Synthesis and Characterization of Ni–Co–O Nanosheets on Silicon Carbide Microspheres/Graphite Composite for Supercapacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of gra@SiC/Ni–Co–O
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minakshi, M.; Wickramaarachchi, K. Electrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing. Prog. Solid State Chem. 2023, 69, 100390. [Google Scholar] [CrossRef]
- Cai, D.; Xiao, S.; Wang, D.; Liu, B.; Wang, L.; Liu, Y.; Li, H.; Wang, Y.; Li, Q.; Wang, T. Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim. Acta 2014, 142, 118–124. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Hou, X.; Su, L.; Fan, H.; Chou, K.-C. Fabrication and characterization of ultra light SiC whiskers decorated by RuO2 nanoparticles as hybrid supercapacitors. RSC Adv. 2016, 6, 19626–19631. [Google Scholar] [CrossRef]
- Gu, L.; Wang, Y.; Fang, Y.; Lu, R.; Sha, J. Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric. J. Power Sources 2013, 243, 648–653. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J. Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 11323–11336. [Google Scholar] [CrossRef]
- Oh, I.; Kim, M.; Kim, J. Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes. Appl. Surf. Sci. 2015, 328, 222–228. [Google Scholar] [CrossRef]
- Pramitha, A.; Raviprakash, Y. Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. J. Energy Storage 2022, 49, 104120. [Google Scholar] [CrossRef]
- Dai, M.; Zhao, D.; Wu, X. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 2020, 31, 2177–2188. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A. Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. J. Energy Storage 2021, 44, 103295. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J. Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Appl. Mater. Interfaces 2014, 6, 9036–9045. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors. Nanotechnology 2017, 28, 195401. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, J.; Kim, J. Fast and reversible redox reaction of MgCo2O4 nanoneedles on porous β-polytype silicon carbide as high performance electrodes for electrochemical supercapacitors. J. Alloys Compd. 2017, 710, 528–538. [Google Scholar] [CrossRef]
- Popov, O.; Vishnyakov, V.; Poperenko, L.; Yurgelevych, I.; Avramenko, T.; Ovcharenko, A. Reactively sintered TiB2-based heteromodulus UHT ceramics with in-situ formed graphene for machinable concentrated solar light absorbers. Ceram. Int. 2022, 48, 17828–17836. [Google Scholar] [CrossRef]
- Liang, J.; Xiang, C.; Zou, Y.; Hu, X.; Chu, H.; Qiu, S.; Xu, F.; Sun, L. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors. J. Mater. Sci. Technol. 2020, 55, 190–197. [Google Scholar] [CrossRef]
- Adán-Más, A.; Duarte, R.G.; Silva, T.M.; Guerlou-Demourgues, L.; Montemor, M.F.G. Enhancement of the Ni-Co hydroxide response as energy storage material by electrochemically reduced graphene oxide. Electrochim. Acta 2017, 240, 323–340. [Google Scholar] [CrossRef]
- Zhou, X.-C.; Yang, X.-Y.; Fu, Z.-B.; Yang, Q.; Yang, X.; Tang, Y.-J.; Wang, C.-Y.; Yi, Y. Single-crystalline ultrathin nanofilms of Ni aerogel with Ni(OH)2 hybrid nanoparticles towards enhanced catalytic performance for ethanol electro-oxidation. Appl. Surf. Sci. 2019, 492, 756–764. [Google Scholar] [CrossRef]
- Zhou, Q.; Bian, Q.; Liao, L.; Yu, F.; Li, D.; Tang, D.; Zhou, H. In situ electrochemical dehydrogenation of ultrathin Co(OH)2 nanosheets for enhanced hydrogen evolution. Chin. Chem. Lett. 2023, 34, 107248. [Google Scholar] [CrossRef]
- Salarizadeh, P.; Askari, M.B.; Seifi, M.; Rozati, S.M.; Eisazadeh, S.S. Pristine NiCo2O4 nanorods loaded rGO electrode as a remarkable electrode material for asymmetric supercapacitors. Mater. Sci. Semicond. Process. 2020, 114, 105078. [Google Scholar] [CrossRef]
- Pore, O.; Fulari, A.; Chavare, C.; Sawant, D.; Patil, S.; Shejwal, R.; Fulari, V.; Lohar, G. Synthesis of NiCo2O4 microflowers by facile hydrothermal method: Effect of precursor concentration. Chem. Phys. Lett. 2023, 824, 140551. [Google Scholar] [CrossRef]
- Xiong, D.; Du, Z.; Li, H.; Xu, J.; Li, J.; Zhao, X.; Liu, L. Polyvinylpyrrolidone-assisted hydrothermal synthesis of CuCoO2 nanoplates with enhanced oxygen evolution reaction performance. ACS Sustain. Chem. Eng. 2018, 7, 1493–1501. [Google Scholar] [CrossRef]
- Cai, P.; Zhao, J.; Zhang, X.; Zhang, T.; Yin, G.; Chen, S.; Dong, C.-L.; Huang, Y.-C.; Sun, Y.; Yang, D.; et al. Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl. Catal. B Environ. 2022, 306, 121091. [Google Scholar] [CrossRef]
