Innovations in Limnospira platensis Fermentation: From Process Enhancements to Biotechnological Applications
Abstract
1. Introduction
2. Strain Improvement
2.1. Genetic and Metabolic Engineering Approaches
2.2. Mutagenesis and Selection of Robust Strains
3. Fermentation Techniques for L. platensis
3.1. Submerged vs. Solid-State Fermentation
3.2. Mixed Fermentation Processes
4. Bioprocess Engineering and Optimization
4.1. Bioreactor Design and Scaling Up
4.2. Key Fermentation Parameters
4.3. Monitoring Technologies
5. Downstream Processing
5.1. Separation and Purification of Bioactive Compounds
5.2. Process Integration for Bioethanol and Biopeptide Production
6. Applications of Fermented L. platensis
6.1. Functional Food Ingredients
6.2. Pharmaceutical and Cosmetic Applications
6.3. Sustainability Aspects
7. Future Perspectives and Challenges
7.1. Large-Scale Production Challenges
7.2. Regulatory and Biosafety Considerations
7.3. Potential Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Danquah, M.K.; Zhang, S.; Zhang, X.; Wu, M.; Chen, X.D.; Ng, I.S.; Jing, K.; Lu, Y. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem. Eng. J. 2012, 183, 192–197. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022, 11, 2984. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, J.; Suter, P.M.; Russell, R.M.; Grusak, M.A.; Wang, Y.; Wang, Z.; Yin, S.; Tang, G. Spirulina is an effective dietary source of zeaxanthin to humans. Br. J. Nutr. 2012, 108, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Shklar, G. Regression of experimental oral carcinomas by local injection of beta-carotene and canthaxanthin. Nutr. Cancer 1988, 11, 35–40. [Google Scholar] [CrossRef]
- Ma, J.; Yan, H.H.; Qin, C.Q.; Liang, Y.X.; Ren, D.F. Accumulation of Astaxanthin by Co-fermentation of Spirulina platensis and Recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2022, 194, 988–999. [Google Scholar] [CrossRef]
- Moraes, I.; Arruda, R.; Maresca, N.; Antunes, A.; Moraes, R. Spirulina platensis: Process optimization to obtain biomass. Food Sci. Technol. 2013, 33, 179–183. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, S.; Chen, J.P. Carbon capture and utilization by algae with high concentration CO2 or bicarbonate as carbon source. Sci. Total. Environ. 2024, 918, 170325. [Google Scholar] [CrossRef]
- Research, G.V. Spirulina Market Size, Share & Trends Analysis Report by Application (Nutraceuticals, Food & Beverages, Animal Feed), by Region (North America, Europe, APAC, MEA, CSA), and Segment Forecasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/spirulina-beverages-market (accessed on 24 November 2024).
- Tayebati, H.; Pajoum Shariati, F.; Soltani, N.; Sepasi Tehrani, H. Effect of various light spectra on amino acids and pigment production of Arthrospira platensis using flat-plate photobioreactor. Prep. Biochem. Biotechnol. 2024, 54, 1028–1039. [Google Scholar] [CrossRef]
- Luiza Astolfi, A.; Rempel, A.; Cavanhi, V.A.F.; Alves, M.; Deamici, K.M.; Colla, L.M.; Costa, J.A.V. Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour. Technol. 2020, 301, 122698. [Google Scholar] [CrossRef]
- Vernès, L.; Abert-Vian, M.; El Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrason. Sonochem. 2019, 54, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Tolpeznikaite, E.; Bartkevics, V.; Skrastina, A.; Pavlenko, R.; Ruzauskas, M.; Starkute, V.; Zokaityte, E.; Klupsaite, D.; Ruibys, R.; Rocha, J.M.; et al. Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin. Biology 2023, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhang, X.; Zheng, J.-H.; Ren, D.-F.; Lu, J. Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random-centroid optimization. Food Chem. 2018, 264, 64–72. [Google Scholar] [CrossRef]
- Sahin, B.; Hosoglu, M.I.; Guneser, O.; Karagul-Yuceer, Y. Fermented Spirulina products with Saccharomyces and non- Saccharomyces yeasts: Special reference to their microbial, physico-chemical and sensory characterizations. Food Biosci. 2022, 47, 101691. [Google Scholar] [CrossRef]
