Statistical Optimisation of Streptomyces sp. DZ 06 Keratinase Production by Submerged Fermentation of Chicken Feather Meal
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrates and Chemicals
2.2. Culture Medium Substrate Preparation
2.3. Sampling and Sample Pretreatment
2.4. Actinobacterial Isolation and Culture
2.4.1. Solid-State Screening of Keratinase-Producing Strains
2.4.2. Screening in Liquid Media for Keratinase-Producing Strains
2.5. Bacterial Strain, Growth Conditions, and Preparation of Spore Solutions
2.6. Enzyme Activity Assay
2.7. Morphological Characterization and Molecular Identification of the Keratinase-Producing Strain, ES41
2.8. Determination of Influencing Physicochemical Parameters Using the Plackett-BurmanApproach (PBD)
2.9. Determination of Optimal Physicochemical Parameters Using a Response Surface Model Based on the Box-Behnken Design
2.10. Experimental Model Validation
3. Results and Discussion
3.1. Isolation of Keratinase-Producing Actinobacterial Strains
3.1.1. Pre-Screening on FBM Solid Medium
3.1.2. Screening in FBM Submerged Medium
3.2. Identification and Classification of the Keratinase-Producing Strain ES41
3.2.1. Morphological Characterization of Strain ES41
3.2.2. Molecular Typing of ES41 Strain
3.3. Screening of Critical Factors Affecting Keratinase Production via the Plackett-Burman Design
3.4. Box-Behnken Examination of Keratinase Synthesis-Based on RSM Design
3.4.1. Interaction Analysis between Critical Parameters
3.4.2. Approval of Proposed Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciurko, D.P.; Łaba, W.; Piegza, M.; Juszczyk, P.; Choińska-Pulit, A.; Sobolczyk-Bednarek, J. Enzymatic Bioconversion of Feather. Waste with Keratinases of Bacillus Cereus PCM 2849. Pol. J. Chem. Technol. 2019, 21, 53–59. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Food Outlook—Biannual Report on Global Food Markets; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- The Organization for Economic Cooperation and Development; The Food and Agriculture Organization. OECD-FAO Agricultural Outlook 2024–2033; OECDO: Paris, France; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- El-Ghonemy, D.H.; Ali, T.H. Effective Bioconversion of Feather-Waste Keratin by Thermo-Surfactant Stable Alkaline Keratinase Produced from Aspergillus Sp. DHE7 with Promising Biotechnological Application in Detergent Formulations. Biocatal. Agric. Biotechnol. 2021, 35, 102052. [Google Scholar] [CrossRef]
- Da Silva, R.R. Keratinases as an Alternative Method Designed to Solve Keratin Disposal on the Environment: Its Relevance on Agricultural and Environmental Chemistry. J. Agric. Food Chem. 2018, 66, 7219–7221. [Google Scholar] [CrossRef] [PubMed]
- Lange, L.; Huang, Y.; Busk, P.K. Microbial Decomposition of Keratin in Nature—A New Hypothesis of Industrial Relevance. Appl. Microbiol. Biotechnol. 2016, 100, 2083–2096. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Gupta, A. Sustainable Management of Keratin Waste Biomass: Applications and Future Perspectives. Braz. Arch. Biol. Technol. 2016, 59, e16150684. [Google Scholar] [CrossRef]
- Tamreihao, K.; Mukherjee, S.; Khunjamayum, R.; Devi, L.J.; Asem, R.S.; Ningthoujam, D.S. Feather Degradation by Keratinolytic Bacteria and Biofertilizing Potential for Sustainable Agricultural Production. J. Basic. Microbiol. 2019, 59, 4–13. [Google Scholar] [CrossRef]
- Kshetri, P.; Ningthoujam, D.S. Keratinolytic Activities of Alkaliphilic Bacillus sp. MBRL 575 from a Novel Habitat, Limestone Deposit Site in Manipur, India. SpringerPlus 2016, 5, 595. [Google Scholar] [CrossRef]
- Ismail, A.-M.S.; Housseiny, M.M.; Abo-Elmagd, H.I.; El-Sayed, N.H.; Habib, M. Novel Keratinase from Trichoderma Harzianum MH-20 Exhibiting Remarkable Dehairing Capabilities. Int. Biodeterior. Biodegrad. 2012, 70, 14–19. [Google Scholar] [CrossRef]
- De Medeiros, I.P.; Rozental, S.; Costa, A.S.; Macrae, A.; Hagler, A.N.; Ribeiro, J.R.A.; Vermelho, A.B. Biodegradation of Keratin by Trichosporum Loubieri RC-S6 Isolated from Tannery/Leather Waste. Int. Biodeterior. Biodegrad. 2016, 115, 199–204. [Google Scholar] [CrossRef]
