Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review
Abstract
:1. Introduction
2. Sourdoughs
2.1. Classification of Sourdoughs
2.2. Lactic Acid Bacteria in Sourdoughs
2.3. Metabolic Pathways of LAB during Sourdough Fermentation
3. Sourdough and Its Effect on Bread Properties
3.1. Texture
3.2. Flavor
4. Sourdough Effect on the Bread’s Shelf Life
5. Properties of Sourdough Bioactive Compound Extracts
5.1. Bioactive Compounds from Sourdoughs with Antimicrobial Properties
LAB | Identified Bioactive Compounds | Antimicrobial Effect Against | Main Findings | Reference |
Lb. reuteri, Lb. plantarum and Lb. brevis | Organic acids: Lactic acid, acetic acid, and phenyllactic acid | Fusarium graminearum and Aspergillus niger | Inhibition in radial growth (>70%) of F. graminearum and decrease (>40%) in radial growth of A. niger. Increased shelf life in breads incorporating sourdough of 2–3 days compared to control bread | [64] |
Lb. plantarum | Peptides sequence: SAFEFADEHKGAYS, AAIIFGSIFWNV GMKR, AEGEVILEDVQPSSVQS, and PPDVLTKLTAVPAAQQLDEADGHPR | Penicillium roqueforti, Aspergillus parasiticus and Penicillium polonicum | Increased shelf life of bread by 7 days compared with control Inhibition of radial growth of molds between 50–60% in in vitro tests | [72] |
Lb. plantarum and Lb. rossiae LB | Peptide compounds: Temporiina-Sha Temporina-1Gc Expansin-B4 (Q94LR4) | Penicillium roqueforti, Penicillium paneum, and Aspergillus parasiticus | Increased bread shelf life by 7–14 days compared with control. Inhibitory activity of 40–45% against the molds P. roqueforti, P. paneum, and A. parasiticus. | [57] |
Organic acids: Lactic, formic, acetic, and phenyllactic acid | ||||
Lb. reuteri | 4-hydroxyphenyllactic acid, 2-hydroxy-isocaproic acid, vanillinic acid and 3-phenyllactic acid | Environmental molds | Increased shelf life in bread slices by 7–8 days compared with control. | [71] |
Lb. brevis | 2-hydroxy-isocaproic acid and vanillinic acid | Environmental molds | Increased shelf life in bread slices by 5–6 days compared with control. | |
Lb. plantarum | Gallic acid, chlorogenic acid, caffeic acid, and syringic acid | Penicillium expansum, Penicillium roqueforti and Fusarium moniliformis | Increased shelf life in bread slices by 3–4 days compared with control. | [11] |
Lb. bulgaricus | Sinapinic acid and DL-3-phenyllactic acid | Fusarium monoliformis and Penicillium expansum | Increased shelf life in bread slices by 4–5 days compared with control. | |
Lb. paracasei K5 | Lactic and acetic acid | Environmental molds | Increased shelf life in pieces by bread 15–16 days (5 days more than the control bread) | [50] |
Lactiplantibacillus plantarum S4.2 and Lentilactobacillus parabuchneri S2.9 | Organic acids | Fusarium graminearum, Aspergillus fumigatus, A. flavus A. brasiliensis, and Penicillium roqueforti | Inhibition in mold growth | [62] |
5.2. Effects of Bioactive Compounds on the Shelf Life of Bread
5.3. Other Possible Beneficial Effects
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graça, C.; Lima, A.; Raymundo, A.; Sousa, I. Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. Fermentation 2021, 7, 246. [Google Scholar] [CrossRef]
- Cauvain, S.P.; Young, L.S. Water Control in Baking. In Bread Making: Improving Quality; CAB International: Wallingford, UK, 2003; pp. 447–466. [Google Scholar]
- Chavan, R.S.; Chavan, S.R. Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 169–182. [Google Scholar] [CrossRef]
- Fraberger, V.; Özülkü, G.; Petrova, P.; Nada, K.; Petrov, K.; Johann, D.K.; Rocha, J.M.F. Sourdough as a Source of Technological, Antimicrobial, and Probiotic Microorganisms. In Sourdough Innovations; CRC Press: Boca Raton, FL, USA, 2023; pp. 265–310. [Google Scholar] [CrossRef]
