Development and Application of Bioactive Bi-Layer Edible Films Based on Starch and LAB-Fermented Whey and/or Mango Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Reagents
2.3. Fermentation Process of Whey and/or Mango Solutions
2.4. Production of Bi-Layer Edible Films
2.5. Moisture
2.6. Color
2.7. Thickness
2.8. Water Vapor Permeability
2.9. Mechanical Properties
2.10. Total Phenolic Compounds and Antioxidant Capacity
2.11. Probiotic Count
2.12. Bi-Layer Edible Film Application and Sensory Acceptance
2.13. Statistical Analysis
3. Results and Discussion
3.1. Physical and Mechanical Properties of Formulated Bi-Layer Edible Films
3.2. Effect of Storage Condition on Health-Promoting Compounds of Bi-Layer Edible Films
3.3. Sensory Acceptance of Sushi Covered with Selected Bi-Layer Edible Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petkoska, A.T.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef] [PubMed]
- Bou-Mitri, C.; Adbessater, M. Food packaging design and consumer perception of the product quality, safety, healthiness and preference. Nutr. Food Sci. 2021, 51, 71–86. [Google Scholar] [CrossRef]
- Mahmud, J.; Sarmast, E.; Shankar, S.; Lacroix, M. Advantages of nanotechnology developments in active food packaging. Food Res. Int. 2022, 154, 111023. [Google Scholar] [CrossRef] [PubMed]
- Sid, S.; Mor, R.S.; Kishore, A.; Singh, V. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 2021, 115, 87–104. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.; Saini, C.S.; Kennedy, J.F. Improvement in properties of edible film through non-thermal treatments and nanocomposite materials: A review. Food Packag. Shelf Life 2022, 32, 100843. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Fierro-Corona, G.; Tapia-Maruri, D.; Ruíz-Martínez, I.; Ávila-Reyes, S.V.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. Bioactive edible films based on LAB-fermented whey solution and potato starch: Characterization and storage behavior. Food Bioproc. Technol. 2023, 16, 3045–3056. [Google Scholar] [CrossRef]
- Mujtaba, M.; Lipponen, J.; Ojanen, M.; Puttonen, S.; Vaittinen, H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Sci. Total Environ. 2022, 851, 158328. [Google Scholar] [CrossRef]
- Ceylan, H.G.; Atasoy, A.F. New bioactive edible packing systems/symbiotic edible films/coatings as carries of probiotics and prebiotics. Food Bioproc. Technol. 2023, 16, 1413–1428. [Google Scholar] [CrossRef]
- Chavan, P.; Lata, K.; Kaur, T.; Jambrak, A.R.; Sharma, S.; Riy, S.; Sinhmar, A.; Theory, R.; Singh, G.P.; Aayush, K.; et al. Recent advances in the preservation of postharvest fruits using edible films and coatings: A comprehensive review. Food Chem. 2023, 148, 135916. [Google Scholar] [CrossRef]
- Yildirim-Yalcin, M.; Tornuk, F.; Toker, O.S. Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends Food Sci. Technol. 2022, 129, 179–193. [Google Scholar] [CrossRef]