- Pathak, M.; Mutadak, P.; Mane, P.; More, M.A.; Chakraborty, B.; Late, D.J.; Rout, C.S. Enrichment of the field emission properties of NiCo2O4 nanostructures by UV/ozone treatment. Mater. Adv. 2021, 2, 2658–2666. [Google Scholar] [CrossRef]
- Yan, D.; Wang, W.; Luo, X.; Chen, C.; Zeng, Y.; Zhu, Z. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem. Eng. J. 2018, 334, 864–872. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.; Jiang, L.; Liu, Q.; Wang, L.; Tang, B.; Yang, W. Rationally designed hierarchical SiC@PANI core/shell nanowire arrays: Toward high-performance supercapacitors with high-rate performance and robust stability. Electrochim. Acta 2022, 406, 139867. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Fan, H.; Chou, K.-C.; Hou, X. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors. Dalton Trans. 2015, 44, 19974–19982. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Xue, W.; Xie, Z. Three-dimensional SiC/holey-graphene/holey-MnO2 architectures for flexible energy storage with superior power and energy densities. ACS Appl. Mater. Interfaces 2020, 12, 32514–32525. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bao, M.; Ni, X. A novel surface modification of silicon nanowires by polydopamine to prepare SiNWs/NC@NiO electrode for high-performance supercapacitor. Surf. Coat. Technol. 2021, 406, 126660. [Google Scholar] [CrossRef]
- Yu, M.; Chen, J.; Liu, J.; Li, S.; Ma, Y.; Zhang, J.; An, J. Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 2015, 151, 99–108. [Google Scholar] [CrossRef]
- Chen, J.-C.; Hsu, C.-T.; Hu, C.-C. Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J. Power Sources 2014, 253, 205–213. [Google Scholar] [CrossRef]
- Wei, S.; Wan, C.; Zhang, L.; Liu, X.; Tian, W.; Su, J.; Cheng, W.; Wu, Y. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode. Chem. Eng. J. 2022, 429, 132242. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, R.; Lu, X.; Sun, J.; Gao, L. Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors. J. Colloid Interface Sci. 2016, 468, 1–9. [Google Scholar] [CrossRef]
- Pan, C.; Liu, Z.; Li, W.; Zhuang, Y.; Wang, Q.; Chen, S. NiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor application. J. Phys. Chem. C 2019, 123, 25549–25558. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C.; Xie, X. Understanding electrochemical structural degradation of NiCo2S4 nanoparticles in aqueous alkaline electrolyte. Electrochim. Acta 2023, 466, 143057. [Google Scholar] [CrossRef]
Sample | Fitted Results of Ni (2p) XPS Spectra | ||||||
---|---|---|---|---|---|---|---|
Ni2+ 2p3/2 (%) | Ni3+ 2p3/2 (%) | Sat. 2p3/2 (%) | Ni2+ 2p3/2 (%) | Ni3+ 2p3/2 (%) | Sat. 2p3/2 (%) | Ni2+/Ni3+ | |
gra/Ni–Co–O | 5.9 | 27.9 | 25.3 | 11.2 | 9.4 | 20.3 | 0.46 |
gra@SiC/Ni–Co–O | 4.8 | 26.9 | 26.5 | 7.7 | 11.3 | 22.8 | 0.33 |
Sample | Fitted Results of Co (2p) XPS Spectra | ||||||
---|---|---|---|---|---|---|---|
Co3+ 2p3/2 (%) | Co2+ 2p3/2 (%) | Sat. 2p3/2 (%) | Co3+ 2p3/2 (%) | Co2+ 2p3/2 (%) | Sat. 2p3/2 (%) | Co2+/Co3+ | |
gra/Ni–Co–O | 4.2 | 46.6 | 16.8 | 1.3 | 20.6 | 10.5 | 12.27 |
gra@SiC/Ni–Co–O | 7.4 | 43.4 | 16.3 | 2.1 | 20.1 | 10.7 | 6.74 |
Sample | Fitted Results of O (1s) XPS Spectra | |||
---|---|---|---|---|
M-O-M (%) | M-O-H (%) | O-Defect Site (%) | H-O-H (%) | |
gra/Ni–Co–O | 2.0 | 27.0 | 55.4 | 15.6 |
gra@SiC/Ni–Co–O | 4.0 | 18.7 | 52.2 | 25.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-W.; Tsai, Z.-Y.; Ye, J.-J.; Chiu, K.-C.; Liu, T.-Y.; Tsai, Y.-C. Synthesis and Characterization of Ni–Co–O Nanosheets on Silicon Carbide Microspheres/Graphite Composite for Supercapacitor Applications. C 2023, 9, 101. https://doi.org/10.3390/c9040101
Chang H-W, Tsai Z-Y, Ye J-J, Chiu K-C, Liu T-Y, Tsai Y-C. Synthesis and Characterization of Ni–Co–O Nanosheets on Silicon Carbide Microspheres/Graphite Composite for Supercapacitor Applications. C. 2023; 9(4):101. https://doi.org/10.3390/c9040101
Chicago/Turabian StyleChang, Han-Wei, Zong-Ying Tsai, Jia-Jun Ye, Kuo-Chuang Chiu, Tzu-Yu Liu, and Yu-Chen Tsai. 2023. "Synthesis and Characterization of Ni–Co–O Nanosheets on Silicon Carbide Microspheres/Graphite Composite for Supercapacitor Applications" C 9, no. 4: 101. https://doi.org/10.3390/c9040101
APA StyleChang, H. -W., Tsai, Z. -Y., Ye, J. -J., Chiu, K. -C., Liu, T. -Y., & Tsai, Y. -C. (2023). Synthesis and Characterization of Ni–Co–O Nanosheets on Silicon Carbide Microspheres/Graphite Composite for Supercapacitor Applications. C, 9(4), 101. https://doi.org/10.3390/c9040101