Cloning Systems in Bacillus: Bioengineering of Metabolic Pathways for Valuable Recombinant Products
Abstract
:1. Introduction
2. Cloning Systems in Bacillus spp.
2.1. Host Strains
2.2. Vectors
2.2.1. Autonomously Replicating Vectors
2.2.2. Integrative Vectors
2.2.3. CRISPR/Cas9
Vector | Function | Size, bp | Selection 1 | Features | Reference |
---|---|---|---|---|---|
pMA5 | Expression | 7202 | Kan, Amp | PhpaII, PAmpR, f1 ori, repB | [21] |
pBE-S | Expression | 5938 | Kan, Amp | PaprE, SPaprE, colE1 ori, pUB ori, His tag | [23] |
pHT43 | Expression | 8057 | Amp, Cm | Pgrac, SPamyQ, LacI, ColE1 | [44] |
pHY300PLK | Expression | 4870 | Amp, Tet | ori-pAMα1, ori-177, repB | [31] |
pHYAMC | Integration | 7513 | Amp, Tet | PApR, ori-pAMα1, ori-177, amyE’ | [32] |
pBacTag | Integration | 5476 | Amp, Ery | Pspac, lacI, ColE1 ori, tag 2 | [45] |
pHBintE | Integration | 5683 | Amp, Ery | PxylA, repF, E. coli ori, Bacillus ori | [46] |
pAX01 | Integration | 7781 | Ery | PxylA, xylR | [29] |
pJOE8999 | Editing | 7794 | Kan | Cas9, pUC ori, rep pE19ts, PmanP, PvanP | [38] |
PHYcas9dsrf | Editing | 10,494 | Amp, Tet | Cas9, Pgrac, p15A ori, PamyQ | [41] |
2.3. Methods for Vector Delivery
3. Biotechnological Versatility of Bacillus spp.
3.1. Enzymes
Strain | Vector | Compound | Genetic Source | Yield | Reference |
---|---|---|---|---|---|
B. subtilis WHS11YSA | pHYYamySA | α-amylase | B. stearothermophilus | 9201.1 U/mL | [55] |
Brevibacillus choshinensis (B. brevis) BCPPSQ | pNCamyS-prsQ | α-amylase | B. stearothermophilus | 17,925.6 U/mL | [56] |
B. subtilis WHS9GSAB | pHYGamySAsecYEG | α-amylase | B. stearothermophilus | 35,779.5 U/mL | [57] |
Br. choshinensis (B. brevis) | pNCMO2 | β-amylase | B. aryabhattai CCTCC M2017320 | 5371.8 U/mL | [58] |
B. subtilis WS9PUL | pHYcas9 | pullulanase | B. deramificans | 5951.8 U/mL | [59] |
B. subtilis WB600 | pMA5 | lipase A | B. subtilis | 1164.9 U/mL | [60] |
B. subtilis DB10 | pSKE194 | xylanase | B. subtilis | 1296 U/mg | [61] |
B. licheniformis MW3 | pKVM1 | 2,3-butanediol | B. licheniformis | 123.7 g/L | [62] |
B. amyloliquefaciens B 10-127 | pMA5 | 2,3-butanediol | B. amyloliquefaciens | 132.9 g/L | [63] |
B. subtilis 168 | pMA5 | acetoin | B. subtilis | 91.8 g/L | [64] |
B. subtilis KH2 | pKVM1 pMA5 | poly-γ-glutamic acid | B. subtilis, B. licheniformis | 23.28 g/L | [65] |
B. subtilis G600 | T7-BOOST * | GABA † | B. subtilis | 109.8 g/L | [66] |
3.2. Growth Factors, Vitamins, and Amino Acids
3.3. Antimicrobial and Immunization Peptides
3.4. Low-MW Compounds
4. Genetic Engineering in Bacillus spp.
4.1. Heterologous Expression with Limited Modification
4.1.1. Constitutive Promoters
4.1.2. Inducible Promoters
Promoter | Signal Peptide | Vector | Genetic Modifications 1 | Target Compound 2 | Source 3 | Host 3 | Effect 4 | Reference |
---|---|---|---|---|---|---|---|---|
P43 | SPamyE | pP43NMK | cloning of ASN (BcA) | L-asparaginase | B. cereus BDRD-ST26 | Bs WB600 | 20-fold higher BcA activity; 72% decrease of acrylamide in pretreated potato strips | [99] |
P43 | SPsacB | pWB980 | cloning of GM2938 | trypsin | Streptomyces populi A249 | Bs SCK6 | 1622 U/mL esterase activity and 34 U/mL amidase activity for purified GM2938 | [98] |
PaprE | - | pBE-S | cloning of cel8A and cel48S | 2 cellulases | Acetivibrio thermocellus | Bl 24 Bv 5RB | 7-fold higher EA for Cel8a in Bl 24 and Cel48S in Bv 5RB | [49] |
PaprE | SPlipA | pBE-S | SP exchange | β-agarase | Ps. hodoensis | Bs RIK1285 | 44% higher secretion than SPaprE | [100] |
PhpaII | - | pBSMuL3 | host exchange | sucrose phosphorylase | Bifidobacterium adolescentis | Bs CCTCC M 2016536 | 3.5-fold higher extracellular EA than cloning in E. coli | [103] |
P43 | - | pMA0911 | PhpalI exchanged for P43 | pullulanase | B. naganoensis JNB-1 | Bs WB600 | 6-fold higher EA than the same vector with PhpalI in Bs WB800 | [104] |
PhpaII | - | pMA5 | poly(A/T) tail added to 3′-end of ggt | L-theanine | B. pumilus ML413 | Bs 168 | Poly(A/T) increased mRNA stability by 58% and GGT activity by 60%; 53 g/L after 16 h | [105] |
Pveg | - | pJOE-8739 | deletion of sporulation genes; promoter change | γ-PGA | Bs 168 | Bs IIG-Bs2 | 129% higher carbon yield with glucose as a source | [115] |
T7 | SPxynD (lypo type) | pDMT pDBT | 2 copies of hEGF cassette; ΔnprB; Δmpr | human epidermal growth factor (hEGF) | Homo sapiens | Bs PT5, PT6, PT7 | Almost a 2-fold increase due to SP; 12% more with 2 copies of hEGF | [102] |
PsacB | SPlipA | pMA0911 | enhancers DegQ, DegS, DegU | pullulanase | B. naganoensis | Bs WB800 | 5.9-fold higher activity with DegQ | [114] |
Pglv | SPlipA | pMA5 | PhpaII discarded | creatinase | - | Bs 1A751 | 5-fold higher EA than PhpaII | [105] |
Pglv | - | pGJ148 | 6xHis-SUMO tag | T9W | synthetic | Bs WB800N | 2.3 mg/L purified T9W | [106] |
Pglv | SPsacB | pGJ148 | - | cecropin AD (CAD) | synthetic | Bs WB800N | 24.6 mg/L CAD, 93% purity, similar antimicrobial activity to synthetic CAD | [107] |
Pglv | SPsacB SPamyQ | pGJ148 | - | PR-FO | synthetic | Bs WB800N | 3–4 mg/L purified PR-FO | [99] |
Pgrac | SPyoaW | pJHS | SPyoaW fused with StrepII-SUMO | alkaline phosphatase (r) | - | Bs WB800N Bs KO7A | 5–6 times higher activity than with SPamyQ | [107] |
Pgrac01 | - | pHT43 pTz57R/BMP2 | - | human bone morphogenetic protein-2 (rhBMP2) | Homo sapiens | Bs SCK6 Bs WB600 | 5–9 mg/L | [111] |
Pgrac212 | - | pHT212 | solubility tag at the N-terminus | HRV3C (r) | Homo sapiens | Bs 1012 | 8065 U/mg for purified protease | [112] |