- Akamine, I.T.; Mansoldo, F.R.P.; Vermelho, A.B. Probiotics in the Sourdough Bread Fermentation: Current Status. Fermentation 2023, 9, 90. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Qiao, N.; Bechtner, J. The Quest for the Perfect Loaf of Sourdough Bread Continues: Novel Developments for Selection of Sourdough Starter Cultures. Int. J. Food Microbiol. 2023, 407, 110421. [Google Scholar] [CrossRef] [PubMed]
- Vriesekoop, F.; Haynes, A.; Van Der Heijden, N.; Liang, H.; Paximada, P.; Zuidberg, A. Incorporation of Fermented Brewers Spent Grain in the Production of Sourdough Bread. Fermentation 2021, 7, 96. [Google Scholar] [CrossRef]
- Park, Y.-H.; Jung, L.-H.; Jeon, E.-R. Quality Characteristics of Bread Using Sour Dough. Prev. Nutr. Food Sci. 2006, 11, 323–327. [Google Scholar] [CrossRef]
- Corsetti, A.; Settanni, L. Lactobacilli in Sourdough Fermentation. Food Res. Int. 2007, 40, 539–558. [Google Scholar] [CrossRef]
- Garofalo, C.; Zannini, E.; Aquilanti, L.; Silvestri, G.; Fierro, O.; Picariello, G.; Clementi, F. Selection of Sourdough Lactobacilli with Antifungal Activity for Use as Biopreservatives in Bakery Products. J. Agric. Food Chem. 2012, 60, 7719–7728. [Google Scholar] [CrossRef]
- Luz, C.; D’Opazo, V.; Mañes, J.; Meca, G. Antifungal Activity and Shelf Life Extension of Loaf Bread Produced with Sourdough Fermented by Lactobacillus Strains. J. Food Process. Preserv. 2019, 43, e14126. [Google Scholar] [CrossRef]
- Ryan, L.A.M.; Zannini, E.; Dal Bello, F.; Pawlowska, A.; Koehler, P.; Arendt, E.K. Lactobacillus Amylovorus DSM 19280 as a Novel Food-Grade Antifungal Agent for Bakery Products. Int. J. Food Microbiol. 2011, 146, 276–283. [Google Scholar] [CrossRef]
- Samapundo, S.; Devlieghere, F.; Vroman, A.; Eeckhout, M. Antifungal Activity of Fermentates and Their Potential to Replace Propionate in Bread. LWT—Food Sci. Technol. 2017, 76, 101–107. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus Plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics 2022, 11, 1813. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Activity of Wheat-Flour Sourdough (Type II) from Two Different Lactobacillus In Vitro and Bread. Appl. Food Res. 2023, 3, 100319. [Google Scholar] [CrossRef]
- Garcia, M.V.; Bernardi, A.O.; Copetti, M.V. The Fungal Problem in Bread Production: Insights of Causes, Consequences, and Control Methods. Curr. Opin. Food Sci. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Magan, N.; Arroyo, M.; Aldred, D. Mould Prevention in Bread. In Bread Making: Improving Quality; CAB International: Wallingford, UK, 2003; pp. 500–514. [Google Scholar]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology, 7th ed.; Food Science Text Series; Springer: New York, NY, USA, 2005. [Google Scholar]
- Catzeddu, P. Sourdough Breads. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Berlin/Heidelberg, Germany, 2019; pp. 177–188. [Google Scholar] [CrossRef]
- Gänzle, M.; Ripari, V. Composition and Function of Sourdough Microbiota: From Ecological Theory to Bread Quality. Int. J. Food Microbiol. 2016, 239, 19–25. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Fu, W.; Wang, S.; Xue, W. Mechanism of Carbohydrate and Protein Conversion during Sourdough Fermentation: An Analysis Based on Representative Chinese Sourdough Microbiota. Int. J. Food Microbiol. 2023, 410, 110487. [Google Scholar] [CrossRef]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty Years of Knowledge on Sourdough Fermentation: A Systematic Review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Zheng, J. Lifestyles of Sourdough Lactobacilli—Do They Matter for Microbial Ecology and Bread Quality? Int. J. Food Microbiol. 2019, 302, 15–23. [Google Scholar] [CrossRef]
