin transporter from E. coli. Protein Expr. Purif. 2019, 164, 105479. [Google Scholar] [CrossRef]
- Bakhtiarvand, B.; Sadeghi, Z.; Tarahomjoo, S.; Yaghmaie, S. Chaperones Promote Remarkable Solubilization of Salmonella enterica serovar Enteritidis Flagellin Expressed in Escherichia coli. Protein Pept. Lett. 2020, 27, 210–218. [Google Scholar] [CrossRef]
- Filatova, L.Y.; Becker, S.C.; Donovan, D.M.; Gladilin, A.K.; Klyachko, N.L. LysK, the enzyme lysing Staphylococcus aureus cells: Specific kinetic features and approaches towards stabilization. Biochimie 2010, 92, 507–513. [Google Scholar] [CrossRef]
- Kaushik, J.K.; Bhat, R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 2003, 278, 26458–26465. [Google Scholar] [CrossRef]
- Ingram, L.O. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 1990, 9, 305–319. [Google Scholar] [CrossRef]
- Chiou, R.Y.; Phillips, R.D.; Zhao, P.; Doyle, M.P.; Beuchat, L.R. Ethanol-mediated variations in cellular fatty acid composition and protein profiles of two genotypically different strains of Escherichia coli O157:H7. Appl. Environ. Microbiol. 2004, 70, 2204–2210. [Google Scholar] [CrossRef]
- Soufi, B.; Krug, K.; Harst, A.; Macek, B. Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Front. Microbiol. 2015, 6, 103. [Google Scholar] [CrossRef]
- Richarme, G.; Caldas, T.D. Chaperone properties of the bacterial periplasmic substrate-binding proteins. J. Biol. Chem. 1997, 272, 15607–15612. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Yu, Z.; Shu, W.; Fu, X.; Zhao, X.; Yang, S.; Tan, M.; Xu, J.; Liu, Y.; Song, H. Ethanol effects on the overexpression of heterologous catalase in Escherichia coli BL21 (DE3). Appl. Microbiol. Biotechnol. 2019, 103, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wei, D.; Yang, Y.; Shang, Y.; Li, G.; Zhou, Y.; Ma, Q.; Xu, Y. Systems-level understanding of ethanol-induced stresses and adaptation in E. coli. Sci. Rep. 2017, 7, 44150. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, P.; Patil, R.S.; Meshram, P.; Gupta, J.A.; Banerjee, M.; Rathore, A.S. Ethanol as additive enhances expression of Ranibizumab in Escherichia coli: Impact on cellular physiology and transcriptome. Process. Biochem. 2022, 112, 167–176. [Google Scholar] [CrossRef]
- Chhetri, G.; Kalita, P.; Tripathi, T. An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX 2015, 2, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, G.; Pandey, T.; Kumar, B.; Akhtar, M.S.; Tripathi, T. Recombinant expression, purification and preliminary characterization of the mRNA export factor MEX67 of Saccharomyces cerevisiae. Protein Expr. Purif. 2015, 107, 56–61. [Google Scholar] [CrossRef]
- Thomas, J.G.; Baneyx, F. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J. Biol. Chem. 1996, 271, 11141–11147. [Google Scholar] [CrossRef]
- Movahed, Z.; Sharif, E.; Ahmadzadeh, M.; Nezafat, N.; Jahandar, H.; Mohit, E. Different strategies for expression and purification of the CT26-poly-neoepitopes vaccine in Escherichia coli. Mol. Biol. Rep. 2022, 49, 859–873. [Google Scholar] [CrossRef]
- Mohammadinezhad, R.; Farahmand, H.; Jalali, S.A.H.; Mirvaghefi, A. Efficient osmolyte-based procedure to increase expression level and solubility of infectious hematopoietic necrosis virus (IHNV) nucleoprotein in E. coli. Appl. Microbiol. Biotechnol. 2018, 102, 4087–4100. [Google Scholar] [CrossRef]