4.2. Promoter Engineering in Bacillus spp.
4.2.1. Self-Inducible Systems
4.2.2. Promoter Remodeling
Promoter | Signal Peptide | Vector | Genetic Modifications 1 | Target 2 | Source 3 | Host | Effect 4 | Reference |
---|---|---|---|---|---|---|---|---|
PsrfA | - | pMA09 | 8BMP (multi-copy BMP) autoinduced | BMP | - | Bs 168 | successful expression and purification with industrial promise | [118] |
mutPsrfA | SPAP | pBSG01 pMA05 | (−10) and (−35) core sequences substituted with consensus sequences | aminopeptidase (AP) | Bs Zj016 | Bs 168 | 1.7-fold AP overexpression compared to the PhpaII promoter; confirmed on protein level | [116] |
P23 (PsrfA–PhpaII) | - | pAX-01 pBSG03 | library of PsrfA derivatives; chromosome integration; 12 dual promoters tested | GFP | Bs Zj016 Bs natto | Bs BSG1682 | 2.5-fold stronger promoter activity than PsrfA | [117] |
Pgrac01 Pgrac100 | - | pHT1655 | lacI removal | β-galactosidase (r) inducer-free | - | Bs 1012 | Expression levels are similar to those with induction | [119] |
Pgrac212 | - | pHT2080 | genome integration at lacA or amyE locus | β-galactosidase (r) inducer-free | - | Bs 1012 | 53.4% higher expression after integration into the chromosome | [120] |
PluxR PluxI | - | pBS3Clux | expression system based on luxR and luxI; (−40) and (−10) regions optimized | riboflavin | Aliivibrio fischeri Bs 168 | Bs K07 | 2.5 to 3.2 times stronger promoter responses than PsrfA and Pveg | [122] |
Pylb | - SPamy | pUBC19 | 11 promoters tested: α-amylase SP from B. amyloliquefaciens | pullulanase organophosphorus hydrolase | B. naganoensis Ps. pseudoalcaligenes | Bs WB600 | 7.4 times higher activity than P43 2.3 times higher activity than P43 no inducer in both cases | [121] |
Pv1 | - | pBSG03 | randomized mutations adjacent to the (−10) region | aspartase (r) | - | Bs 168 | 1.6-fold higher transcriptional activity than PsrfA after 12 h | [123] |
P04 | SPwapA | pMA0911 | mutations in −35 and −10 regions of PsrfA; Cis-acting CodY at 5′-UTR | nattokinase | - | Bs WB600 Bs WB800 | ~30% higher EA with SPwapA than SPepr; further ~30% increase with best of 5 synthetic promoters | [124] |
PBH4 | - | pAX01 pBSG03 | synthetic promoter library | β-glucuronidase nattokinase | - | Bs WB600 | 3 times greater promoter strength than PsrfA | [125] |
Pgrac100 | - | pHT100 | UP of Pgrac01 element optimized | β-galactosidase (r) | - | Bs 1012 | 9.2 times higher expression compared to Pgrac01 | [126] |
P43′–riboE1 | - | pBSG03 | P43 combined with theophylline riboswitch; 9-bp spacer SD; and start codon | β-glucuronidase (r) | - | Bs 168 | switch from constitutive to inducible expression | [127] |
PgroE | SPamyQ | pHT43 | lac operator from E. coli added | nanobodies | Camelidae | Bs WB800N | successful IPTG-induced production | [128] |
PhpalI–Pylb | - | pP43NMK | RBS site modification | pullulanase | Bs 168 | Bs WB800 Bs RBS7 | 136.8 times higher activity than the wild type | [129] |
PamyE-cdd | SPpac | pP43NMK | 33 promoters screened | amidase | B. megaterium | Bs WB800 | 3.58-fold greater activity than control (pBSH1) | [130] |
P43–Plaps | - | pBE980a | OE due to dual promoter | 2,3-BD, TTMP, acetoin | Bs BS2 | Bs BS2 | 36.4% more BD, 36.7% more acetoin, and 95.5% more TTMP vs. single Plaps/P43 | [85] |
PhpaII–PamyQ | SPamyQ | pHYCGT1 | multiple deletions (srfC, spoIIAC, nprE, aprE, amyE) | β-CGTase (r) | - | Bs CCTCC M 2016536 | 20% higher expression than PamyQ′(>2.4-fold increase compared to 7 other promoters) | [131] |
PgsiB–PhpaII | SPYncM | pBSG11 (pMA5-BSAP) | 6 fusion promoters compared SP library screening | aminopeptidase (r) | - | Bs WB600 | >2-fold higher EA than the single promoters; <20% increase with SPYncM | [132] |
P43–PhpaII | - | pUB110 | dal KO in Bs chromosome via cre/Lox recombination | D-psicose 3-epimerase | Clostridium scindens 35704 | Bs 1A751 | 20–30% higher EA than the PhpaII | [133] |
4.2.3. Fusion Promoters
4.3. Vector Engineering in Bacillus spp.
4.3.1. Vector Remodeling
4.3.2. Promoter and Signal Peptide Screening
Promoter | Signal Peptide | Vector | Genetic Modifications 1 | Target 2 | Source 3 | Host 3 | Effect 4 | Reference |
---|---|---|---|---|---|---|---|---|
PopuAA | SPsubE | pSaltExSePR5 | new vector with a salt-inducible promoter | protease | Hallobacillus sp. SR5-3 | Bs WB800 | 70-fold higher protease activity with 4 M NaCl than the non-induced culture | [135] |
P43 | - | pUC980 | pUC19 ori inserted into pWB980, bleoR deletion | alkaline protease; pectate lyase | Bacillus sp. 221, Paenibacillus sp. 0602, Anoxybacillus sp. LM18-11 | Bs WB600 | 2.5–3 times higher activity than pWB980 constructs for pelN1 and spro1 | [137] |
P43 | SPYwbN | pHT01 pIEFBPR | Pgrac discarded; 6 genes KO (xpF, skfA, lytC, sdpC, malP, amyE); SPPhoD exchanged for SPYwbN | trehalose synthase | - | Bs WB800N | about 10-fold increased activity overall | [136] |
Pmglv | SPlipA | pMA5 | 6 SP and 4 promoters were cloned and tested | β-mannanase | B. licheniformis DSM13 | Bs 1A751 | 2-fold higher EA than least efficient (SPnprB); 3-fold higher EA than PhpaII | [140] |
PhpaII | SPwapA SPamyQ | pHT43 pMA5 | Inducible Plac used for SPamyQ | MTG | Str. mobaraensis CGMCC 4.5591 | Bs 168 Bs WB600 | 63 mg/L MTG with SPwapA; 10–15% less with SPamyQ; almost no difference in enzymatic activity | [138] |
PaprE | SPnprE | pMA5 pDL | PrsA lipoprotein OE; 6 SP tested | amylase | B. licheniformis CICC 10181 | Bs 1A751 | 2.5-fold overall increase | [141] |
PyvyD | SPsacB | pWB980 | pro-peptide from S. hygroscopicus | MTG | Str. mobaraensis | Bs WB600 | >20% higher EA compared to P43 | [142] |
T7 | SPxynD (lypo type) | pDMT pDBT | 24 SP tested; nprB and mpr KO; hEGF cassette integrated into nprB | hEGF | Homo sapiens | Bs PT5 Bs PT6 Bs PT7 | almost 2-fold increase SPxynD; only 6 of 24 SP guided hEGF into extracellular space | [93] |
PBsamy–PBaamy | SPDacB | pWBPRO1 | 72 SP, 9 dual, and 5 triple promoters were screened | alkaline serine protease (r) | B. clausii | Bs WB600 | 3.7-fold increase with SPDacBand PBsamy-PBaamy | [134] |
PgroES | SPamyE | pLIKE | trpA-terminator to the 3′ end and lacO-stem-loop to the 5′ end of the reporter gene | MAK33-VL | - | Bs K7 Bs PG10 | 10-fold increased expression with GFP; verified with MAK33-L | [139] |
P43 | - | pHY300 T2(2)-ori | Δepr, ΔwprA, Δmpr, ΔaprE, Δvpr, ΔbprA, ΔbacABC; aprN inserted | nattokinase | Bs 168 | Bl DW2 | 25.7% higher EA in the strain with 7 deletions | [143] |
P43 | - | pBSCas9 pHP13 | multiplex genome editing; ribA, ribB, and ribH engineered for improved riboflavin production | riboflavin | - | Bs BS89 | 80% success in 1–8 kb deletions >90% success in 1–2 kb insertions 100% site-directed mutagenesis | [144] |
Pgrac PhpaII | SPnpr | pHT01 pDR-sgRNA | KO epsA-O, cwlO, sacB; OE CscA; SacC, OsC introduced | γ-PGA | Ps. mucidolens Bl 14580 | Ba NB | 32% more γ-PGA | [145] |