- De Vuyst, L.; Neysens, P. The Sourdough Microflora: Biodiversity and Metabolic Interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Kubow, S.; Sadiq, F.A.; Huang, W.; Imran, M. Sourdough Bread: A Contemporary Cereal Fermented Product. J. Food Process. Preserv. 2019, 43, e13883. [Google Scholar] [CrossRef]
- De Vuyst, L.; González-Alonso, V.; Wardhana, Y.R.; Pradal, I. Taxonomy and Species Diversity of Sourdough Lactic Acid Bacteria. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 97–160. [Google Scholar] [CrossRef]
- Lima, T.T.M.; Hosken, B.D.O.; De Dea Lindner, J.; Menezes, L.A.A.; Pirozi, M.R.; Martin, J.G.P. How to Deliver Sourdough with Appropriate Characteristics for the Bakery Industry? The Answer May Be Provided by Microbiota. Food Biosci. 2023, 56, 103072. [Google Scholar] [CrossRef]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough Production: Fermentation Strategies, Microbial Ecology, and Use of Non-Flour Ingredients. Crit. Rev. Food Sci. Nutr. 2023, 63, 2447–2479. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, F.B.; Ripari, V.; Waszczynskyj, N.; Spier, M.R. Overview of Sourdough Technology: From Production to Marketing. Food Bioprocess Technol. 2018, 11, 242–270. [Google Scholar] [CrossRef]
- Lai, H.M.; Lin, T.C. Bakery Products: Science and Technology; Wiley Blackwell: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Plessas, S. Innovations in Sourdough Bread Making. Fermentation 2021, 7, 29. [Google Scholar] [CrossRef]
- Lau, S.W.; Chong, A.Q.; Chin, N.L.; Talib, R.A.; Basha, R.K. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021, 9, 1355. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Lattanzi, A.; De Angelis, M.; Di Cagno, R.; Gobbetti, M. Influence of Artisan Bakery- or Laboratory-Propagated Sourdoughs on the Diversity of Lactic Acid Bacterium and Yeast Microbiotas. Appl. Environ. Microbiol. 2012, 78, 5328–5340. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.B.; Gänzle, M.G. Quantitative High-Resolution Melting PCR Analysis for Monitoring of Fermentation Microbiota in Sourdough. Int. J. Food Microbiol. 2014, 186, 42–48. [Google Scholar] [CrossRef]
- Manini, F.; Casiraghi, M.C.; Poutanen, K.; Brasca, M.; Erba, D.; Plumed-Ferrer, C. Characterization of Lactic Acid Bacteria Isolated from Wheat Bran Sourdough. LWT—Food Sci. Technol. 2016, 66, 275–283. [Google Scholar] [CrossRef]
- Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. Exploration of the Microbial Biodiversity Associated with North Apulian Sourdoughs and the Effect of the Increasing Number of Inoculated Lactic Acid Bacteria Strains on the Biocontrol against Fungal Spoilage. Fermentation 2019, 5, 97. [Google Scholar] [CrossRef]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the Sourdough May Affect the Functional Features of Leavened Baked Goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Pétel, C.; Onno, B.; Prost, C. Sourdough Volatile Compounds and Their Contribution to Bread: A Review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Siepmann, F.B.; Sousa de Almeida, B.; Waszczynskyj, N.; Spier, M.R. Influence of Temperature and of Starter Culture on Biochemical Characteristics and the Aromatic Compounds Evolution on Type II Sourdough and Wheat Bread. LWT 2019, 108, 199–206. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Vermeulen, N.; Vogel, R.F. Carbohydrate, Peptide and Lipid Metabolism of Lactic Acid Bacteria in Sourdough. Food Microbiol. 2007, 24, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; De Angelis, M.; Lavermicocca, P.; De Vincenzi, M.; Giovannini, C.; Faccia, M.; Gobbetti, M. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Appl. Environ. Microbiol. 2002, 68, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Jekle, M.; Becker, T. Effects of Acidification, Sodium Chloride, and Moisture Levels on Wheat Dough: II. Modeling of Bread Texture and Staling Kinetics. Food Biophys. 2012, 7, 200–208. [Google Scholar] [CrossRef]