- Chen, W.; Ma, S.; Wang, Q.; McClements, D.J.; Liu, X.; Ngai, T.; Liu, F. Fortification of edible films with bioactive agents: A review of their formation, properties, and application in food preservation. Crit. Rev. Food Sci. Nutr. 2022, 62, 5029–5055. [Google Scholar] [CrossRef]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M.S.; Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Ajesh Kumar, V.; Pravitha, M.; Yadav, A.; Pandiselvam, R.; Srivastav, P.P. Influence of ultrasonic application on soybean aqueous extract based composite edible film: Characterization and their food application. Food Hydrocoll. 2023, 135, 108210. [Google Scholar] [CrossRef]
- Han, B.; Che, P.; Guo, J.; Yu, H.; Zhong, S.; Li, D.; Liu, C.; Feng, Z.; Jiang, B. A novel intelligent indicator film: Preparation, characterization, and application. Molecules 2023, 28, 3384. [Google Scholar] [CrossRef]
- Lauricella, M.; Emanuele, S.; Calvaruso, G.; Giuliano, M.; D’Anneo, A. Multifaceted health benefits of Mangifera indica L. (Mango): The inestimable value of orchads recently planted in Sicilian rural areas. Nutrients 2017, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Kulieva, V.A.; Gutiérrez-Valverde, K.S.; Villegas-Yarlequé, M.; Camacho-Orbegoso, E.W.; Villegas-Aguilar, G.F. Research trends on mango by-products: A literature review with bibliometric analysis. J. Food Meas. Character 2022, 16, 2760–2771. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.-J.; Ye, W.; Korivi, M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Wall-Medrano, A.; Olivas-Aguirre, F.J.; Ayala-Zavala, J.F.; Domínguez-Avila, J.A.; González-Aguilar, G.A.; Herrera-Cazares, L.A.; Gaytan-Martínez, M. Health benefits of mango by-products. In Food Wastes and By-Products: Nutraceutical and Health Potential; Campos-Vega, R., Oomah, D., Vergara-Castañeda, H.A., Eds.; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Ordoñez-Díaz, J.L.; Moreno-Ortega, A.; Roldán-Guerra, F.J.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M.; Pereira-Caro, G. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera indica L.) pulp polyphenols. Foods 2020, 9, 1836. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Castellon-Chicas, M.J.; Arbizu, S.; Talcott, S.T.; Drury, N.L.; Smith, S.; Mertens-Talcott, S.U. Mango (Mangifera indica L.) polyphenols: Anti-inflammatory intestinal microbial health benefits, and associated mechanisms of actions. Molecules 2021, 26, 2732. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Charoensiddhi, S.; Xue, X.; Sun, B.; Liu, Y.; El-Seedi, H.R.; Wang, K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit. Rev. Food Sci. Nutr. 2022, 17, 7197–7223. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 20th ed.; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Aparicio-Fernández, X.; Vega-Ahuatzin, A.; Ochoa-Velasco, C.E.; Cid-Pérez, S.; Hernández-Carranza, P.; Ávila-Sosa, R. Physical and antioxidant characterization of edible films added with red prickly pear (Opuntia ficus-indica L.) cv. San Martín peel and/or its aqueous extracts. Food Bioproc. Technol. 2018, 11, 368–379. [Google Scholar] [CrossRef]
- Method E96; Standard Test Method for Water Vapor Transmission of Materials. American Society for Testing and Materials, ASTM: West Conshohocken, PA, USA, 1980.
- Method D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials, ASTM: West Conshohocken, PA, USA, 1995.