4.3.3. CRISPR/Cas9 Genome Editing
5. Metabolic Engineering in Bacillus spp.
5.1. Manipulation of Metabolic and Secretory Pathways
5.2. Cofactors Fine-Tuning
Promoter | Vector | Genetic Modifications 1 | Target 2 | Source 3 | Host 3 | Effect 4 | Reference |
---|---|---|---|---|---|---|---|
P43 | T2(2)-Ori | OE 1 pdhABCD and citA; ΔpflB; repression of aceA | γ-PGA | Bs 168 Bl WX-02 | Bl WX-02 | 69% higher yield | [147] |
PbdhA | pMA5-PA | ΔbdhA; moderate expression of yodC; PHpaII exchanged for PbdhA | acetoin | Bs 168 | Bs JNA 3-10 | 35.3% more acetoin; 92.3%, 70.1%, and 75.0% less BD, LA, and EtOH, respectively | [146] |
P43 | T2(2)-ori pHY300PLK | OE glcP; gabT1 and gutB1 integrated; amyL terminator from Bl DW2 | 1-DNJ | - | Ba HZ-12 | 33% increased production 36.7% less acetoin by-product | [148] |
P43 | T2(2)-ori pHY300PLK | ptsG weakened; ΔiolR; promoter change; and 5′-UTR optimizations | 1-DNJ | - | Ba HZ-12 | 10.2-fold higher amount overall | [149] |
P43 Pspac | pP43NMK PDG148 | ΔyyzE, ΔypqE, ΔptsG; glcP and glcK OE; pathway repression with codon-optimizing strategies | GlcNAc | S. cerevisiae B. cereus Bs 168 | Bs BN0-GNA1 | 2-fold higher titer than the original strain in flasks; 1.72-fold more in a 3 L fed-batch bioreactor | [150] |
P43 | pHY300PLK | TamyL terminator Bl WX-02; synthetic 5′-UTR; 15 genes for prephenate dehydrogenase screened | L-tyrosine | Ba HZ-12 | Ba HZ-12 | 42% higher yield than the control strain | [151] |
PhpaII | pMA5 | OE of 23 genes involved in the Sec pathway, PrsA lipoprotein, partial dnaK operon; SPamyL, SPamyS; | 2 amylases AmyL AmyS | Bl CICC 10181 Gs ATCC 31195 | Bs 1A751 | 3.2-fold higher expression for AmyL; 5.5-fold for AmyS; 60 and 73% higher EA | [152] |
PAE | pHP13 | OE of 4 Sec pathway components (secA-prfB, secDF, secYEG, prsA); promoter change | lipase | Bs 168 | Bs BNA | 14-fold increase in EA compared to P43; further 59% higher with secDF and prsA OE | [153] |
P43 | pUCL92 | OE purF, purM, purN, purH, purD; promoter exchange | riboflavin | - | Bs PK | 31% higher titer, 25% higher yield | [154] |
- Pspac P43 | pSS pMUNTIN4 pMX45 | mutations RibC (G199D), ribD+ (G+39A) and YvrH (R222Q) | riboflavin | - | Bs 24/pMX45 | 3.4-fold higher titer than the initial strain; 23.4% increase due to the YvrH mutation | [155] |
PvegI | pHP13 | KO apt, xpt, adeC, nrdE, nrdF | riboflavin | - | Bs 168 | 41.50% higher production in ΔadeC mutants; 13.12% increase with RNR repressed | [156] |
PbdhA | pMA5 | OE dhaD, gldA, acr introduction of ALsR | 2,3-BD | K. pneumoniae ATCC 25955 | Ba B10-127 | 102.3 g/L; 1.16 g/L/h | [92] |
P43 | T2(2)-Ori | OE zwf, pyk, argA; ΔargF, ΔahrC; TamyL terminator Bl WX-02 | putrescine | E. coli | Ba HZ-12 | 5.51 g/L, 0.11 g/L/h, and 0.14 g/g, with xylose as substrate | [157] |
P43 | pP43NMK PDG148 | KO pyk, kdgA, ywkA, pckA, ytsJ melA, malS; OE pycA, pfkA, fbaA | GlcNAc | S. cerevisiae Bs 168 A. flocculosa | Bs BN[0…6]-GNA1 Bs BP[6…18]-afGNA1 | 3.7-fold higher titer, 4-fold higher yield, and 1.6-fold higher productivity than the initial strain | [158] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qian, J.; Wang, Y.; Hu, Z.; Shi, T.; Wang, Y.; Ye, C.; Huang, H. Bacillus sp. as a microbial cell factory: Advancements and future prospects. Biotechnol. Adv. 2023, 69, 108278. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Fontaine, F.; Aziz, A.; Egas, C.; Clément, C.; Trotel-Aziz, P. Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 isolated from a Vitis vinifera (cv. Chardonnay) rhizospheric soil: Assets for sustainable biocontrol. Environ. Microbiome 2021, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Arsov, A.; Gerginova, M.; Paunova-Krasteva, T.; Petrov, K.; Petrova, P. Multiple cry Genes in Bacillus thuringiensis Strain BTG Suggest a Broad-Spectrum Insecticidal Activity. Int. J. Mol. Sci. 2023, 24, 11137. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Velikova, P.; Petrov, K. Genome Sequence of Bacillus velezensis 5RB, an Overproducer of 2,3-Butanediol. Microbiol. Resour. Announc. 2019, 8, e01475-18. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Gerginova, M.; Arsov, A.; Armenova, N.; Tsigoriyna, L.; Gergov, E.; Petrov, K. Whole-genome sequence of Bacillus velezensis strain R22 isolated from Oryza sativa rhizosphere in Bulgaria. Microbiol. Resour. Announc. 2023, 12, e0069323. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Han, L.; Suo, F.; Liu, Z.; Zhou, Z. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J. Microbiol. Biotechnol. 2018, 34, 145. [Google Scholar] [CrossRef]
- Lakowitz, A.; Godard, T.; Biedendieck, R.; Krull, R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur. J. Pharm. Biopharm. 2018, 126, 27–39. [Google Scholar] [CrossRef]
- Cai, D.; Rao, Y.; Zhan, Y.; Wang, Q.; Chen, S. Engineering Bacillus for efficient production of heterologous protein: Current progress, challenge and prospect. J. Appl. Microbiol. 2019, 126, 1632–1642. [Google Scholar] [CrossRef]
- Stülke, J.; Grüppen, A.; Bramkamp, M.; Pelzer, S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J. Bacteriol. 2023, 25, e0010223. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 2020, 19, 173. [Google Scholar] [CrossRef]
- Zhang, K.; Su, L.; Wu, J. Recent Advances in Recombinant Protein Production by Bacillus subtilis. Annu. Rev. Food Sci. Technol. 2020, 25, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Jeong, D.E.; Park, S.H.; Kim, S.J.; Choi, S.K. Complete Genome Sequence of Bacillus subtilis Strain WB800N, an Extracellular Protease-Deficient Derivative of Strain 168. Microbiol. Resour. Announc. 2018, 7, e01380-18. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yan, Y.; Du, S.; Zhu, Y.; Pan, F.; Wang, R.; Xu, Z.; Xu, Z.; Li, S.; Xu, H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: From rational design to industrial applications. Crit. Rev. Biotechnol. 2023, 43, 1073–1091. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, Y.; Yan, Y.; Du, S.; Pan, F.; Li, S.; Xu, H.; Luo, Z. Metabolic Engineering of Bacillus amyloliquefaciens to Efficiently Synthesize L-Ornithine From Inulin. Front. Bioeng. Biotechnol. 2022, 10, 905110. [Google Scholar] [CrossRef] [PubMed]
- Petrov, K.; Petrova, P. Current Advances in Microbial Production of Acetoin and 2,3-Butanediol by Bacillus spp. Fermentation 2021, 7, 307. [Google Scholar] [CrossRef]
- Song, C.W.; Chelladurai, R.; Park, J.M.; Song, H. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol. J. Ind. Microbiol. 2020, 47, 97–108. [Google Scholar] [CrossRef]