- Kurt, H.; Isleten Hosoglu, M.; Guneser, O.; Karagul-Yuceer, Y. Influence of Different Bacteria Species in Chemical Composition and Sensory Properties of Fermented Spirulina. Food Chem. 2023, 400, 133994. [Google Scholar] [CrossRef]
- Eladl, S.N.; Elnabawy, A.M.; Eltanahy, E.G. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. Bot. Stud. 2024, 65, 28. [Google Scholar] [CrossRef]
- Selma, S.; Ceulemans, E.; Goossens, A.; Lacchini, E. Clustered regularly interspaced short palindromic repeats tools for plant metabolic engineering: Achievements and perspectives. Curr. Opin. Biotechnol. 2023, 79, 102856. [Google Scholar] [CrossRef]
- Baldanta, S.; Guevara, G.; Navarro-Llorens, J.M. SEVA-Cpf1, a CRISPR-Cas12a vector for genome editing in cyanobacteria. Microb. Cell Factories 2022, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Kneip, J.S.; Kniepkamp, N.; Jang, J.; Mortaro, M.G.; Jin, E.; Kruse, O.; Baier, T. CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii. Plants 2024, 13, 1393. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, Z.; Wang, Y.; Yao, M.; Chen, Y.; Xiao, W.; Yuan, Y. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochem. Eng. J. 2020, 156, 107519. [Google Scholar] [CrossRef]
- Deshpande, A.; Vue, J.; Morgan, J. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in Synechocystis sp. Strain PCC 6803. Appl. Environ. Microbiol. 2020, 86, e02816-19. [Google Scholar] [CrossRef] [PubMed]
- Manirafasha, E.; Murwanashyaka, T.; Ndikubwimana, T.; Rashid Ahmed, N.; Liu, J.; Lu, Y.; Zeng, X.; Ling, X.; Jing, K. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour. Technol. 2018, 255, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Jester, B.; Zhao, H.; Gewe, M.; Adame, T.; Perruzza, L.; Bolick, D.; Agosti, J.; Khuong, N.; Kuestner, R.; Gamble, C.; et al. Expression and manufacturing of protein therapeutics in spirulina. bioRxiv 2021. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Aikawa, S.; Kojima, Y.; Toya, Y.; Furusawa, C.; Kondo, A.; Shimizu, H. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction. PLoS ONE 2015, 10, e0144430. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Lu, H.; He, X.; Yang, W.; Zhou, J.; Cen, K. Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas. Bioresour. Technol. 2017, 238, 650–656. [Google Scholar] [CrossRef]
- Fang, M.; Jin, L.; Zhang, C.; Tan, Y.; Jiang, P.; Ge, N.; Heping, L.; Xing, X. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 2013, 8, e77046. [Google Scholar] [CrossRef]
- Akhgari, A.; Baral, B.; Koroleva, A.; Siitonen, V.; Fewer, D.P.; Melançon, C.E.; Rahkila, J.; Metsä-Ketelä, M. Single cell mutant selection for metabolic engineering of actinomycetes. Metab. Eng. 2022, 73, 124–133. [Google Scholar] [CrossRef]
- Rodrigues, É.F.; Ficanha, A.M.M.; Dallago, R.M.; Treichel, H.; Reinehr, C.O.; Machado, T.P.; Nunes, G.B.; Colla, L.M. Production and purification of amylolytic enzymes for saccharification of microalgal biomass. Bioresour. Technol. 2017, 225, 134–141. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019, 8, 17. [Google Scholar] [CrossRef]
- Tolpeznikaite, E.; Bartkevics, V.; Skrastina, A.; Pavlenko, R.; Mockus, E.; Zokaityte, E.; Starkute, V.; Klupsaite, D.; Ruibys, R.; Rocha, J.M.; et al. Changes in Spirulina’s Physical and Chemical Properties during Submerged and Solid-State Lacto-Fermentation. Toxins 2023, 15, 75. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Agustini, T.; Suzery, M.; Sutrisnanto, D.; Ma’ruf, W.; Hadiyanto, H. Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp. Procedia Environ. Sci. 2015, 23, 282–289. [Google Scholar] [CrossRef]
- Penloglou, G.; Pavlou, A.; Kiparissides, C. Recent Advancements in Photo-Bioreactors for Microalgae Cultivation: A Brief Overview. Processes 2024, 12, 1104. [Google Scholar] [CrossRef]