- Preczeski, K.P.; Dalastra, C.; Czapela, F.F.; Kubeneck, S.; Scapini, T.; Camargo, A.F.; Zanivan, J.; Bonatto, C.; Stefanski, F.S.; Venturin, B.; et al. Fusarium Oxysporum and Aspergillus sp. as Keratinase Producers Using Swine Hair from Agroindustrial Residues. Front. Bioeng. Biotechnol. 2020, 8, 71. [Google Scholar] [CrossRef]
- Alwakeel, S.S.; Ameen, F.; Al Gwaiz, H.; Sonbol, H.; Alghamdi, S.; Moharram, A.M.; Al-Bedak, O.A. Keratinases Produced by Aspergillus Stelliformis, Aspergillus Sydowii, and Fusarium Brachygibbosum Isolated from Human Hair: Yield and Activity. J. Fungi. 2021, 7, 471. [Google Scholar] [CrossRef] [PubMed]
- Fakhfakh, N.; Ktari, N.; Haddar, A.; Mnif, I.H.; Dahmen, I.; Nasri, M. Total Solubilisation of the Chicken Feathers by Fermentation with a Keratinolytic Bacterium, Bacillus Pumilus A1, and the Production of Protein Hydrolysate with High Antioxidative Activity. Process Biochem. 2011, 46, 1731–1737. [Google Scholar] [CrossRef]
- Bach, E.; Sant’Anna, V.; Daroit, D.J.; Corrêa, A.P.F.; Segalin, J.; Brandelli, A. Production, One-Step Purification, and Characterization of a Keratinolytic Protease from Serratia Marcescens P3. Process Biochem. 2012, 47, 2455–2462. [Google Scholar] [CrossRef]
- Kang, E.; Jin, H.; La, J.W.; Sung, J.; Park, S.; Kim, W.; Lee, D. Identification of Keratinases from Fervidobacterium Islandicum AW-1 Using Dynamic Gene Expression Profiling. Microb. Biotechnol. 2020, 13, 442–457. [Google Scholar] [CrossRef]
- Moonnee, Y.A.; Foysal, M.J.; Hashem, A.; Miah, M.F. Keratinolytic Protease from Pseudomonas Aeruginosa for Leather Skin Processing. J. Genet. Eng. Biotechnol. 2021, 19, 53. [Google Scholar] [CrossRef]
- Syed, D.G.; Lee, J.C.; Li, W.-J.; Kim, C.-J.; Agasar, D. Production, Characterization and Application of Keratinase from Streptomyces Gulbargensis. Bioresour. Technol. 2009, 100, 1868–1871. [Google Scholar] [CrossRef]
- Habbeche, A.; Haberra, S.; Saoudi, B.; Kerouaz, B.; Ladjama, A. Keratinase production from a thermophilic actinomycete stain Cpt29 newly isolated from poultry compost. Minerva Biotechnol. 2013, 25, 151–159. [Google Scholar]
- Barman, N.C.; Zohora, F.T.; Das, K.C.; Mowla, M.G.; Banu, N.A.; Salimullah, M.D.; Hashem, A. Production, Partial Optimization and Characterization of Keratinase Enzyme by Arthrobacter sp. NFH5 Isolated from Soil Samples. AMB Express. 2017, 7, 181. [Google Scholar] [CrossRef]
- Thankaswamy, S.R.; Sundaramoorthy, S.; Palanivel, S.; Ramudu, K.N. Improved Microbial Degradation of Animal Hair Waste from Leather Industry Using Brevibacterium Luteolum (MTCC 5982). J. Clean. Prod. 2018, 189, 701–708. [Google Scholar] [CrossRef]
- Hassan, M.A.; Haroun, B.M.; Amara, A.A.; Serour, E.A. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem. BioMed Res. Int. 2013, 1, 175012. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Anbu, P.; Lakshmipriya, T.; Tang, T.-H.; Chen, Y.; Hashim, U.; Ruslinda, A.R.; Arshad, M.K.M. Biotechnological Aspects and Perspective of Microbial Keratinase Production. BioMed Res. Int. 2015, 1, 140726. [Google Scholar] [CrossRef] [PubMed]
- González, V.; Vargas-Straube, M.J.; Beys-da-Silva, W.O.; Santi, L.; Valencia, P.; Beltrametti, F.; Cámara, B. Enzyme Bioprospection of Marine-Derived Actinobacteria from the Chilean Coast and New Insight in the Mechanism of Keratin Degradation in Streptomyces sp. G11C. Mar Drugs 2020, 18, 537. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, B.; Khatri, M.; Singh, G.; Arya, S.K. Microbial Keratinases: An Overview of Biochemical Characterization and Its Eco-Friendly Approach for Industrial Applications. J. Clean. Prod. 2020, 252, 119847. [Google Scholar] [CrossRef]
- Qiu, J.; Wilkens, C.; Barrett, K.; Meyer, A.S. Microbial Enzymes Catalyzing Keratin Degradation: Classification, Structure, Function. Biotechnol. Adv. 2020, 44, 107607. [Google Scholar] [CrossRef] [PubMed]
- Nnolim, N.E.; Udenigwe, C.C.; Okoh, A.I.; Nwodo, U.U. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front. Microbiol. 2020, 11, 580164. [Google Scholar] [CrossRef]
- Yahaya, R.S.R.; Normi, Y.M.; Phang, L.Y.; Ahmad, S.A.; Abdullah, J.O.; Sabri, S. Molecular Strategies to Increase Keratinase Production in Heterologous Expression Systems for Industrial Applications. Appl. Microbiol. Biotechnol. 2021, 105, 3955–3969. [Google Scholar] [CrossRef]