- Hernández-Carranza, P.; Ávila-Sosa, R.; Guerrero-Beltrán, J.A.; Navarro-Cruz, A.R.; Corona-Jiménez, E.; Ochoa-Velasco, C.E. Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. J. Food Process. Preserv. 2016, 40, 103–115. [Google Scholar] [CrossRef]
- He, C.; Sampers, I.; Raes, K. Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocoll. 2021, 111, 106175. [Google Scholar] [CrossRef]
- Greis, M.; Sainio, T.; Katina, K.; Nolden, A.; Partanen, R.; Seppä, L. Dynamic texture perception in plant-based yogurt alternatives: Identifying temporal drivers of liking by TDS. Food Qual. Prefer. 2020, 86, 104019. [Google Scholar] [CrossRef]
- Shahrampour, D.; Khomeiri, M.; Razavi, S.M.; Kashiri, M. Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC. LWT—Food Sci. Technol. 2020, 118, 108758. [Google Scholar] [CrossRef]
- Susmitha, A.; Sasikumar, K.; Rajan, D.; Padmakumar, A.; Nampoothiri, K.M. Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging. Food Biosci. 2021, 41, 100977. [Google Scholar] [CrossRef]
- Sáez-Orviz, S.; Marcet, I.; Rendueles, M.; Díaz, M. Preparation of edible films with Lactobacillus plantarum and lactobionic acid produced by sweet whey fermentation. Membranes 2022, 12, 115. [Google Scholar] [CrossRef]
- Ceylan, H.G.; Atasoy, A.F. Optimization and characterization of prebiotic concentration of edible films containing Bifidobacterium animalis subs. lactis BB-12® and its application to block type processed cheese. Int. Dairy J. 2022, 134, 105443. [Google Scholar] [CrossRef]
- Sogut, E.; Filiz, E.; Seydim, A.C. Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. J. Dairy Sci. 2022, 105, 4829–4842. [Google Scholar] [CrossRef]
- Chen, X.; Cui, F.; Zi, H.; Zhou, Y.; Liu, H.; Xiao, J. Development and characterization of hydroxypropyl starch/zein bilayer edible film. Int. J. Biol. Macromol. 2019, 141, 1175–1182. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Mattoso, L.H.; Wood, D.; Williams, T.G.; Avena-Bustillos, R.J.; McHugh, T.H. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci. 2009, 74, N31–N35. [Google Scholar] [CrossRef]
- Farajpour, R.; Emam, D.Z.; Moeini, S.; Tavañolipour, H.; Safayan, S. Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. Int. J. Biol. Macromol. 2020, 149, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Ramos, Ó.L.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes da Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef] [PubMed]
- Theerawitayaart, W.; Prodpran, T.; Benjakul, S.; Nilsuwan, K.; de la Caba, K. Storage stability of fish gelatin films by molecular modification or direct incorporation of oxidized linoleic acid: Comparative studies. Food Hydrocoll. 2021, 113, 106481. [Google Scholar] [CrossRef]
- Viana, R.M.; Sá, N.M.S.M.; Barros, M.O.; Borges, M.F.; Azeredo, H.M.C. Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydr. Polym. 2018, 196, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Bravo, M.; Rojas-Zenteno, E.G.; Hernández-Carranza, P.; Ávila-Sosa, R.; Aguilar-Sánchez, R.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. A potential application of mango (Mangifera indica L. cv Manila) peel powder to increase the total phenolic compounds and antioxidant capacity of edible films and coatings. Food and Bioproc. Technol. 2019, 12, 1584–1592. [Google Scholar] [CrossRef]