- Nutter, J.; Saiz, A.I.; Iurlina, M.O. Microstructural and Conformational Changes of Gluten Proteins in Wheat-Rye Sourdough. J. Cereal Sci. 2019, 87, 91–97. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Nionelli, L.; Coda, R.; Di Cagno, R.; Gobbetti, M. Use of Sourdough Fermented Wheat Germ for Enhancing the Nutritional, Texture and Sensory Characteristics of the White Bread. Eur. Food Res. Technol. 2010, 230, 645–654. [Google Scholar] [CrossRef]
- Torrieri, E.; Pepe, O.; Ventorino, V.; Masi, P.; Cavella, S. Effect of Sourdough at Different Concentrations on Quality and Shelf Life of Bread. LWT—Food Sci. Technol. 2014, 56, 508–516. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Wei, Y.; Ai, L.; Ying, D.; Xiao, X. Improvement of Bread Quality by Adding Wheat Germ Fermented with Lactobacillus Plantarum Dy-1. J. Food Qual. 2020, 2020, 9348951. [Google Scholar] [CrossRef]
- Warburton, A.; Silcock, P.; Eyres, G.T. Impact of Sourdough Culture on the Volatile Compounds in Wholemeal Sourdough Bread. Food Res. Int. 2022, 161, 111885. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Harris, N.M.; Fuentes, S. Quality Traits of Sourdough Bread Obtained by Novel Digital Technologies and Machine Learning Modelling. Fermentation 2022, 8, 516. [Google Scholar] [CrossRef]
- Mantzourani, I.; Plessas, S.; Odatzidou, M.; Alexopoulos, A.; Galanis, A.; Bezirtzoglou, E.; Bekatorou, A. Effect of a Novel Lactobacillus Paracasei Starter on Sourdough Bread Quality. Food Chem. 2019, 271, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Y.; Tang, K.; Hu, Y.; Xu, X.; Gänzle, M.G. Effect of Mixed Cultures of Yeast and Lactobacilli on the Quality of Wheat Sourdough Bread. Front. Microbiol. 2019, 10, 2113. [Google Scholar] [CrossRef] [PubMed]
- Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Reyes-Jurado, F.; Mani-López, E.; Hernández-Figueroa, R.; Morales-Camacho, J.I.; López-Malo, A. Prospects for Food Applications of Products from Microorganisms. In Research and Technological Advances in Food Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–229. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Juodeikiene, G.; Paskevicius, A.; Bartkiene, E. Antimicrobial Activity of Lactic Acid Bacteria against Pathogenic and Spoilage Microorganism Isolated from Food and Their Control in Wheat Bread. Food Control 2013, 31, 539–545. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Nigro, F.; De Angelis, M.; Arnault, P.; Gobbetti, M. Long-Term Fungal Inhibitory Activity of Water-Soluble Extracts of Phaseolus Vulgaris Cv. Pinto and Sourdough Lactic Acid Bacteria during Bread Storage. Appl. Environ. Microbiol. 2008, 74, 7391–7398. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Saladino, F.; Luciano, F.B.; Mañes, J.; Meca, G. In Vitro Antifungal Activity of Bioactive Peptides Produced by Lactobacillus Plantarum against Aspergillus Parasiticus and Penicillium Expansum. LWT—Food Sci. Technol. 2017, 81, 128–135. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Hassan, Z.; Saari, N. In Vitro Antifungal Activity of Lactic Acid Bacteria Low Molecular Peptides against Spoilage Fungi of Bakery Products. Ann. Microbiol. 2018, 68, 557–567. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Cassone, A.; Coda, R.; Gobbetti, M. Antifungal Activity of Sourdough Fermented Wheat Germ Used as an Ingredient for Bread Making. Food Chem. 2011, 127, 952–959. [Google Scholar] [CrossRef]