- Bunk, B.; Schulz, A.; Stammen, S.; Münch, R.; Warren, M.J.; Rohde, M.; Jahn, D.; Biedendieck, R. A short story about a big magic bug. Bioeng. Bugs. 2010, 1, 85–91. [Google Scholar] [CrossRef]
- Degering, C.; Eggert, T.; Puls, M.; Bongaerts, J.; Evers, S.; Maurer, K.H.; Jaeger, K.E. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl. Environ. Microbiol. 2010, 76, 6370–6376. [Google Scholar] [CrossRef]
- Adimpong, D.B.; Sørensen, K.I.; Thorsen, L.; Stuer-Lauridsen, B.; Abdelgadir, W.S.; Nielsen, D.S.; Derkx, P.M.; Jespersen, L. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl. Environ. Microbiol. 2012, 78, 7903–7914. [Google Scholar] [CrossRef]
- Yenikeyev, R.R.; Tatarinova, N.Y.; Zakharchuk, L.M.; Vinogradova, E.N. Mechanisms of Resistance to Clinically Significant Antibiotics in Bacillus Strains Isolated from Samples Obtained from a Medical Institution. Mosc. Univ. Biol.Sci. Bull. 2022, 77, 84–91. [Google Scholar] [CrossRef]
- Westers, L.; Dijkstra, D.S.; Westers, H.; van Dijl, J.M.; Quax, W.J. Secretion of functional human interleukin-3 from Bacillus subtilis. J. Biotechnol. 2006, 17, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fu, G.; Tu, R.; Jin, Z.; Zhang, D. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Microb. Cell. Fact. 2019, 28, 17. [Google Scholar] [CrossRef] [PubMed]
- Khadye, V.S.; Sawant, S.; Shaikh, K.; Srivastava, R.; Chandrayan, S.; Odaneth, A.A. Optimal secretion of thermostable Beta-glucosidase in Bacillus subtilis by signal peptide optimization. Protein. Expr. Purif. 2021, 182, 105843. [Google Scholar] [CrossRef] [PubMed]
- Titok, M.A.; Chapuis, J.; Selezneva, Y.V.; Lagodich, A.V.; Prokulevich, V.A.; Ehrlich, S.D.; Jannière, L. Bacillus subtilis soil isolates: Plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 2003, 49, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Nguyen, Q.A.; Ferreira, R.C.; Ferreira, L.C.; Tran, L.T.; Schumann, W. Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 2005, 54, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Zarzosa, A.; López-Meza, J.E. Shuttle Vectors of Bacillus thuringiensis. In Bacillus thuringiensis Biotechnology; Sansinenea, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 175–184. [Google Scholar] [CrossRef]
- Phan, T.T.; Nguyen, H.D.; Schumann, W. Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expr. Purif. 2006, 46, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, K.J.; Simmons, L.A. Genome Editing Methods for Bacillus subtilis. In Recombineering Methods in Molecular Biology; Reisch, C.R., Ed.; Humana Press: New York, NY, USA, 2022; Volume 2479. [Google Scholar] [CrossRef]
- Härtl, B.; Wehrl, W.; Wiegert, T.; Homuth, G.; Schumann, W. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J. Bacteriol. 2001, 183, 2696–2699, Erratum in: J. Bacteriol. 2001, 183, 4393. [Google Scholar] [CrossRef]
- Zeigler, D. Bacillus Genetic Stock Center Catalog of Strains, Seventh Edition, Volume 4, Integration Vectors for Gram-Positive Organisms. 2002, pp. 5–10. Available online: https://bgsc.org/_catalogs/Catpart4.pdf (accessed on 12 December 2023).
- Ishiwa, H.; Shibahara, H. New shuttle vectors for Escherichia coli and Bacillus subtilis. Jpn. J. Genet. 1985, 60, 235–243. [Google Scholar] [CrossRef]
- Mahipant, G.; Kato, J.; Kataoka, N.; Vangnai, A.S. An alternative genome-integrated method for undomesticated Bacillus subtilis and related species. J. Gen. Appl. Microbiol. 2019, 21, 96–105. [Google Scholar] [CrossRef]
- Radeck, J.; Kraft, K.; Bartels, J.; Cikovic, T.; Dürr, F.; Emenegger, J.; Kelterborn, S.; Sauer, C.; Fritz, G.; Gebhard, S.; et al. The Bacillus BioBrick Box: Generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J. Biol. Eng. 2013, 7, 29. [Google Scholar] [CrossRef]
- Krüger, A.; Welsch, N.; Dürwald, A.; Brundiek, H.; Wardenga, R.; Piascheck, H.; Mengers, H.G.; Krabbe, J.; Beyer, S.; Kabisch, J.F.; et al. A host-vector toolbox for improved secretory protein overproduction in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2022, 106, 5137–5151. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.M.; Kritikos, G.; Farelli, J.D.; Todor, H.; Tong, K.; Kimsey, H.; Wapinski, I.; Galardini, M.; Cabal, A.; Peters, J.M.; et al. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Syst. 2017, 22, 291–305.e7. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; He, S.; Jopkiewicz, A.; Setroikromo, R.; van Merkerk, R.; Quax, W.J. Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. J. Appl. Microbiol. 2022, 133, 2280–2298. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-Q.; Liu, D.-Y.; Chen, T.; Wang, Z.-W. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis. World. J. Microbiol. Biotechnol. 2018, 34, 153. [Google Scholar] [CrossRef]
- Altenbuchner, J. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Appl. Environ. Microbiol. 2016, 82, 5421–5427. [Google Scholar] [CrossRef]
- Wang, X.; Lyu, Y.; Wang, S.; Zheng, Q.; Feng, E.; Zhu, L.; Pan, C.; Wang, S.; Wang, D.; Liu, X.; et al. Application of CRISPR/Cas9 System for Plasmid Elimination and Bacterial Killing of Bacillus cereus Group Strains. Front. Microbiol. 2021, 12, 536357. [Google Scholar] [CrossRef]
- Hartz, P.; Gehl, M.; König, L.; Bernhardt, R.; Hannemann, F. Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. J. Biotechnol. 2021, 10, 170–179. [Google Scholar] [CrossRef]
- Zhang, K.; Duan, X.; Wu, J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci. Rep. 2016, 16, 27943. [Google Scholar] [CrossRef]
- Kim, M.S.; Jeong, D.E.; Choi, S.K. Bacillus integrative plasmid system combining a synthetic gene circuit for efficient genetic modifications of undomesticated Bacillus strains. Microb. Cell Fact. 2022, 21, 259. [Google Scholar] [CrossRef]
- Peters, J.M.; Colavin, A.; Shi, H.; Czarny, T.L.; Larson, M.H.; Wong, S.; Hawkins, J.S.; Lu, C.H.S.; Koo, B.M.; Marta, E.; et al. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell 2016, 165, 1493–1506. [Google Scholar] [CrossRef]
- Jung, J.; Yu, K.O.; Ramzi, A.B.; Choe, S.H.; Kim, S.W.; Han, S.O. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol. Bioeng. 2012, 109, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Bacillus subtilis pBacTag Taggin Vectors, GmbH. 2014, pp. 10–15. Available online: https://www.mobitec.com/media/datasheets/mobitecgmbh/pBACTag-Handbook.pdf (accessed on 12 December 2023).