- Piccirilli, G.N.; Soazo, M.; Pérez, L.M.; Delorenzi, N.J.; Verdini, R.A. Effect of storage conditions on the physicochemical characteristics of edible films based on whey protein concentrate and liquid smoke. Food Hydrocoll. 2019, 87, 221–228. [Google Scholar] [CrossRef]
- Vithana, M.D.K.; Singh, Z.; Johnson, S.K. Harvest maturity stage affects the concentrations of health-promoting compounds: Lupeol, mangiferin and phenolic acids in the pulp and peel of ripe ‘Kensington Pride’ mango fruit. Sci. Hortic. 2019, 243, 125–130. [Google Scholar] [CrossRef]
- Fierro-Corona, G.; Ruiz-López, I.I.; Ochoa-Velasco, C.E.; Hernández-Carranza, P. Effect of edible films’ application on the quality characteristics of Manchego-type cheese during storage. Food Bioproc. Technol. 2023, 16, 2910–2920. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Dalbhagat, C.G.; Mishra, H.N. Emerging technologies and coating materials for improved probiotication in food products: A review. Food Bioproc. Technol. 2022, 15, 998–1039. [Google Scholar] [CrossRef]
- Bizymis, A.P.; Tzia, C. Edible films and coatings: Properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit. Rev. Food Sci. Nutr. 2022, 62, 8777–8792. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.M.; Estevinho, B.; Rocha, F. Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioproc. Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Kulawik, P.; Jamróz, E.; Zając, M.; Guzik, P.; Tkaczewska, J. The effect of furcellaran-gelatin edible coatings with green and pu-erh tea extracts on the microbiological, physicochemical and sensory changes of salmon sushi stored at 4 °C. Food Control 2019, 100, 83–91. [Google Scholar] [CrossRef]
Systems | Moisture (%) | Th (mm) | WVP × 1010 (gm/sm2Pa) | EAB (%) | TS (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 d | 28 d | 0 d | 28 d | 0 d | 28 d | 0 d | 28 d | 0 d | 28 d | |
1 | 25.33 ± 1.65 aA | 21.90 ± 3.88 aA | 0.62 ± 0.02 aA | 0.47 ± 0.01 bB | 5.03 ± 0.25 aA | 0.86 ± 0.22 bB | 25.43 ± 8.04 aAB | 13.66 ± 2.83 aA | 1.27 ± 0.01 aA | 1.45 ± 0.12 aA |
2 | 28.04 ± 4.94 aA | 20.11 ± 7.26 aA | 0.66 ± 0.01 aA | 0.43 ± 0.02 bB | 2.82 ± 0.09 aA | 0.92 ± 0.38 bB | 42.36 ± 0.34 aA | 14.72 ± 1.12 bA | 0.91 ± 0.08 aB | 1.46 ± 0.09 bA |
3 | 26.73 ± 7.29 aA | 13.38 ± 6.07 aA | 0.35 ± 0.01 aD | 0.32 ± 0.01 bC | 2.46 ± 0.56 aA | 0.66 ± 0.25 aB | 33.47 ± 6.28 aAB | 23.44 ± 5.60 aA | 0.38 ± 0.07 aC | 0.84 ± 0.06 bB |
4 | 29.18 ± 5.80 aA | 18.67 ± 1.54 aA | 0.45 ± 0.03 aC | 0.46 ± 0.03 aB | 3.83 ± 0.27 aA | 1.46 ± 0.59 bB | 19.49 ± 2.02 aB | 17.53 ± 8.18 aA | 1.23 ± 0.08 aA | 0.95 ± 0.21 aB |
5 | 23.87 ± 3.38 aA | 18.75 ± 2.71 aA | 0.63 ± 0.01 aA | 0.51 ± 0.02 bA | 5.78 ± 4.65 aA | 7.22 ± 1.51 aA | 19.20 ± 6.46 aB | 27.19 ± 1.92 aA | 1.01 ± 0.10 aAB | 1.14 ± 0.01 aAB |
6 | 26.80 ± 3.02 aA | 21.67 ± 4.61 aA | 0.64 ± 0.01 aA | 0.54 ± 0.02 bA | 0.36 ± 0.45 aA | 5.90 ± 2.10 aAB | 40.00 ± 4.04 aA | 16.27 ± 1.52 bA | 0.81 ± 0.04 aB | 1.35 ± 0.07 bA |