- Schmidt, M.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Fundamental Study on the Improvement of the Antifungal Activity of Lactobacillus Reuteri R29 through Increased Production of Phenyllactic Acid and Reuterin. Food Control 2018, 88, 139–148. [Google Scholar] [CrossRef]
- Shehata, M.G.; Badr, A.N.; El Sohaimy, S.A.; Asker, D.; Awad, T.S. Characterization of Antifungal Metabolites Produced by Novel Lactic Acid Bacterium and Their Potential Application as Food Biopreservatives. Ann. Agric. Sci. 2019, 64, 71–78. [Google Scholar] [CrossRef]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial Activity and Storage Stability of Cell-Free Supernatants from Lactic Acid Bacteria and Their Applications with Fresh Beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Debonne, E.; Vermeulen, A.; Bouboutiefski, N.; Ruyssen, T.; Van Bockstaele, F.; Eeckhout, M.; Devlieghere, F. Modelling and Validation of the Antifungal Activity of DL-3-Phenyllactic Acid and Acetic Acid on Bread Spoilage Moulds. Food Microbiol. 2020, 88, 103407. [Google Scholar] [CrossRef] [PubMed]
- Fraberger, V.; Ammer, C.; Domig, K.J. Functional Properties and Sustainability Improvement of Sourdough Bread by Lactic Acid Bacteria. Microorganisms 2020, 8, 1895. [Google Scholar] [CrossRef] [PubMed]
- Ryan, L.A.M.; Dal Bello, F.; Arendt, E.K. The Use of Sourdough Fermented by Antifungal LAB to Reduce the Amount of Calcium Propionate in Bread. Int. J. Food Microbiol. 2008, 125, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Gerez, C.L.; Torino, M.I.; Rollán, G.; Font de Valdez, G. Prevention of Bread Mould Spoilage by Using Lactic Acid Bacteria with Antifungal Properties. Food Control 2009, 20, 144–148. [Google Scholar] [CrossRef]
- Mani-López, E.; Arrioja-Bretón, D.; López-Malo, A. The Impacts of Antimicrobial and Antifungal Activity of Cell-Free Supernatants from Lactic Acid Bacteria In Vitro and Foods. Compr. Rev. Food Sci. Food Saf. 2021, 21, 604–641. [Google Scholar] [CrossRef]
- Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.F.G.; Hrelia, S. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects. Int. J. Mol. Sci. 2014, 15, 21120–21135. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J. Research Progress in Structure-Activity Relationship of Bioactive Peptides. J. Med. Food 2015, 18, 147–156. [Google Scholar] [CrossRef]
- Galli, V.; Mazzoli, L.; Luti, S.; Venturi, M.; Guerrini, S.; Paoli, P.; Vincenzini, M.; Granchi, L.; Pazzagli, L. Effect of Selected Strains of Lactobacilli on the Antioxidant and Anti-Inflammatory Properties of Sourdough. Int. J. Food Microbiol. 2018, 286, 55–65. [Google Scholar] [CrossRef]
- Demirbaş, F.; İspirli, H.; Kurnaz, A.A.; Yilmaz, M.T.; Dertli, E. Antimicrobial and Functional Properties of Lactic Acid Bacteria Isolated from Sourdoughs. LWT—Food Sci. Technol. 2017, 79, 361–366. [Google Scholar] [CrossRef]
- Garnier, L.; Penland, M.; Thierry, A.; Maillard, M.-B.; Jardin, J.; Coton, M.; Leyva Salas, M.; Coton, E.; Valence, F.; Mounier, J. Antifungal Activity of Fermented Dairy Ingredients: Identification of Antifungal Compounds. Int. J. Food Microbiol. 2020, 322, 108574. [Google Scholar] [CrossRef] [PubMed]
- Axel, C.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal Sourdough Lactic Acid Bacteria as Biopreservation Tool in Quinoa and Rice Bread. Int. J. Food Microbiol. 2016, 239, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Cassone, A.; Rizzello, C.G.; Nionelli, L.; Cardinali, G.; Gobbetti, M. Antifungal Activity of Wickerhamomyces Anomalus and Lactobacillus Plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread. Appl. Environ. Microbiol. 2011, 77, 3484–3492. [Google Scholar] [CrossRef] [PubMed]