- Barg, H.; Malten, M.; Jahn, M.; Jahn, D. Protein and Vitamin Production in Bacillus megaterium. In Microbial Processes and Products. Methods in Biotechnology; Barredo, J.L., Ed.; Humana Press: New York, NY, USA, 2005; Volume 18, pp. 205–223. [Google Scholar] [CrossRef]
- Deng, L.; Wang, C.; Zhang, X.; Yang, W.; Tang, H.; Chen, X.; Du, S.; Chen, X. Cell-to-cell natural transformation in Bacillus subtilis facilitates large scale of genomic exchanges and the transfer of long continuous DNA regions. Nucleic Acids Res. 2023, 51, 3820–3835. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P.; Johnson, J.S.; Dalrymple, B.P. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Methods. 1999, 34, 183–191. [Google Scholar] [CrossRef]
- Arsov, A.; Petrov, K.; Petrova, P. Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis. Molecules 2021, 26, 5625. [Google Scholar] [CrossRef] [PubMed]
- Zegeye, E.D.; Aspholm, M. Efficient electrotransformation of Bacillus thuringiensis for gene manipulation and expression. Curr. Protoc. 2022, 2, e588. [Google Scholar] [CrossRef]
- Yi, Y.; Kuipers, O.P. Development of an efficient electroporation method for rhizobacterial Bacillus mycoides strains. J. Microbiol. Methods. 2017, 133, 82–86. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, Z.T.; Shu, D.; Luo, D.; Tan, H. Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. Int. J. Mol. Sci. 2015, 16, 7334–7351. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Zhang, Y. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb. Biotechnol. 2011, 4, 98–105. [Google Scholar] [CrossRef]
- Jeong, D.E.; Kim, M.S.; Kim, H.R.; Choi, S.K. Cell Factory Engineering of Undomesticated Bacillus Strains Using a Modified Integrative and Conjugative Element for Efficient Plasmid Delivery. Front. Microbiol. 2022, 26, 802040. [Google Scholar] [CrossRef]
- Yao, D.; Su, L.; Li, N.; Wu, J. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection. Microb. Cell Fact. 2019, 18, 69. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, K.; Zhu, X.; Su, L.; Wu, J. Enhanced extracellular α-amylase production in Brevibacillus choshinensis by optimizing extracellular degradation and folding environment, J. Ind. Microbiol. Biotechnol. 2022, 49, kuab061. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, K.; Su, L.; Liu, Z.; Wu, J. Enhanced extracellular Bacillus stearothermophilus α-amylase production in Bacillus subtilis by balancing the entire secretion process in an optimal strain. Biochem. Eng. J. 2021, 168, 107948. [Google Scholar] [CrossRef]
- Duan, X.; Shen, Z.; Zhang, X.; Wang, Y.; Huang, Y. Production of recombinant beta-amylase of Bacillus aryabhattai. Prep. Biochem. Biotechnol. 2019, 49, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Su, L.; Wu, J. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl. Microbiol. Biotechnol. 2018, 102, 5089–5103. [Google Scholar] [CrossRef]
- Wu, F.; Ma, J.; Cha, Y.; Lu, D.; Li, Z.; Zhuo, M.; Luo, X.; Li, S.; Zhu, M. Using inexpensive substrate to achieve high-level lipase A secretion by Bacillus subtilis through signal peptide and promoter screening. Process Biochem. 2020, 99, 202–210. [Google Scholar] [CrossRef]
- Helianti, I.; Ulfah, M.; Nurhayati, N.; Suhendar, D.; Finalissari, A.K.; Wardani, A.K. Production of Xylanase by Recombinant Bacillus subtilis DB104 Cultivated in Agroindustrial Waste Medium. HAYATI J. Biosci. 2017, 23, 125. [Google Scholar] [CrossRef]
- Ge, Y.; Li, K.; Li, L.; Gao, C.; Zhang, L.; Ma, C.; Xu, P. Contracted but effective production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem. 2016, 18, 4693–4703. [Google Scholar] [CrossRef]
- Yang, T.; Rao, Z.; Zhang, X.; Xu, M.; Xu, Z.; Yang, S.T. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS ONE 2013, 8, e76149. [Google Scholar] [CrossRef]
- Bao, T.; Zhang, X.; Rao, Z.; Zhao, X.; Zhang, R.; Yang, T.; Xu, Z.; Yang, S. Efficient Whole-Cell Biocatalyst for Acetoin Production with NAD+ Regeneration System through Homologous Co-Expression of 2,3-Butanediol Dehydrogenase and NADH Oxidase in Engineered Bacillus subtilis. PLoS ONE 2019, 9, e102951. [Google Scholar] [CrossRef]
- Chen, S.; Fu, J.; Yu, B.; Wang, L. Development of a Conjugation-Based Genome Editing System in an Undomesticated Bacillus subtilis Strain for Poly-γ-glutamic Acid Production with Diverse Molecular Masses. J. Agric. Food Chem. 2023, 71, 7734–7743. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Zhang, Y.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Efficient Protein Expression and Biosynthetic Gene Cluster Regulation in Bacillus subtilis Driven by a T7-BOOST System. ACS Synth. Biol. 2023, 12, 3328–3339. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; He, W.; Yan, X.; Zhang, T.; Jiang, B.; Stressler, T.; Fischer, L.; Mu, W. Construction of an enzymatic route using a food-grade recombinant Bacillus subtilis for the production and purification of epilactose from lactose. J. Dairy Sci. 2018, 101, 1872–1882. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, K.; Zhu, X.; Lv, H.; Wu, J. High level food-grade expression of maltogenic amylase in Bacillus subtilis through dal gene auxotrophic selection marker. Int. J. Biol. Macromol. 2023, 254, 127372. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Shi, C.; Gong, W.; Liu, J.; Meng, X.; Liu, F.; Lu, F.; Zhang, H. Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application. J. Gen. Appl. Microbiol. 2023, 69. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xuan, X.; Gao, R.; Xie, G. Increased Expression Levels of Thermophilic Serine Protease TTHA0724 through Signal Peptide Screening in Bacillus subtilis and Applications of the Enzyme. Int. J. Mol. Sci. 2023, 24, 15950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Z.; Zhang, Y.-H.P. One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges. Eng. Life Sci. 2010, 10, 398–406. [Google Scholar] [CrossRef]
- Sun, X.; Yang, J.; Fu, X.; Zhao, X.; Zhen, J.; Song, H.; Xu, J.; Zheng, H.; Bai, W. Trehalose Production Using Three Extracellular Enzymes Produced via One-Step Fermentation of an Engineered Bacillus subtilis Strain. Bioengineering 2023, 10, 977. [Google Scholar] [CrossRef] [PubMed]
- El Salamony, D.H.; Salah Eldin Hassouna, M.; Zaghloul, T.I.; Moustafa Abdallah, H. Valorization of chicken feather waste using recombinant Bacillus subtilis cells by solid-state fermentation for soluble proteins and serine alkaline protease production. Bioresour. Technol. 2023, 393, 130110. [Google Scholar] [CrossRef]
- Jun, J.-S.; Jeong, H.-E.; Hong, K.-W. Exploring and Engineering Novel Strong Promoters for High-Level Protein Expression in Bacillus subtilis DB104 through Transcriptome Analysis. Microorganisms 2023, 11, 2929. [Google Scholar] [CrossRef]