- Verma, A.; Singh, H.; Anwar, S.; Chattopadhyay, A.; Tiwari, K.K.; Kaur, S.; Dhilon, G.S. Microbial Keratinases: Industrial Enzymes with Waste Management Potential. Crit. Rev. Biotechnol. 2017, 37, 476–491. [Google Scholar] [CrossRef]
- Sharma, R.; Devi, S. Versatility and Commercial Status of Microbial Keratinases: A Review. Rev. Environ. Sci. Biotechnol. 2018, 17, 19–45. [Google Scholar] [CrossRef]
- Prakash, D.; Nawani, N.; Prakash, M.; Bodas, M.; Mandal, A.; Khetmalas, M.; Kapadnis, B. Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource. BioMed Res. Int. 2013, 2013, 264020. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes Benefaction Role in Soil and Plant Health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Daroit, D.J.; Brandelli, A. A Current Assessment on the Production of Bacterial Keratinases. Crit. Rev. Biotechnol. 2014, 34, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K.M. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef] [PubMed]
- Narenderan, S.T.; Meyyanathan, S.N.; Karri, V.V.S.R. Experimental Design in Pesticide Extraction Methods: A Review. Food Chem. 2019, 289, 384–395. [Google Scholar] [CrossRef]
- Maibeche, R.; Boucherba, N.; Bendjeddou, K.; Prins, A.; Bouiche, C.; Hamma, S.; Benhoula, M.; Azzouz, Z.; Bettache, A.; Benallaoua, S.; et al. Peroxidase-Producing Actinobacteria from Algerian Environments and Insights from the Genome Sequence of Peroxidase-Producing Streptomyces sp. S19. Int. Microbiol. 2022, 25, 379–396. [Google Scholar] [CrossRef]
- Salam, N.; Khieu, T.N.; Liu, M.J.; Vu, T.T.; Chu-Ky, S.; Quach, N.T.; Phi, Q.T.; Narsing Rao, M.P.; Fontana, A.; Sarter, S.; et al. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities. BioMed Res. Int. 2017, 1, 1308563. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Lou, B.; Zheng, X. Keratinase Production and Keratin Degradation by a Mutant Strain of Bacillus Subtilis. J. Zhejiang Univ. Sci. B 2008, 9, 60–67. [Google Scholar] [CrossRef]
- Azzouz, Z.; Bettache, A.; Djinni, I.; Boucherba, N.; Benallaoua, S. Biotechnological Production and Statistical Optimization of Fungal Xylanase by Bioconversion of the Lignocellulosic Biomass Residues in Solid-State Fermentation. Biomass Conv. Bioref. 2022, 12, 5923–5935. [Google Scholar] [CrossRef]
- Ningthoujam, D.S.; Devi, L.J.; Devi, P.J.; Kshetri, P.; Tamreihao, K.; Mukherjee, S.; Devi, S.S.; Betterson, N. Optimization of Keratinase Production by Amycolatopsis sp. Strain MBRL 40 from a Limestone Habitat. J. Bioprocess Biotech. 2016, 40, 2. [Google Scholar] [CrossRef]
- Wawrzkiewicz, K.; Łobarzewski, J.; Wolski, T. Intracellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol. 1987, 25, 261–268. [Google Scholar] [CrossRef]
- Balagurunathan, R.; Radhakrishnan, M.; Shanmugasundaram, T.; Gopikrishnan, V.; Jerrine, J. Protocols in Actinobacterial Research; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Mohd Ghazali, S.A.; Tengku Abdul Hamid, T.H. New Lipase Producing B-Proteobacteria Strains Caldimonas Sp. and Tepidimonas sp. Isolated from a Malaysian Hot Springs. JSM 2015, 44, 701–706. [Google Scholar] [CrossRef]
- Benhoula, M.; Azzouz, Z.; Bettache, A.; Le Roes-Hill, M.; Djoudi, W.; Maibeche, R.; Hamma, S.; Bensaad, M.S.; Amghar, Z.; Boudjelal, A.; et al. Olive Mill Wastewater Biodegradation for Bacterial Lipase Production Using a Response Surface Methodology. Biomass Conv. Bioref. 2023, 14, 1187–1200. [Google Scholar] [CrossRef]
- Dereeper, A.; Audic, S.; Claverie, J.-M.; Blanc, G. BLAST-EXPLORER Helps You Building Datasets for Phylogenetic Analysis. BMC Evol. Biol. 2010, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.D.; Han, Y.F.; Zhang, J.W.; Du, W.; Liang, Z.Q.; Li, Z.Z. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. J. Appl. Microbiol. 2011, 110, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Uhoraningoga, A.; Kinsella, G.; Henehan, G.; Ryan, B. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering 2018, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Velayudham, S.; Murugan, K. Sequential Optimization Approach for Enhanced Production of Antimicrobial Compound from Streptomyces Rochei BKM-4. S. Indian J. Biol. Sci. 2015, 1, 72–79. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; He, D.; Li, S.; Xu, Y. Optimization of Enzymatic Hydrolysis of Perilla Meal Protein for Hydrolysate with High Hydrolysis Degree and Antioxidant Activity. Molecules 2022, 27, 1079. [Google Scholar] [CrossRef]