- Höltzel, A.; Gänzle, M.G.; Nicholson, G.J.; Hammes, W.P.; Jung, G. The First Low Molecular Weight Antibiotic from Lactic Acid Bacteria: Reutericyclin, a New Tetramic Acid. Angew. Chem. Int. Ed. 2000, 39, 2766–2768. [Google Scholar] [CrossRef]
- Valerio, F.; Di Biase, M.; Lattanzio, V.M.T.; Lavermicocca, P. Improvement of the Antifungal Activity of Lactic Acid Bacteria by Addition to the Growth Medium of Phenylpyruvic Acid, a Precursor of Phenyllactic Acid. Int. J. Food Microbiol. 2016, 222, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.C.; Schipali, S.; Näf, P.; Kinner, M.; Miescher Schwenninger, S.; Schönlechner, R. Potential of a Techno-Functional Sourdough and Its Application in Sugar-Reduced Soft Buns. Fermentation 2022, 8, 42. [Google Scholar] [CrossRef]
- Canesin, M.R.; Cazarin, C.B.B. Nutritional Quality and Nutrient Bioaccessibility in Sourdough Bread. Curr. Opin. Food Sci. 2021, 40, 81–86. [Google Scholar] [CrossRef]
- Kulathunga, J.; Whitney, K.; Simsek, S. Impact of Starter Culture on Biochemical Properties of Sourdough Bread Related to Composition and Macronutrient Digestibility. Food Biosci. 2023, 53, 102640. [Google Scholar] [CrossRef]
- Perri, G.; Minisci, A.; Montemurro, M.; Pontonio, E.; Verni, M.; Rizzello, C.G. Exploitation of Sprouted Barley Grains and Flour through Sourdough Fermentation. LWT 2023, 187, 115326. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Polo, A.; Rizzello, C.G. The Sourdough Fermentation Is the Powerful Process to Exploit the Potential of Legumes, Pseudo-Cereals and Milling by-Products in Baking Industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 2158–2173. [Google Scholar] [CrossRef] [PubMed]
- Litwinek, D.; Gumul, D.; Łukasiewicz, M.; Zięba, T.; Kowalski, S. The Effect of Red Potato Pulp Preparation and Stage of Its Incorporation into Sourdough or Dough on the Quality and Health-Promoting Value of Bread. Appl. Sci. 2023, 13, 7670. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- D’Amico, V.; Gänzle, M.; Call, L.; Zwirzitz, B.; Grausgruber, H.; D’Amico, S.; Brouns, F. Does Sourdough Bread Provide Clinically Relevant Health Benefits? Front. Nutr. 2023, 10, 1230043. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Casciano, F.; Chiarello, E.; Di Nunzio, M.; Bordoni, A.; Gianotti, A. Sourdough Process and Spirulina-Enrichment Can Mitigate the Limitations of Colon Fermentation Performances of Gluten-Free Breads in Non-Celiac Gut Model. Food Chem. 2024, 436, 137633. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.; Fraberger, V.; Szepasvári, P.; D’Amico, S.; Tömösközi, S.; Cavazzi, G.; Jäger, H.; Domig, K.J.; Schoenlechner, R. Effects of Selected Lactobacilli on the Functional Properties and Stability of Gluten-Free Sourdough Bread. Eur. Food Res. Technol. 2018, 244, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten Free Sourdough Bread Enriched with Cricket Flour for Protein Fortification: Antioxidant Improvement and Volatilome Characterization. Food Chem. 2020, 333, 127410. [Google Scholar] [CrossRef]
- Adepehin, J.O.; Enujiugha, V.N.; Badejo, A.A.; Young, G.M.; Odeny, D.A. Physicochemical and Sensory Attributes of Gluten-free Sourdough Breads Produced from Underutilised African Cereal Flours and Flour Blends. Int. J. Food Sci. Technol. 2023, 58, 493–501. [Google Scholar] [CrossRef]
- Olojede, A.O.; Sanni, A.I.; Banwo, K. Rheological, Textural and Nutritional Properties of Gluten-Free Sourdough Made with Functionally Important Lactic Acid Bacteria and Yeast from Nigerian Sorghum. LWT 2020, 120, 108875. [Google Scholar] [CrossRef]