- Lam, K.H.; Chow, K.C.; Wong, W.K. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J. Biotechnol. 1998, 63, 167–177. [Google Scholar] [CrossRef]
- Ebisu, S.; Takagi, H.; Kadowaki, K.; Yamagata, H.; Udaka, S. Production of human epidermal growth factor by Bacillus brevis increased with use of a stable plasmid from B. brevis 481. Biosci. Biotechnol. Biochem. 1992, 56, 812–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, H.; Tian, S.; Yang, H.; Wang, J.; Zhu, W. Recombinant expression insulin-like growth factor 1 in Bacillus subtilis using a low-cost heat-purification technology. Process Biochem. 2017, 63, 49–54. [Google Scholar] [CrossRef]
- Hu, X.; Lai, C.Y.N.; Sivakumar, T.; Wang, H.; Ng, K.L.; Lam, C.C.; Wong, W.K.R. Novel strategy for expression of authentic and bioactive human basic fibroblast growth factor in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2018, 102, 7061–7069. [Google Scholar] [CrossRef] [PubMed]
- Brey, R.N.; Banner, C.D.; Wolf, J.B. Cloning of multiple genes involved with cobalamin (Vitamin B12) biosynthesis in Bacillus megaterium. J. Bacteriol. 1986, 167, 623–630. [Google Scholar] [CrossRef]
- Biedendieck, R.; Malten, M.; Barg, H.; Bunk, B.; Martens, J.H.; Deery, E.; Leech, H.; Warren, M.J.; Jahn, D. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb. Biotechnol. 2010, 3, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, C.; Ban, R. Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis. Lett. Appl. Microbiol. 2022, 74, 78–83. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Yang, C.; Pan, X.; Hu, M.; Du, Y.; Osire, T.; Yang, T.; Rao, Z. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. Bioresour. Technol. 2021, 333, 125228. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Wu, Z.; Lu, Y.; Tao, G.; Zhang, L.; Ding, Z.; Shi, G. Combining Precursor-Directed Engineering with Modular Designing: An Effective Strategy for De Novo Biosynthesis of l-DOPA in Bacillus licheniformis. ACS Synth. Biol. 2022, 11, 700–712. [Google Scholar] [CrossRef]
- Li, L.; Mu, L.; Wang, X.; Yu, J.; Hu, R.; Li, Z. A novel expression vector for the secretion of abaecin in Bacillus subtilis. Braz. J. Microbiol. 2017, 48, 809–814. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, F.; Zhang, Y.; Zhang, J.; Huo, S.; Lin, H.; Wang, L.; Cui, D.; Li, X. Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity. Asian-Australas. J. Anim. Sci. 2017, 30, 576–584. [Google Scholar] [CrossRef]
- Chen, M.; Lin, N.; Liu, X.; Tang, X.; Wang, Z.; Zhang, D. A novel antimicrobial peptide screened by a Bacillus subtilis expression system, derived from Larimichthys crocea Ferritin H, exerting bactericidal and parasiticidal activities. Front. Immunol. 2023, 14, 1168517. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Peng, C.; Li, Z.; Wang, G.; Wang, H.; Yu, L.; Wang, F. Both recombinant Bacillus subtilis Expressing PCV2d Cap protein and PCV2d-VLPs can stimulate strong protective immune responses in mice. Heliyon 2023, 9, e22941. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Zhang, X.; Song, M.; Hao, G.; Wang, F.; Sun, S. Oral administration of recombinant Bacillus subtilis expressing a multi-epitope protein induces strong immune responses against Salmonella Enteritidis. Vet. Microbiol. 2023, 276, 109632. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Rao, Z.; Zhang, X.; Xu, M.; Xu, Z.; Yang, S.-T. Metabolic engineering strategies for acetoin and 2,3-butanediol production: Advances and prospects. Crit. Rev. Biotechnol. 2017, 37, 990–1005. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, J.; Li, L.; Wen, Z.; Nomura, C.; Wu, S.; Chen, S. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol. Biofuels 2016, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Huo, G.; Feng, L.; Mao, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol. Biofuels 2016, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Rao, Z.; Zhang, X.; Xu, M.; Xu, Z.; Yang, S.T. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb. Cell Fact. 2015, 14, 122. [Google Scholar] [CrossRef]
- Tsigoriyna, L.; Arsov, A.; Petrova, P.; Gergov, E.; Petrov, K. Heterologous Expression of Inulinase Gene in Bacillus licheniformis 24 for 2,3-Butanediol Production from Inulin. Catalysts 2023, 13, 841. [Google Scholar] [CrossRef]
- Shi, L.; Lin, Y.; Song, J.; Li, H.; Gao, Y.; Lin, Y.; Huang, X.; Meng, W.; Qin, W. Engineered Bacillus subtilis for the Production of Tetramethylpyrazine,(R,R)-2,3-Butanediol and Acetoin. Fermentation 2023, 9, 488. [Google Scholar] [CrossRef]
- Lü, C.; Ge, Y.; Cao, M.; Guo, X.; Liu, P.; Gao, C.; Xu, P.; Ma, C. Metabolic Engineering of Bacillus licheniformis for Production of Acetoin. Front. Bioeng. Biotechnol. 2020, 8, 125. [Google Scholar] [CrossRef]
- Li, L.; Wei, X.; Yu, W.; Wen, Z.; Chen, S. Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: Metabolic engineering and fermentation control. Process Biochem. 2017, 57, 35–42. [Google Scholar] [CrossRef]
- Souza, C.C.; Guimarães, J.M.; Pereira, S.D.S.; Mariúba, L.A.M. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp. Biol. Med. 2021, 246, 2443–2453. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Tian, J.; Chu, Y.; Tian, Y. Cloning, heterologous expression and characterization of a novel streptomyces trypsin in Bacillus subtilis SCK6. Int. J. Biol. Macromol. 2020, 15, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, S.; Jiao, Y.; Wang, Y.; Wang, M.; Du, G. Gene cloning and expression of the l-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis WB600. J. Biosci. Bioeng. 2019, 127, 418–424. [Google Scholar] [CrossRef]
- Ramos, K.R.; Valdehuesa, K.N.; Cabulong, R.B.; Moron, L.S.; Nisola, G.M.; Hong, S.K.; Lee, W.K.; Chung, W.J. Overexpression and secretion of AgaA7 from Pseudoalteromonas hodoensis sp. nov in Bacillus subtilis for the depolymerization of agarose. Enzyme Microb. Technol. 2016, 90, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Su, H.-H.; Chen, J.-C.; Chen, P.-T. Production of recombinant human epidermal growth factor in Bacillus Subtilis. J. Taiwan Inst. Chem. Eng. 2020, 106, 86–91. [Google Scholar] [CrossRef]
- Yang, T.; Irene, K.; Liu, H.; Liu, S.; Zhang, X.; Xu, M.; Rao, Z. Enhanced extracellular gamma glutamyl transpeptidase production by overexpressing of PrsA lipoproteins and improving its mRNA stability in Bacillus subtilis and application in biosynthesis of L-theanine. J. Biotechnol. 2019, 20, 85–91. [Google Scholar] [CrossRef]
- Wang, M.; Wu, J.; Wu, D. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme. Microb. Cell Fact. 2018, 17, 23. [Google Scholar] [CrossRef]