- Glyk, A.; Solle, D.; Scheper, T.; Beutel, S. Optimization of PEG–Salt Aqueous Two-Phase Systems by Design of Experiments. Chemom. Intell. Lab. Syst. 2015, 149, 12–21. [Google Scholar] [CrossRef]
- Vera Candioti, L.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental Design and Multiple Response Optimization. Using the Desirability Function in Analytical Methods Development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef]
- Shen, N.; Yang, M.; Xie, C.; Pan, J.; Pang, K.; Zhang, H.; Wang, Y.; Jiang, M. Isolation and Identification of a Feather Degrading Bacillus Tropicus Strain Gxun-17 from Marine Environment and Its Enzyme Characteristics. BMC Biotechnol. 2022, 22, 11. [Google Scholar] [CrossRef]
- Djinni, I.; Defant, A.; Kecha, M.; Mancini, I. Actinobacteria Derived from Algerian Ecosystems as a Prominent Source of Antimicrobial Molecules. Antibiotics 2019, 8, 172. [Google Scholar] [CrossRef]
- Sypka, M.; Jodłowska, I.; Białkowska, A.M. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021, 11, 1900. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.K.; Stewart, C.S. Keratin Hydrolysis by Dermatophytes. Med. Mycol. J. 2019, 57, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Sangali, S.; Brandelli, A. Feather Keratin Hydrolysis by a Vibrio sp. Strain Kr2. J. Appl. Microbiol. 2000, 89, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Duffeck, C.E.; De Menezes, C.L.A.; Boscolo, M.; Da Silva, R.; Gomes, E.; Da Silva, R.R. Citrobacter diversus-Derived Keratinases and Their Potential Application as Detergent-Compatible Cloth-Cleaning Agents. Braz. J. Microbiol. 2020, 51, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.-D.; Li, F.; Yue, S.-Y.; Huang, X.-N.; Gao, T.-T.; Jiao, D.-Q.; Wang, C.-H. Production and Characterization of Novel Thermo- and Organic Solvent–Stable Keratinase and Aminopeptidase from Pseudomonas Aeruginosa 4–3 for Effective Poultry Feather Degradation. Environ. Sci. Pollut. Res. 2023, 30, 2480–2493. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Yan, M.; Li, K.; Okoye, C.O.; Fang, Z.; Ni, Z.; Chen, H. Research Progress on the Degradation Mechanism and Modification of Keratinase. Appl. Microbiol. Biotechnol. 2023, 107, 1003–1017. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abol-Fotouh, D.; Omer, A.M.; Tamer, T.M.; Abbas, E. Comprehensive Insights into Microbial Keratinases and Their Implication in Various Biotechnological and Industrial Sectors: A Review. Int. J. Biol. Macromol. 2020, 154, 567–583. [Google Scholar] [CrossRef]
- Allure, N.; Madhusudhan, D.N.; Dayanand Agsar, D. Detection of Keratinolytic Actinobacteria and evaluation of Bioprocess for Production of Alkaline Keratinase. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 907–918. [Google Scholar]
- Sivakumar, T.; Shankar, T.; Vijayabaskar, P.; Ramasubramanian, V. StatisticalOptimization of Keratinase Production by Bacillus Cereus. Glob. J. Biotechnol. Biochem. 2011, 6, 197–202. [Google Scholar]
- Nandini, A.; Madhusudhan, D.N.; Dayanand, A. Enhanced Production, Purification and Characterization of Alkaline Keratinase from Streptomyces Minutiscleroticus DNA38. Int. Lett. Nat. Sci. 2015, 43, 27–37. [Google Scholar] [CrossRef]
- Awad, G.E.A.; Esawy, M.A.; Salam, W.A.; Salama, B.M.; Abdelkader, A.F.; El-diwany, A. Keratinase Production by Bacillus Pumilus GHD in Solid-State Fermentation Using Sugar Cane Bagasse: Optimisation of Culture Conditions Using a Box-Behnken Experimental Design. Ann. Microbiol. 2011, 61, 663–672. [Google Scholar] [CrossRef]
- Govarthanan, M.; Selvankumar, T.; Selvam, K.; Sudhakar, C.; Aroulmoji, V.; Kamala-Kannan, S. Response Surface Methodology Based Optimization of Keratinase Production from Alkali-Treated Feather Waste and Horn Waste Using Bacillus sp. MG-MASC-BT. J. Ind. Eng. Chem. 2015, 27, 25–30. [Google Scholar] [CrossRef]