7 | 27.76 ± 8.94 aA | 17.49 ± 0.37 aA | 0.46 ± 0.03 aC | 0.32 ± 0.01 bC | 6.46 ± 1.40 aA | 6.31 ± 1.86 aAB | 41.60 ± 1.78 aA | 28.55 ± 7.25 aA | 0.37 ± 0.07 aC | 0.58 ± 0.06 aC |
8 | 25.47 ± 4.32 aA | 20.78 ± 2.11 aA | 0.54 ± 0.01 aB | 0.42 ± 0.02 bB | 1.23 ± 0.79 aA | 7.26 ± 2.25 aA | 22.40 ± 7.43 aAB | 26.06 ± 6.14 aA | 0.70 ± 0.12 aB | 0.81 ± 0.01 aB |
System | L* | a* | b* | ∆E | |||
---|---|---|---|---|---|---|---|
0 d | 28 d | 0 d | 28 d | 0 d | 28 d | 28 d | |
1 | 72.04 ± 1.16 aC | 66.92 ± 0.18 bD | −2.28 ± 0.51 bB | 3.43 ± 0.85 aA | 49.03 ± 1.22 aA | 27.88 ± 2.34 bAB | 22.50 ± 1.54 AB |
2 | 69.97 ± 0.96 aC | 67.16 ± 0.27 bD | −1.38 ± 0.51 bB | 4.45 ± 0.34 aA | 48.10 ± 1.31 aA | 31.69 ± 0.38 bA | 17.65 ± 1.16 BC |
3 | 88.97 ± 0.54 aA | 84.06 ± 0.48 bA | 1.45 ± 0.29 bA | 3.32 ± 0.84 aA | 12.06 ± 0.60 aC | 8.39 ± 1.12 bD | 6.41 ± 0.76 D |
4 | 76.17 ± 0.66 aB | 72.04 ± 0.11 bB | −1.17 ± 0.42 bB | 4.06 ± 1.74 aA | 36.94 ± 3.69 aB | 16.06 ± 1.85 bCD | 21.93 ± 2.35 AB |
5 | 67.51 ± 0.85 aD | 66.04 ± 0.45 aD | 0.65 ± 1.05 bA | 6.57 ± 2.43 aA | 50.46 ± 1.63 aA | 22.90 ± 3.03 bBC | 28.23 ± 2.01 A |
6 | 72.28 ± 0.35 aC | 68.48 ± 0.29 bC | −1.76 ± 0.08 bB | 2.57 ± 2.43 aA | 47.00 ± 0.63 aA | 28.59 ± 5.94 bAB | 19.29 ± 5.80 BC |
7 | 90.34 ± 0.62 aA | 83.16 ± 0.41 bA | 0.99 ± 0.12 aA | 3.39 ± 1.60 aA | 11.35 ± 0.52 aC | 9.83 ± 0.79 aD | 7.72 ± 1.52 D |
8 | 72.84 ± 1.17 aC | 66.97 ± 0.67 bD | −2.50 ± 0.21 aB | 4.03 ± 3.34 aA | 44.04 ± 2.77 aA | 34.47 ± 2.08 bA | 12.99 ± 3.24 CD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Carranza, P.; Mendoza-Gutiérrez, B.A.; Estévez-Sánchez, K.H.; Ramírez-López, C.; Beristain-Bauza, S.d.C.; Avila-Reyes, S.V.; Ruíz-López, I.I.; Ochoa-Velasco, C.E. Development and Application of Bioactive Bi-Layer Edible Films Based on Starch and LAB-Fermented Whey and/or Mango Solution. Fermentation 2024, 10, 105. https://doi.org/10.3390/fermentation10020105
Hernández-Carranza P, Mendoza-Gutiérrez BA, Estévez-Sánchez KH, Ramírez-López C, Beristain-Bauza SdC, Avila-Reyes SV, Ruíz-López II, Ochoa-Velasco CE. Development and Application of Bioactive Bi-Layer Edible Films Based on Starch and LAB-Fermented Whey and/or Mango Solution. Fermentation. 2024; 10(2):105. https://doi.org/10.3390/fermentation10020105
Chicago/Turabian StyleHernández-Carranza, Paola, Bricia A. Mendoza-Gutiérrez, Karen H. Estévez-Sánchez, Carolina Ramírez-López, Silvia del C. Beristain-Bauza, Sandra V. Avila-Reyes, Irving I. Ruíz-López, and Carlos E. Ochoa-Velasco. 2024. "Development and Application of Bioactive Bi-Layer Edible Films Based on Starch and LAB-Fermented Whey and/or Mango Solution" Fermentation 10, no. 2: 105. https://doi.org/10.3390/fermentation10020105
APA StyleHernández-Carranza, P., Mendoza-Gutiérrez, B. A., Estévez-Sánchez, K. H., Ramírez-López, C., Beristain-Bauza, S. d. C., Avila-Reyes, S. V., Ruíz-López, I. I., & Ochoa-Velasco, C. E. (2024). Development and Application of Bioactive Bi-Layer Edible Films Based on Starch and LAB-Fermented Whey and/or Mango Solution. Fermentation, 10(2), 105. https://doi.org/10.3390/fermentation10020105