- Song, W.; Nie, Y.; Mu, X.Q.; Xu, Y. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host. Protein Expr. Purif. 2016, 124, 23–31. [Google Scholar] [CrossRef]
- Tao, Z.; Fu, G.; Wang, S.; Jin, Z.; Wen, J.; Zhang, D. Hyper-secretion mechanism exploration of a heterologous creatinase in Bacillus subtilis. Biochem. Engin. J. 2020, 153, 107419. [Google Scholar] [CrossRef]
- Zhang, L.; Li, G.; Zhan, N.; Sun, T.; Cheng, B.; Li, Y.; Shan, A. Expression of a Pseudomonas aeruginosa-targeted antimicrobial peptide T9W in Bacillus subtilis using a maltose-inducible vector. Process Biochem. 2019, 81, 22–27. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, D.; Zhan, N.; Sun, T.; Shan, B.; Shan, A. Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis. Bioprocess Biosyst. Eng. 2020, 43, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Zhan, N.; Sun, T.; Li, J.; Shan, A. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J. 2020, 39, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.D.G.; Azzoni, A.R.; Freitas, S. Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: The case of recombinant β-glucosidase. Biotechnol. Biofuels 2018, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.M.; Campani, G.; Santos, M.P.; Silva, G.G.; Pires, M.C.; Gonçalves, V.M.; de C. Giordano, R.; Sargo, C.R.; Horta, A.C.L.; Zangirolami, T.C. Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3). Biotechnol. Rep. 2020, 22, e00441. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.U.; Gul, R.; Hanif, M.I.; Hashmi, A.A. Heterologous Secretory Expression and Characterization of Dimerized Bone Morphogenetic Protein 2 in Bacillus subtilis. Biomed Res. Int. 2017, 2017, 9350537. [Google Scholar] [CrossRef]
- Le, V.D.; Phan, T.T.P.; Nguyen, T.M.; Brunsveld, L.; Schumann, W.; Nguyen, H.D. Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Curr. Microbiol. 2019, 76, 1477–1486. [Google Scholar] [CrossRef]
- Heinrich, J.; Drewniok, C.; Neugebauer, E.; Kellner, H.; Wiegert, T. The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis. Microb. Cell Fact. 2019, 18, 31. [Google Scholar] [CrossRef]
- Deng, Y.; Nie, Y.; Zhang, Y.; Wang, Y.; Xu, Y. Improved inducible expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis by enhancer regulation. Protein Expr. Purif. 2018, 148, 9–15. [Google Scholar] [CrossRef]
- Halmschlag, B.; Putri, S.P.; Fukusaki, E.; Blank, L.M. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. J. Biosci. Bioeng. 2020, 130, 272–282. [Google Scholar] [CrossRef]
- Guan, C.; Cui, W.; Cheng, J.; Zhou, L.; Guo, J.; Hu, X.; Xiao, G.; Zhou, Z. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb. Cell Fact. 2015, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Cui, W.; Cheng, J.; Zhou, L.; Liu, Z.; Zhou, Z. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis. Microb. Cell Fact. 2016, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wu, Y.; Ding, W.; Wang, L.; Wu, L.; Lin, L.; Che, Z.; Zhu, L.; Liu, Y.; Chen, X. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis. Bioprocess Biosyst. Eng. 2020, 43, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.M.; Phan, T.T.P.; Huynh, T.K.; Dang, N.T.K.; Huynh, P.T.K.; Nguyen, T.M.; Truong, T.T.T.; Tran, T.L.; Schumann, W.; Nguyen, H.D. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Microb. Cell Fact. 2017, 16, 130. [Google Scholar] [CrossRef]
- Tran, D.T.M.; Phan, T.T.P.; Doan, T.T.N.; Tran, T.L.; Schumann, W.; Nguyen, H.D. Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnol. Rep. 2020, 28, e00540. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, J.; Liu, X.; Chu, X.; Wang, P.; Tian, J.; Wu, N.; Fan, Y. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Sci. Rep. 2015, 17, 18405. [Google Scholar] [CrossRef]
- Corrêa, G.G.; Lins, M.R.D.C.R.; Silva, B.F.; de Paiva, G.B.; Zocca, V.F.B.; Ribeiro, N.V.; Picheli, F.P.; Mack, M.; Pedrolli, D.B. A modular autoinduction device for control of gene expression in Bacillus subtilis. Metab. Eng. 2020, 61, 326–334. [Google Scholar] [CrossRef]
- Han, L.; Suo, F.; Jiang, C.; Gu, J.; Li, N.; Zhang, N.; Cui, W.; Zhou, Z. Fabrication and characterization of a robust and strong bacterial promoter from a semi-rationally engineered promoter library in Bacillus subtilis. Process Biochem. 2017, 61, 56–62. [Google Scholar] [CrossRef]
- Cui, W.; Suo, F.; Cheng, J.; Han, L.; Hao, W.; Guo, J.; Zhou, Z. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microb. Biotechnol. 2018, 11, 930–942. [Google Scholar] [CrossRef]
- Han, L.; Cui, W.; Suo, F.; Miao, S.; Hao, W.; Chen, Q.; Guo, J.; Liu, Z.; Zhou, L.; Zhou, Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb. Cell Fact. 2019, 18, 96. [Google Scholar] [CrossRef]
- Phan, T.T.; Tran, L.T.; Schumann, W.; Nguyen, H.D. Development of Pgrac100-based expression vectors allowing high protein production levels in Bacillus subtilis and relatively low basal expression in Escherichia coli. Microb. Cell Fact. 2015, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Han, L.; Cheng, J.; Liu, Z.; Zhou, L.; Guo, J.; Zhou, Z. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch. Microb. Cell Fact. 2016, 15, 199. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, G.; Korza, G.; Sun, X.; Setlow, P.; Li, J. Engineering Bacillus subtilis as a Versatile and Stable Platform for Production of Nanobodies. Appl. Environ. Microbiol. 2020, 86, e02938-19. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Zhou, L.; Cui, W.; Liu, Z.; Zhou, Z. Production of a Thermostable Pullulanase in Bacillus subtilis by Optimization of the Expression Elements. Starch Stärke 2020, 72, 2000018. [Google Scholar] [CrossRef]
- Kang, X.M.; Cai, X.; Huang, Z.H.; Liu, Z.Q.; Zheng, Y.G. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Int. J. Biol. Macromol. 2020, 143, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Su, L.; Duan, X.; Liu, L.; Wu, J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb. Cell Fact. 2017, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Cui, W.; Cheng, J.; Liu, R.; Liu, Z.; Zhou, L.; Zhou, Z. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. N. Biotechnol. 2016, 33, 372–379. [Google Scholar] [CrossRef]
- He, W.; Mu, W.; Jiang, B.; Yan, X.; Zhang, T. Construction of a Food Grade Recombinant Bacillus subtilis Based on Replicative Plasmids with an Auxotrophic Marker for Biotransformation of d-Fructose to d-Allulose. J. Agric. Food Chem. 2016, 64, 3243–3250. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Li, D.; Chen, X.; Li, J.; Zhang, Y.; Yuan, H.; Li, Y.; Lu, F. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Int. J. Biol. Macromol. 2019, 138, 903–911. [Google Scholar] [CrossRef]