- Bagewadi, Z.K.; Mulla, S.I.; Ninnekar, H.Z. Response Surface Methodology Based Optimization of Keratinase Production from Trichoderma Harzianum Isolate HZN12 Using Chicken Feather Waste and Its Application in Dehairing of Hide. J. Environ. Chem. Eng. 2018, 6, 4828–4839. [Google Scholar] [CrossRef]
- Abdul Gafar, A.; Khayat, M.E.; Ahmad, S.A.; Yasid, N.A.; Shukor, M.Y. Response Surface Methodology for the Optimization of Keratinase Production in Culture Medium Containing Feathers by Bacillus sp. UPM-AAG1. Catalysts 2020, 10, 848. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Caires, A.O.; Borges, T.D.S.; Lima, A.M.D.S.; Silva, L.O.B.; Dos Santos, W.N.L. Robustness Evaluation in Analytical Methods Optimized Using Experimental Designs. Microchem. J. 2017, 131, 163–169. [Google Scholar] [CrossRef]
- Taşar, Ö.C.; Taşar, G.E. Optimization of keratinase enzyme synthesized by Micrococcus luteus using Taguchi DOE method. KSU J. Agric. Nat. 2023, 26, 1027–1033. [Google Scholar] [CrossRef]
- Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.D.S.; Saviano, A.M.; Lourenço, F.R. Design of Experiments (DoE) Applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54, e01006. [Google Scholar] [CrossRef]
- Casarin, F.; Cladera-Olivera, F.; Brandelli, A. Use of Poultry Byproduct for Production of Keratinolytic Enzymes. Food Bioproc. Tech. 2008, 1, 301–305. [Google Scholar] [CrossRef]
- Łaba, W.; Żarowska, B.; Chorążyk, D.; Pudło, A.; Piegza, M.; Kancelista, A.; Kopeć, W. New Keratinolytic Bacteria in Valorization of Chicken Feather Waste. AMB Expr. 2018, 8, 9. [Google Scholar] [CrossRef]
- Manivasagan, P.; Sivakumar, K.; Gnanam, S.; Venkatesan, J.; Kim, S. Production, Biochemical Characterization and Detergents Application of Keratinase from the Marine Actinobacterium Actinoalloteichus sp. MA-32. J. Surfactants Deterg. 2014, 17, 669–682. [Google Scholar] [CrossRef]
- Demir, T.; Hameş, E.E.; Öncel, S.S.; Vardar-Sukan, F. An Optimization Approach to Scale up Keratinase Production by Streptomyces sp. 2M21 by Utilizing Chicken Feather. Int. Biodeterior. Biodegrad. 2015, 103, 134–140. [Google Scholar] [CrossRef]
- Fakhfakh-Zouari, N.; Haddar, A.; Hmidet, N.; Frikha, F.; Nasri, M. Application of Statistical Experimental Design for Optimization of Keratinases Production by Bacillus Pumilus A1 Grown on Chicken Feather and Some Biochemical Properties. Process Biochem. 2010, 45, 617–626. [Google Scholar] [CrossRef]
- Heba, S.A.M.E. A Statistical-Mathematical Model to Optimize Chicken Feather Waste Bioconversion via Bacillus Licheniformis SHG10: A Low Cost Effective and Ecologically Safe Approach. J. Bioprocess. Biotech. 2015, 5, 1. [Google Scholar] [CrossRef]
- Abd El-Aziz, N.M.; Khalil, B.E.; Ibrahim, H.F. Enhancement of Feather Degrading Keratinase of Streptomyces Swerraensis KN23, Applying Mutagenesis and Statistical Optimization to Improve Keratinase Activity. BMC Microbiol. 2023, 23, 158. [Google Scholar] [CrossRef]
- Matikevičienė, V.; Grigiškis, S.; Levišauskas, D.; Sirvydytė, K.; Dižavičienė, O.; Masiliūnienė, D.; Ančenko, O. Optimization of Keratinase Production by Actinomyces Fradiae 119 and Its Application in Degradation of Keratin Containing Wastes. Environ. Technol. Resour. 2015, 1, 294. [Google Scholar] [CrossRef]
- Fatokun, E.; Nwodo, U.; Okoh, A. Classical Optimization of Cellulase and Xylanase Production by a Marine Streptomyces Species. Appl. Sci. 2016, 6, 286. [Google Scholar] [CrossRef]
- Sharma, K.M.; Kumar, R.; Panwar, S.; Kumar, A. Microbial Alkaline Proteases: Optimization of Production Parameters and Their Properties. J. Genet. Eng. Biotechnol. 2017, 15, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Abdel-Fattah, A.; Ismail, S.; El-Gamal, M.; Esawy, M.; Emran, M. Optimization, Characterization and Thermodynamic Studies on B. Licheniformis ALW1 Keratinase. Egypt. J. Chem. 2018. [Google Scholar] [CrossRef]
- Mazotto, A.M.; Cedrola, S.M.L.; De Souza, E.P.; Couri, S.; Vermelho, A.B. Enhanced Keratinase Production by Bacillus subtilis amr Using Experimental Optimization Tools to Obtain Feather Protein Lysate for Industrial Applications. 3 Biotech 2022, 12, 90. [Google Scholar] [CrossRef]