- Sorensen, H.P.; Mortensen, K.K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Factoties 2005, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.J.; Pagratis, M.; Glascock, C.B.; Blackmore, R. A mutation that improves soluble recombinant hemoglobin accumulation in Escherichia coli in heme excess. Appl. Environ. Microbiol. 1999, 65, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Faiq, M.A.; Ali, M.; Dada, T.; Dada, R.; Saluja, D. A novel methodology for enhanced and consistent heterologous expression of unmodified human cytochrome P450 1B1 (CYP1B1). PLoS ONE 2014, 9, e110473. [Google Scholar] [CrossRef]
- Kawasaki, T.; Nakata, T.; Nose, Y. Genetic mapping with a thiamine-requiring auxotroph of Escherichia coli K-12 defective in thiamine phosphate pyrophosphorylase. J. Bacteriol. 1968, 95, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.B.; Miller, B.; Colebrook, L.D.; Walker, C. A mutation in Escherichia coli K-12 results in a requirement for thiamine and a decrease in L-serine deaminase activity. J. Bacteriol. 1985, 161, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Dailey, H.A.; Dailey, T.A. Protoporphyrinogen oxidase of Myxococcus xanthus. Expression, purification, and characterization of the cloned enzyme. J. Biol. Chem. 1996, 271, 8714–8718. [Google Scholar] [CrossRef]
- Vitreschak, A.G.; Rodionov, D.A.; Mironov, A.A.; Gelfand, M.S. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002, 30, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Angulo, V.A. Overlapping riboflavin supply pathways in bacteria. Crit. Rev. Microbiol. 2017, 43, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Novakova, Z.; Khuntsaria, D.; Gresova, M.; Mikesova, J.; Havlinova, B.; Shukla, S.; Kolarova, L.; Vesela, K.; Martasek, P.; Barinka, C. Heterologous expression and purification of recombinant human protoporphyrinogen oxidase IX: A comparative study. PLoS ONE 2021, 16, e0259837. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Q.; Qi, Q. Identification of riboflavin: Revealing different metabolic characteristics between Escherichia coli BL21(DE3) and MG1655. FEMS Microbiol. Lett. 2015, 362, fnv071. [Google Scholar] [CrossRef] [PubMed]
- Plokhov, A.Y.; Gusyatiner, M.M.; Yampolskaya, T.A.; Kaluzhsky, V.E.; Sukhareva, B.S.; Schulga, A.A. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Appl. Biochem. Biotechnol. 2000, 88, 257–265. [Google Scholar] [CrossRef]
- Ito, T.; Downs, D.M. Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli. J. Bacteriol. 2020, 202, e00056-00020. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Su, L.; Wu, J. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid. PLoS ONE 2016, 11, e0157466. [Google Scholar] [CrossRef]
- Romano, D.; Molla, G.; Pollegioni, L.; Marinelli, F. Optimization of human D-amino acid oxidase expression in Escherichia coli. Protein Expr. Purif. 2009, 68, 72–78. [Google Scholar] [CrossRef]
- de Marco, A.; Deuerling, E.; Mogk, A.; Tomoyasu, T.; Bukau, B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol. 2007, 7, 32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atroshenko, D.L.; Sergeev, E.P.; Golovina, D.I.; Pometun, A.A. Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli. Fermentation 2024, 10, 120. https://doi.org/10.3390/fermentation10030120
Atroshenko DL, Sergeev EP, Golovina DI, Pometun AA. Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli. Fermentation. 2024; 10(3):120. https://doi.org/10.3390/fermentation10030120
Chicago/Turabian StyleAtroshenko, Denis L., Egor P. Sergeev, Diana I. Golovina, and Anastasia A. Pometun. 2024. "Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli" Fermentation 10, no. 3: 120. https://doi.org/10.3390/fermentation10030120
APA StyleAtroshenko, D. L., Sergeev, E. P., Golovina, D. I., & Pometun, A. A. (2024). Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli. Fermentation, 10(3), 120. https://doi.org/10.3390/fermentation10030120