- Promchai, R.; Promdonkoy, B.; Tanapongpipat, S.; Visessanguan, W.; Eurwilaichitr, L.; Luxananil, P. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J. Biotechnol. 2016, 222, 86–93. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Song, L.; Yuan, H.; Liu, K.; Meng, W.; Wang, T. Trehalose Production Using Recombinant Trehalose Synthase in Bacillus subtilis by Integrating Fermentation and Biocatalysis. J. Agric. Food Chem. 2019, 67, 9314–9324. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, J.; Tan, M.; Zhen, J.; Shu, W.; Yang, S.; Ma, Y.; Zheng, H.; Song, H. High copy number and highly stable Escherichia coli-Bacillus subtilis shuttle plasmids based on pWB980. Microb. Cell Fact. 2020, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Lu, J.; Qiao, M.; Kuipers, O.P.; Zhu, J.; Li, X.; Yang, P.; Zhao, Y.; Luo, S.; Wu, X.; et al. Heterologous signal peptides-directing secretion of Streptomyces mobaraensis transglutaminase by Bacillus subtilis. Appl. Microbiol. Biotechnol. 2018, 102, 5533–5543. [Google Scholar] [CrossRef] [PubMed]
- Scheidler, C.M.; Vrabel, M.; Schneider, S. Genetic Code Expansion, Protein Expression, and Protein Functionalization in Bacillus subtilis. ACS Synth. Biol. 2020, 9, 486–493. [Google Scholar] [CrossRef]
- Song, Y.; Fu, G.; Dong, H.; Li, J.; Du, Y.; Zhang, D. High-Efficiency Secretion of β-Mannanase in Bacillus subtilis through Protein Synthesis and Secretion Optimization. J. Agric. Food Chem. 2017, 65, 2540–2548. [Google Scholar] [CrossRef]
- Chen, J.; Gai, Y.; Fu, G.; Zhou, W.; Zhang, D.; Wen, J. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnol. Lett. 2015, 37, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, Y.; Ju, J.; Cheng, L.; Xu, Y.; Yu, B.; Wang, L. Extracellular production of active-form Streptomyces mobaraensis transglutaminase in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2020, 104, 623–631. [Google Scholar] [CrossRef]
- Li, K.; Cai, D.; Wang, Z.; He, Z.; Chen, S. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Appl. Environ. Microbiol. 2018, 84, e02608-17. [Google Scholar] [CrossRef]
- Liu, D.; Huang, C.; Guo, J.; Zhang, P.; Chen, T.; Wang, Z.; Zhao, X. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Bacillus subtilis. Biotechnol. Biofuels. 2019, 12, 197. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhu, Y.; Sha, Y.; Lei, P.; Luo, Z.; Feng, Z.; Li, S.; Xu, H. Development of a Robust Bacillus amyloliquefaciens Cell Factory for Efficient Poly(γ-glutamic acid) Production from Jerusalem Artichoke. ACS Sustain. Chem. Eng. 2020, 8, 9763–9774. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Bao, T.; Rao, Z.; Yang, T.; Xu, M.; Xu, Z.; Li, H.; Yang, S. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 2014, 23, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cai, D.; Chen, S. Metabolic Engineering of Central Carbon Metabolism of Bacillus licheniformis for Enhanced Production of Poly-γ-glutamic Acid. Appl. Biochem. Biotechnol. 2021, 193, 3540–3552. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, X.; Deng, H.; Chen, S.; Ji, Z. Improvement of 1-deoxynojirimycin production of Bacillus amyloliquefaciens by gene overexpression and medium optimization. LWT 2021, 149, 111812. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Lu, Y.; Wu, N.; Chen, J.; Ji, Z.; Zhan, Y.; Ma, X.; Chen, J.; Cai, D.; et al. Metabolic engineering of Bacillus amyloliquefaciens for efficient production of α-glucosidase inhibitor1-deoxynojirimycin. Synth. Syst. Biotechnol. 2023, 8, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Deng, J.; Liu, Y.; Li, J.; Shin, H.D.; Du, G.; Chen, J.; Liu, L. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Biotechnol. J. 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Bao, P.; Ma, A.; Wei, X. An Efficient Prephenate Dehydrogenase Gene for the Biosynthesis of L-tyrosine: Gene Mining, Sequence Analysis, and Expression Optimization. Foods 2023, 12, 3084. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, G.; Gai, Y.; Zheng, P.; Zhang, D.; Wen, J. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: Identification of bottlenecks by systematic gene overexpression. Microb Cell. Fact. 2015, 14, 92. [Google Scholar] [CrossRef]
- Ma, R.J.; Wang, Y.H.; Liu, L.; Bai, L.L.; Ban, R. Production enhancement of the extracellular lipase LipA in Bacillus subtilis: Effects of expression system and Sec pathway components. Protein Expr. Purif. 2018, 142, 81–87. [Google Scholar] [CrossRef]
- Shi, S.; Shen, Z.; Chen, X.; Chen, T.; Zhao, X. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem. Eng. J. 2009, 46, 28–33. [Google Scholar] [CrossRef]
- Wang, G.; Shi, T.; Chen, T.; Wang, X.; Wang, Y.; Liu, D.; Guo, J.; Fu, J.; Feng, L.; Wang, Z.; et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab. Eng. 2018, 48, 138–149. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Tang, W.; Zhang, D. Manipulation of Purine Metabolic Networks for Riboflavin Production in Bacillus subtilis. ACS Omega. 2020, 5, 29140–29146. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, D.; Ji, A.; He, Y.; Liu, Y.; Deng, Y.; Chen, S.; Wei, X. Multilevel Metabolic Engineering of Bacillus amyloliquefaciens for Production of the Platform Chemical Putrescine from Sustainable Biomass Hydrolysates. ACS Sustain. Chem. Eng. 2020, 8, 2147–2157. [Google Scholar] [CrossRef]
- Gu, Y.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Chen, J.; Rodrigo, L.A.; Liu, L. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab. Eng. 2019, 51, 59–69. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsov, A.; Armenova, N.; Gergov, E.; Petrov, K.; Petrova, P. Cloning Systems in Bacillus: Bioengineering of Metabolic Pathways for Valuable Recombinant Products. Fermentation 2024, 10, 50. https://doi.org/10.3390/fermentation10010050
Arsov A, Armenova N, Gergov E, Petrov K, Petrova P. Cloning Systems in Bacillus: Bioengineering of Metabolic Pathways for Valuable Recombinant Products. Fermentation. 2024; 10(1):50. https://doi.org/10.3390/fermentation10010050
Chicago/Turabian StyleArsov, Alexander, Nadya Armenova, Emanoel Gergov, Kaloyan Petrov, and Penka Petrova. 2024. "Cloning Systems in Bacillus: Bioengineering of Metabolic Pathways for Valuable Recombinant Products" Fermentation 10, no. 1: 50. https://doi.org/10.3390/fermentation10010050
APA StyleArsov, A., Armenova, N., Gergov, E., Petrov, K., & Petrova, P. (2024). Cloning Systems in Bacillus: Bioengineering of Metabolic Pathways for Valuable Recombinant Products. Fermentation, 10(1), 50. https://doi.org/10.3390/fermentation10010050