- Bhari, R.; Kaur, M.; Singh, R.S. Optimization and Validation of Keratinase Production by Bacillus Aerius NSMk2 in a Stirred Tank Reactor Using Response Surface Methodology. SN Appl. Sci. 2021, 3, 641. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Omar, W.N.N.W.; Nordin, N.; Mohamed, M.; Amin, N.A.S. A Two-Step Biodiesel Production from Waste Cooking Oil: Optimization of Pre-Treatment Step. J. Appl. Sci. 2009, 9, 3098–3103. [Google Scholar] [CrossRef]
- Majdi, H.; Esfahani, J.A.; Mohebbi, M. Optimization of Convective Drying by Response Surface Methodology. Comput. Electron. Agric. 2019, 156, 574–584. [Google Scholar] [CrossRef]
- Priyanka, S.; Kirubagaran, R.; Mary Leema, J.T. Optimization of Algal Culture Medium for Zeaxanthin Production by Dunaliella Tertiolecta: An RSM Based Approach. Curr. Sci. 2020, 119, 1997. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781119113478. [Google Scholar]
- Siddharthan, N.; Balagurunathan, R.; Hemalatha, N. A Novel Feather-Degrading Bacterial Isolate Geobacillus Thermodenitrificans PS41 Isolated from Poultry Farm Soil. Arch. Microbiol. 2022, 204, 565. [Google Scholar] [CrossRef]
- Ahmadpour, F.; Yakhchali, B.; Musavi, M.S. Isolation and Identification of a Keratinolytic Bacillus Cereus and Optimization of Keratinase Production. J. Appl. Biotechnol. Rep. 2016, 3, 507–512. [Google Scholar]
- Revankar, A.G.; Bagewadi, Z.K.; Bochageri, N.P.; Yunus Khan, T.M.; Mohamed Shamsudeen, S. Response Surface Methodology Based Optimization of Keratinase from Bacillus Velezensis Strain ZBE1 and Nanoparticle Synthesis, Biological and Molecular Characterization. Saudi. J. Biol. Sci. 2023, 30, 103787. [Google Scholar] [CrossRef]
- Khalil, B.; Ibrahim, H.; Abd El-Aziz, N. Improvement of Pichia Kudriavzevii Egyptian Isolate for Keratinase Production. Egypt. Pharm. J. 2022, 21, 192. [Google Scholar] [CrossRef]
- Dhiva, S.; Sreelakshmi, R.; Sruthi, S.; Biji, U.; Narendrakumar, G.; Jane Cypriyana, P.J.; Raji, P.; Antony, V.S. Optimization of Biomass of Keratinase Producing Bacillus Sp CBNRBT2 to Utilize in Whole-Cell Immobilization for Feather Degradation. Lett. Appl. NanoBioSci. 2020, 9, 1339–1347. [Google Scholar] [CrossRef]
- Dhiva, S.; Ranjith, K.R.; Prajisya, P.; Sona, K.P.; Narendrakumar, G.; Prakash, P.; Emilin, R.R.; Antony, V.S. Optimization of Keratinase Production Using Pseudomonas Aeruginosa SU-1 Having Feather as Substrate. Biointerface Res. Appl. Chem. 2020, 10, 6540–6549. [Google Scholar] [CrossRef]
Study Type | Screening | ||||
---|---|---|---|---|---|
Design Type | Plackett-Burman | ||||
Design Mode | Principal Effect | First Order Model | No Blocks Runs | ||
Response R | Keratinase Activity | 20 | |||
Factor | Name | Units | Type | Level (−1) | Level (+1) |
X1 | NaCl | g/L | Numeric | 0 | 3 |
X2 | Inoculum size | Spores/mL | Numeric | 1.5 × 104 | 1.5 × 1010 |
X3 | Incubation time | Days | Numeric | 2 | 14 |
X4 | initial pH | Numeric | 4 | 12 | |
X5 | K2HPO4 | g/L | Numeric | 0 | 3 |
X6 | Orbital agitation | rpm | Numeric | 0 | 250 |
X7 | Chicken feather meal | % (w/v) | Numeric | 0.2 | 2 |
X8 | CaCO3 | g/L | Numeric | 0 | 4 |
X9 | Incubation temperature | °C | Numeric | 30 | 50 |
X10 | MgSO4·7H2O | g/L | Numeric | 0 | 3 |
Run | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | Factor 8 | Factor 9 | Factor 10 | Response |
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | R | |
Sodium Chloride | Inoculum Size | Incubation Time | InitialpH | Dipotassium Hydrogeno Phosphate | Orbital Agitation | Chicken Feather Meal | Calcium Carbonate | Incubation Temperature | Magnesium Sulphate Hyptahydrate | Keratinase Activity | |
g/L | Spores/mL | Days | g/L | rpm | %(m/v) | g/L | °C | g/L | U/mL | ||
1 | 0 | 1.5 × 1010 | 2 | 12 | 3 | 250 | 2 | 0 | 30 | 3 | 180.1 ± 5.08 |
2 | 3 | 1.5 × 104 | 2 | 12 | 3 | 0 | 2 | 4 | 30 | 0 | 142.3 ± 4.89 |
3 | 0 | 1.5 × 104 | 14 | 12 | 0 | 250 | 2 | 0 | 30 | 0 | 150.6 ± 3.91 |
4 | 3 | 1.5 × 1010 | 14 | 4 | 0 | 250 | 2 | 0 | 50 | 3 | 71.3 ± 4.47 |
5 | 0 | 1.5 × 104 | 2 | 12 | 0 | 250 | 0.2 | 4 | 50 | 3 | 77.2 ± 2.50 |
6 | 0 | 1.5 × 1010 | 14 | 4 | 0 | 0 | 0.2 | 4 | 30 | 3 | 59.7 ± 1.63 |