- Abdur Razzak, S.; Bahar, K.; Islam, K.M.O.; Haniffa, A.K.; Faruque, M.O.; Hossain, S.M.Z.; Hossain, M.M. Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future. Green Chem. Eng. 2024, 5, 418–439. [Google Scholar] [CrossRef]
- Jiao, H.; Tsigkou, K.; Elsamahy, T.; Pispas, K.; Sun, J.; Manthos, G.; Schagerl, M.; Sventzouri, E.; Al-Tohamy, R.; Kornaros, M.; et al. Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives. Ecotoxicol. Environ. Saf. 2024, 270, 115908. [Google Scholar] [CrossRef]
- Gutiérrez Márquez, A. Towards a Better Valorization of Arthrospira Platensis (Spirulina) Biomass: Contribution to the Optimization of Its Culture and Its Refinery. Ph.D. Thesis, Aix-Marseile Université, Marseille, France, 2024. [Google Scholar]
- Zhu, C.; Zhai, X.; Wang, J.; Han, D.; Li, Y.; Xi, Y.; Tang, Y.; Chi, Z. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Appl. Microbiol. Biotechnol. 2018, 102, 8979–8987. [Google Scholar] [CrossRef]
- Díaz, J.P.; Inostroza, C.; Acién Fernández, F.G. Fibonacci-type tubular photobioreactor for the production of microalgae. Process Biochem. 2019, 86, 1–8. [Google Scholar] [CrossRef]
- Vernerey, A.; Albiol, J.; Lasseur, C.; Gòdia, F. Scale-up and design of a pilot-plant photobioreactor for the continuous culture of Spirulina platensis. Biotechnol. Prog. 2001, 17, 431–438. [Google Scholar] [CrossRef]
- Ogbonda, K.H.; Aminigo, R.E.; Abu, G.O. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour. Technol. 2007, 98, 2207–2211. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Cui, M.; Zhang, W.; Zhao, J. Comparative experiments of two novel tubular photobioreactors with an inner aerated tube for microalgal cultivation: Enhanced mass transfer and improved biomass yield. Algal Res. 2021, 58, 102364. [Google Scholar] [CrossRef]
- Hu, D.; Li, M.; Zhou, R.; Sun, Y. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation. Bioresour. Technol. 2012, 104, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, M.; Carrillo, C.; Zhu, Z.; Brncic, M.; Berrada, H.; Barba, F.J. Impact of Pressurized Liquid Extraction and pH on Protein Yield, Changes in Molecular Size Distribution and Antioxidant Compounds Recovery from Spirulina. Foods 2021, 10, 2153. [Google Scholar] [CrossRef] [PubMed]
- Ovando, C.; De Carvalho, J.; Pereira, G.; Jacques, P.; Thomaz-Soccol, V.; Soccol, C. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev. Int. 2016, 34, 34–51. [Google Scholar] [CrossRef]
- de Marco Castro, E.; Shannon, E.; Abu-Ghannam, N. Effect of Fermentation on Enhancing the Nutraceutical Properties of Arthrospira platensis (Spirulina). Fermentation 2019, 5, 28. [Google Scholar] [CrossRef]
- Yu, J.; Ma, D.; Qu, S.; Liu, Y.; Xia, H.; Bian, F.; Zhang, Y.; Huang, C.; Wu, R.; Wu, J.; et al. Effects of different probiotic combinations on the components and bioactivity of Spirulina. J. Basic Microbiol. 2020, 60, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, A.; Bažec, K.; Rodolfi, L.; Biondi, N.; Zlatić, E.; Jamnik, P.; Tredici, M.R. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front. Microbiol. 2020, 11, 560684. [Google Scholar] [CrossRef]
- An, J.; Feng, Y.; Zheng, J.; Addy, M.; Zhang, L.; Ren, D. The immune-enhancing potential of peptide fractions from fermented Spirulina platensis by mixed probiotics. J. Food Biochem. 2020, 44, e13245. [Google Scholar] [CrossRef]
- Lafarga, T.; Sánchez-Zurano, A.; Villaró, S.; Morillas-España, A.; Acién, G. Industrial production of spirulina as a protein source for bioactive peptide generation. Trends Food Sci. Technol. 2021, 116, 176–185. [Google Scholar] [CrossRef]
- Cardoso, L.; Hartwig Duarte, J.; Andrade, B.; Lemos, P.; Costa, J.A.; Druzian, J.; Chinalia, F. Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid and carbohydrate production. Aquaculture 2020, 525, 735272. [Google Scholar] [CrossRef]