- Olojede, A.O.; Sanni, A.I.; Banwo, K.; Adesulu-Dahunsi, A.T. Sensory and Antioxidant Properties and In-Vitro Digestibility of Gluten-Free Sourdough Made with Selected Starter Cultures. LWT 2020, 129, 109576. [Google Scholar] [CrossRef]
- Mani-López, E.; Ramírez-Corona, N.; López-Malo, A. Advances in Probiotic Incorporation into Cereal-Based Baked Foods: Strategies, Viability, and Effects–A Review. Appl. Food Res. 2023, 3, 100330. [Google Scholar] [CrossRef]
- Da Ros, A.; Polo, A.; Rizzello, C.G.; Acin-Albiac, M.; Montemurro, M.; Di Cagno, R.; Gobbetti, M. Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiol. Spectr. 2021, 9, e00494-21. [Google Scholar] [CrossRef] [PubMed]
Type of Sour-Dough | Microorganism | |||
---|---|---|---|---|
Obligate Heterofermentative LAB | Facultative Heterofermentative LAB | Obligate Homofermentative LAB | Yeasts | |
Type I | Lactobacillus sanfrancisencis | Lactobacillus alimentarius | Lactobacillus acidophilus | Candida humilis |
Lactobacillus brevis | Lactobacillus casei | Lactobacillus delbrueckii | Candida milleri | |
Lactobacillus reuteri | Lactobacillus plantarum | Lactobacillus amylovorus | Issatchenkia orientalis | |
Lactobacillus fermentum | Lactobacillus paralimentarius | Lactobacillus farciminis | Candida krusei | |
Lactobacillus fructivorans | Lactobacillus mindensis | |||
Lactobacillus pontis | ||||
Type II | Lactobacillus brevis | Lactobacillus acidophilus | Saccharomyces cerevisiae (added) | |
Lactobacillus frumenti | Lactobacillus delbrueckii | |||
Lactobacillus pontis | Lactobacillus amylovorus | |||
Lactobacillus panis | Lactobacillus farciminis | |||
Lactobacillus reuteri | Lactobacillus johnsonii | |||
Lactobacillus sanfrancisencis | ||||
Weisella confusa | ||||
Type III | Lactobacillus brevis | Lactobacillus plantarum | ||
Pediococcus pentosaceus | ||||
Type IV | Similar to Types I and II | Similar to Types I and II | Similar to Types I and II | Similar to Types I and II |
LAB in Sourdough | % Sourdough Addition (w/w) | Improvement in Shelf Life * | Reference |
---|---|---|---|
Lb. plantarum | 20 | 2 days | [12,63] |
Lb. sanfrancisencis | 20 | 2 days | |
Lb. amylovorus | 20 | 9 days | |
Lb. sakei, Pediococcus acidilactici y Pediococcus pentosaceus | 20 | 6 days | [53] |
Lb. plantarum | 20 | 1 day | [11] |
Lb. bulgaricus | 20 | 2 days | |
Lb. plantarum, L. reuteri and Lb. brevis | 30 | 6 days | [64] |
Lb. rossiae | 30 | 21 days | [10] |
Lb. paralimentarius | 8 days | ||
Lb. rossiae and Lb. paralimentarius | 19 days | ||
Lactiplantibacillus plantarum NRRL B-4496 | 28 | 9 days | [14] |
Lb. acidophilus NRRL B-4495 | 38 | 14 days | [15] |
Lb. casei 21/1 | |||
Lb. sanfranciscensis | 30 | >25 days | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Figueroa, R.H.; Mani-López, E.; Palou, E.; López-Malo, A. Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review. Fermentation 2024, 10, 7. https://doi.org/10.3390/fermentation10010007
Hernández-Figueroa RH, Mani-López E, Palou E, López-Malo A. Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review. Fermentation. 2024; 10(1):7. https://doi.org/10.3390/fermentation10010007
Chicago/Turabian StyleHernández-Figueroa, Ricardo H., Emma Mani-López, Enrique Palou, and Aurelio López-Malo. 2024. "Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review" Fermentation 10, no. 1: 7. https://doi.org/10.3390/fermentation10010007
APA StyleHernández-Figueroa, R. H., Mani-López, E., Palou, E., & López-Malo, A. (2024). Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review. Fermentation, 10(1), 7. https://doi.org/10.3390/fermentation10010007