7 | 3 | 1.5 × 1010 | 2 | 4 | 0 | 0 | 2 | 0 | 50 | 0 | 110.8 ± 2.72 |
8 | 0 | 1.5 × 1010 | 14 | 4 | 3 | 250 | 0.2 | 0 | 30 | 0 | 62.3 ± 1.55 |
9 | 3 | 1.5 × 104 | 2 | 4 | 0 | 250 | 0.2 | 4 | 30 | 3 | 69.2 ± 3.36 |
10 | 0 | 1.5 × 104 | 2 | 4 | 0 | 0 | 0.2 | 0 | 30 | 0 | 51.4 ± 3.07 |
11 | 3 | 1.5 × 1010 | 14 | 12 | 0 | 0 | 2 | 4 | 30 | 3 | 162.6 ± 5.90 |
12 | 3 | 1.5 × 104 | 14 | 12 | 3 | 250 | 0.2 | 0 | 50 | 3 | 51.4 ± 1.16 |
13 | 0 | 1.5 × 1010 | 2 | 12 | 0 | 250 | 2 | 4 | 50 | 0 | 143.8 ± 5.30 |
14 | 3 | 1.5 × 104 | 14 | 12 | 3 | 0 | 0.2 | 0 | 50 | 0 | 47.4 ± 1.19 |
15 | 3 | 1.5 × 104 | 14 | 4 | 3 | 250 | 2 | 4 | 30 | 0 | 92.6 ± 3.29 |
16 | 3 | 1.5 × 1010 | 2 | 4 | 3 | 250 | 0.2 | 4 | 50 | 0 | 53.9 ± 5.18 |
17 | 0 | 1.5 × 104 | 2 | 4 | 3 | 0 | 2 | 0 | 50 | 3 | 87.1 ± 4.09 |
18 | 0 | 1.5 × 1010 | 14 | 12 | 3 | 0 | 0.2 | 4 | 50 | 0 | 59.6 ± 3.51 |
19 | 3 | 1.5 × 1010 | 2 | 12 | 3 | 0 | 0.2 | 0 | 30 | 3 | 133.2 ± 5.49 |
20 | 0 | 1.5 × 104 | 14 | 4 | 3 | 0 | 2 | 4 | 50 | 3 | 43.9 ± 4.17 |
Study Type | Response Surface | Subtype | Randomized | |||
---|---|---|---|---|---|---|
Design Type | Box-Behnken | Runs 46 | ||||
Design Mode | Quadratic | No Blocks | Levels | |||
Factor | Name | Units | Type | low (−1) | high (+1) | Medium (0) |
A | Chicken feather meal | g/L | Numeric | 2 | 8 | 5 |
B | Incubation time | Days | Numeric | 4 | 8 | 6 |
C | Initial pH | Numeric | 5 | 9 | 7 | |
D | Incubation temperature | °C | Numeric | 35 | 45 | 40 |
E | Inoculum size | Spores/mL | Numeric | 1.00 × 106 | 1.00 × 108 | 5.05 × 107 |
Response | Name | Unit | Observations | Analysis Polynomial | ||
R | Keratinase activity | U/mL | 46 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Response | |
---|---|---|---|---|---|---|
Run | A: Chicken Feather Meal g/L | B: Incubation Time Days | C: Initial pH | D: Incubation Temperature °C | E: Inoculum Size Spores/mL | R: Keratinase Activity U/mL |
1 | 2 | 6 | 9 | 40 | 5.05 × 107 | 268.12 ± 2.5 |
2 | 5 | 6 | 7 | 40 | 5.05 × 107 | 451.70 ± 0.4 |
3 | 2 | 4 | 7 | 40 | 5.05 × 107 | 289.53 ± 1.9 |
4 | 5 | 6 | 7 | 40 | 5.05 × 107 | 448.69 ± 1.9 |
5 | 2 | 6 | 7 | 40 | 1.00 × 106 | 287.20 ± 3.2 |
6 | 5 | 8 | 7 | 40 | 1.00 × 106 | 324.47 ± 0.3 |
7 | 5 | 6 | 9 | 40 | 1.00 × 108 | 214.17 ± 4.6 |
8 | 5 | 6 | 7 | 35 | 1.00 × 106 | 267.00 ± 1.7 |
9 | 5 | 4 | 7 | 35 | 5.05 × 107 | 225.00 ± 0.8 |
10 | 5 | 6 | 5 | 35 | 5.05 × 107 | 263.92 ± 1.7 |
11 | 5 | 6 | 7 | 40 | 5.05 × 107 | 448.23 ± 2.7 |
12 | 8 | 6 | 7 | 40 | 1.00 × 108 | 318.00 ± 6.3 |
13 | 8 | 6 | 7 | 45 | 5.05 × 107 | 204.00 ± 1.8 |
14 | 5 | 8 | 7 | 45 | 5.05 × 107 | 179.00 ± 4.6 |
15 | 8 | 6 | 9 | 40 | 5.05 × 107 | 259.00 ± 2.3 |
16 | 5 | 6 | 5 | 40 | 1.00 × 106 | 295.78 ± 5.1 |
17 | 8 | 6 | 5 | 40 | 5.05 × 107 | 363.52 ± 0.4 |
18 | 5 | 8 | 7 | 40 | 1.00 × 108 | 322.25 ± 0.7 |
19 | 8 | 6 | 7 | 40 | 1.00 × 106 | 353.00 ± 1.6 |
20 | 5 | 4 | 9 | 40 | 5.05 × 107 | 251.54 ± 1.4 |
21 | 5 | 6 | 7 | 35 | 1.00 × 108 | 251.00 ± 2.7 |
22 | 5 | 6 | 7 | 40 | 5.05 × 107 | 449.88 ± 0.8 |
23 | 8 | 6 | 7 | 35 | 5.05 × 107 | 326.73 ± 4.9 |
24 | 5 | 6 | 7 | 40 | 5.05 × 107 | 450.32 ± 3.1 |
25 | 2 | 6 | 7 | 40 | 1.00 × 108 | 230.00 ± 4.3 |
26 | 5 | 4 | 7 | 45 | 5.05 × 107 | 376.26 ± 5.6 |
27 | 8 | 4 | 7 | 40 | 5.05 × 107 | 423.00 ± 1.5 |
28 | 5 | 6 | 7 | 40 | 5.05 × 107 | 455.00 ± 0.8 |
29 | 5 | 6 | 9 | 35 | 5.05 × 107 | 174.40 ± 1.7 |
30 | 5 | 6 | 5 | 45 | 5.05 × 107 | 184.00 ± 2.2 |
31 | 5 | 6 | 9 | 45 | 5.05 × 107 | 233.12 ± 0.9 |
32 | 5 | 6 | 7 | 45 | 1.00 × 108 | 177.15 ± 6.2 |
33 | 2 | 6 | 5 | 40 | 5.05 × 107 | 204.00 ± 0.7 |
34 | 8 | 8 | 7 | 40 | 5.05 × 107 | 326.23 ± 2.4 |
35 | 5 | 4 | 7 | 40 | 1.00 × 108 | 327.28 ± 3.4 |
36 | 5 | 8 | 5 | 40 | 5.05 × 107 | 234.00 ± 0.6 |
37 | 5 | 6 | 9 | 40 | 1.00 × 106 | 322.98 ± 3.6 |
38 | 5 | 8 | 7 | 35 | 5.05 × 107 | 342.81 ± 2.1 |
39 | 2 | 6 | 7 | 45 | 5.05 × 107 | 245.64 ± 3.8 |
40 | 5 | 4 | 5 | 40 | 5.05 × 107 | 421.00 ± 1.2 |
41 | 2 | 6 | 7 | 35 | 5.05 × 107 | 147.98 ± 1.8 |
42 | 5 | 8 | 9 | 40 | 5.05 × 107 | 355.00 ± 4.1 |
43 | 2 | 8 | 7 | 40 | 5.05 × 107 | 312.00 ± 0.7 |
44 | 5 | 4 | 7 | 40 | 1.00 × 106 | 458.00 ± 1.3 |
45 | 5 | 6 | 7 | 45 | 1.00 × 106 | 288.00 ± 2.3 |
46 | 5 | 6 | 5 | 40 | 1.00 × 108 | 295.43 ± 0.8 |