- Bartkiene, E.; Starkute, V.; Jomantaite, I.; Zokaityte, E.; Mockus, E.; Tolpeznikaite, E.; Zokaityte, G.; Petrova, P.; Santini, A.; Rocha, J.M.; et al. Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum. Foods 2023, 12, 1690. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Lucia, A. Development of New Active Ingredients from Microalgae Biomass Fermentation for Human Healthcare Applications. Ph.D. Thesis, University of Napoli “Federico II”, Napoli, Italy, 2015. [Google Scholar]
- Grobbelaar, J. From laboratory to commercial production: A case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J. Appl. Phycol. 2009, 21, 523–527. [Google Scholar] [CrossRef]
Fermentation Method | Advantages | Disadvantages | Key Applications | References |
---|---|---|---|---|
Submerged fermentation (SMF) | Precise control over environmental parameters (oxygen, pH, nutrient distribution, and temperature) Possibility of scale-up and mass production | Higher water and energy consumption | Widely used in food and pharmaceutical industries | [29] |
Solid-State Fermentation (SSF) | Higher concentration of bioactive compounds (phycocyanin, antioxidants) Lower water requirement (environmentally friendly) | Formation of biogenic amines | Production of bioactive compounds, antioxidants, and peptides | [13,33] |
Mixed Fermentation | Use of multiple microorganisms enhances the nutritional profile and flavor of L. platensis-based products, enhances the breakdown of complex molecules, and enhances bioavailability | Complex microbial interactions | Functional foods, nutraceuticals | [14] |
Application Area | Key Benefits | References |
---|---|---|
Functional Food Ingredients | Enhances bioavailability of bioactive compounds: antioxidants, peptides, and essential amino acids. L. platensis + L. plantarum enhance GABA and L-glutamic acid: beneficial for health and neuroprotective functions. Enhances protein digestibility and increases bioactive peptides with antioxidative and antimicrobial properties and is used in functional foods. Ingredient in lactose-free beverages: enhances antioxidative function and improves gut health through probiotic action | [45,46,47,48,52] |
Pharmaceutical and Cosmetic | The fermentation process releases bioactive peptides and antioxidants and improves availability. Stimulates proliferation of immune cells and modulates cytokine production: immunomodulatory and anti-inflammatory functions. Biopharmaceutical applications Antioxidative bioactive compounds combat oxidative stress and contribute to skin aging: ideal for anti-aging products. Antimicrobial properties: protection against skin pathogens such as S. aureus | [49,50,53,54] |
Sustainability | Environmental benefits: sustainable production and carbon sequestration. L. platensis efficiently captures carbon dioxide and converts it into biomass: decreases greenhouse gas emissions + enhances high-nutrient biomass. Biorefineries: bioethanol production Wastewater treatment | [2,11,51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Innovations in Limnospira platensis Fermentation: From Process Enhancements to Biotechnological Applications. Fermentation 2024, 10, 633. https://doi.org/10.3390/fermentation10120633
Spínola MP, Mendes AR, Prates JAM. Innovations in Limnospira platensis Fermentation: From Process Enhancements to Biotechnological Applications. Fermentation. 2024; 10(12):633. https://doi.org/10.3390/fermentation10120633
Chicago/Turabian StyleSpínola, Maria P., Ana R. Mendes, and José A. M. Prates. 2024. "Innovations in Limnospira platensis Fermentation: From Process Enhancements to Biotechnological Applications" Fermentation 10, no. 12: 633. https://doi.org/10.3390/fermentation10120633
APA StyleSpínola, M. P., Mendes, A. R., & Prates, J. A. M. (2024). Innovations in Limnospira platensis Fermentation: From Process Enhancements to Biotechnological Applications. Fermentation, 10(12), 633. https://doi.org/10.3390/fermentation10120633