Source | DF | Adjusted Sum of Squares | Adjusted Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 8 | 28,305.9 | 3538.23 | 52.45 | 0.000 |
NaCl | 1 | 211.5 | 211.48 | 3.13 | 0.137 |
Inoculum size | 1 | 2037.9 | 2037.93 | 30.21 | 0.003 |
Incubation time | 1 | 1141.4 | 1141.42 | 16.92 | 0.009 |
Initial pH | 1 | 4925.3 | 4925.29 | 73.01 | 0.000 |
K2HPO4 | 1 | 218.2 | 218.24 | 3.23 | 0.132 |
Orbital agitation | 1 | 327.5 | 327.5 | 4.85 | 0.079 |
Chicken feather meal | 1 | 6903.8 | 6903.8 | 102.34 | 0.000 |
Incubation temperature | 1 | 3497.5 | 3497.52 | 51.84 | 0.001 |
Error | 5 | 337.3 | 67.46 | ||
Total | 13 | 28,643.2 | |||
R2 | 98.82% | ||||
Adjusted R2 | 96.94% | ||||
Predicted R2 | 91.12% |
Source | Sum of Squares | Df * | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 3.423 × 105 | 20 | 17,116.77 | 10.68 | <0.0001 | significant |
A-Poultry feather meal | 22,724.06 | 1 | 22,724.06 | 14.17 | 0.0009 | |
B-Incubation time | 7503.02 | 1 | 7503.02 | 4.68 | 0.0403 | |
C-Initial pH | 2500.00 | 1 | 2500.00 | 1.56 | 0.2233 | |
D-Incubation temperature | 688.28 | 1 | 688.28 | 0.4293 | 0.5183 | |
E-Inoculum size | 8778.75 | 1 | 8778.75 | 5.48 | 0.0276 | |
AB | 4176.39 | 1 | 4176.39 | 2.61 | 0.1191 | |
AC | 6290.08 | 1 | 6290.08 | 3.92 | 0.0587 | |
AD | 12,135.23 | 1 | 12,135.23 | 7.57 | 0.0109 | |
AE | 17.10 | 1 | 17.10 | 0.0107 | 0.9186 | |
BC | 22,126.56 | 1 | 22,126.56 | 13.80 | 0.0010 | |
BD | 24,818.85 | 1 | 24,818.85 | 15.48 | 0.0006 | |
BE | 1973.58 | 1 | 1973.58 | 1.23 | 0.2778 | |
CD | 4802.49 | 1 | 4802.49 | 3.00 | 0.0958 | |
CE | 2914.92 | 1 | 2914.92 | 1.82 | 0.1896 | |
DE | 4088.32 | 1 | 4088.32 | 2.55 | 0.1229 | |
A² | 57,800.81 | 1 | 57,800.81 | 36.05 | <0.0001 | |
B² | 9623.53 | 1 | 9623.53 | 6.00 | 0.0216 | |
C² | 82,397.69 | 1 | 82,397.69 | 51.40 | <0.0001 | |
D² | 1.649 × 105 | 1 | 1.649 × 105 | 102.85 | <0.0001 | |
E² | 43,849.98 | 1 | 43,849.98 | 27.35 | <0.0001 | |
Residual | 40,079.96 | 25 | 1603.20 | |||
Lack of Fit | 39,980.57 | 20 | 1999.03 | 4.57 | 0.1781 | not significant |
Pure Error | 99.38 | 5 | 19.88 | |||
Cor Total | 3.824 × 105 | 45 | ||||
R2 | 0.8952 | |||||
Adjusted R2 | 0.8113 | |||||
C.V. % | 13.15 | |||||
Adequate precision | 11.2756 |
Factors | Keratinase Activity | |||||||
---|---|---|---|---|---|---|---|---|
Solutions Number | Chicken Feather Meal (g/L) | Incubation Time (Days) | Initial pH | Incubation Temperature °C | Inoculum Size (Spores/mL) | Predicted Value (U/mL) | Experimental Value (U/mL) | Desirability |
1 | 6.13 | 4.11 | 6.25 | 40.65 | 3.98 × 107 | 485.44 | 489.24 | 0.998 |
2 | 6.12 | 4.37 | 6.29 | 40.51 | 4.06 × 107 | 482.86 | 484.37 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamma, S.; Boucherba, N.; Azzouz, Z.; Le Roes-Hill, M.; Kernou, O.-N.; Bettache, A.; Ladjouzi, R.; Maibeche, R.; Benhoula, M.; Hebal, H.; et al. Statistical Optimisation of Streptomyces sp. DZ 06 Keratinase Production by Submerged Fermentation of Chicken Feather Meal. Fermentation 2024, 10, 500. https://doi.org/10.3390/fermentation10100500
Hamma S, Boucherba N, Azzouz Z, Le Roes-Hill M, Kernou O-N, Bettache A, Ladjouzi R, Maibeche R, Benhoula M, Hebal H, et al. Statistical Optimisation of Streptomyces sp. DZ 06 Keratinase Production by Submerged Fermentation of Chicken Feather Meal. Fermentation. 2024; 10(10):500. https://doi.org/10.3390/fermentation10100500
Chicago/Turabian StyleHamma, Samir, Nawel Boucherba, Zahra Azzouz, Marilize Le Roes-Hill, Ourdia-Nouara Kernou, Azzeddine Bettache, Rachid Ladjouzi, Rima Maibeche, Mohammed Benhoula, Hakim Hebal, and et al. 2024. "Statistical Optimisation of Streptomyces sp. DZ 06 Keratinase Production by Submerged Fermentation of Chicken Feather Meal" Fermentation 10, no. 10: 500. https://doi.org/10.3390/fermentation10100500
APA StyleHamma, S., Boucherba, N., Azzouz, Z., Le Roes-Hill, M., Kernou, O.-N., Bettache, A., Ladjouzi, R., Maibeche, R., Benhoula, M., Hebal, H., Amghar, Z., Allaoua, N., Moussi, K., Rijo, P., & Benallaoua, S. (2024). Statistical Optimisation of Streptomyces sp. DZ 06 Keratinase Production by Submerged Fermentation of Chicken Feather Meal. Fermentation, 10(10), 500. https://doi.org/10.3390/fermentation10100500