A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments
Abstract
:1. Introduction
2. The Property of Carbon Nanotubes, Graphene and Nanodiamond
3. Fabrication Methods and Performance of Strain Sensor on Extreme Conditions
3.1. Fabrication Method of Strain Sensor on Extreme Condition
3.1.1. Fabrication of Carbon Nanotubes Strain Sensors
3.1.2. Fabrication of Graphene Strain Sensors
3.1.3. Fabrication of Nanodiamonds Strain Sensors
3.2. Performance of Strain Sensors in Harsh Environment
3.2.1. Ability to Resist Harsh Environment
3.2.2. Sensitivity
Gauge Factor
Piezoresistive Effect
- d is the piezoelectric charge coefficient (C/N or pC/N)
- Q is the electric charge generated (in coulombs, C, or picocoulombs, pC)
- F is the applied force (in newtons, N)
- The sensitivity of the strain sensor is expressed as Equation (3) [94].
- The sensitivity of the composite sensor is expressed as Equation (4) [97].S = ∆I/I0P (∆R/R0P)
- The sensitivity of the pressure sensor (S) is defined as Equation (5) [111].S = (ΔR/R0)/ΔP
- The sensor sensitivity (S) is calculated by Equation (6) [106].S = (CX − C11)/(RHx − RH11),
3.2.3. Response and Recovery Time
3.2.4. Durability
Carbon Material | Fabrication Method | Property | Sensitivity (GF/S)* | Response Speed | Durability | Ref. |
---|---|---|---|---|---|---|
MWCNT | unidirectional freeze-drying method | 25, 177, and 316 °C | 1.23 | stable | high-strain cyclic compression | [109] |
SWCNT | one-pot method | −70 to 25 °C | 3.76 | — | 1600 cycles | [96] |
MWCNT | a one-pot radical polymerization process | −20 to 80 °C | 1.77 at 25 °C | — | capacitance almost the same (1000 cycles) | [36] |
Graphene | free radical polymerization | −20 to 70 °C | — | — | 88.2% of capacitance retention (6000 cycles) | [112] |
CNT | solution mixing | 60% RH condition | piezoelectric charge coefficient 9.4 pC/N | — | — | [95] |
CNT | freeze drying and thermal imidization technique | 250 °C | 1.4 | response time 50 ms/recovery time 70 ms | 1000 cycles | [113] |
rGO | the conformal coating | −40 °C/25 °C and 50% RH for 20 days | Pulse rate of 75 beats/min | 0.1 s | 2000 times (2 kPa) | [45] |
CNT | wet spinning method | −196 to 100 °C | S = 0.12 | — | long life (1000 cycles) | [94] |
MWCNT/RGO | dip-coating | −30 and 80 °C | — | — | 1000 cycles | [100] |
CNT | a convenient solvent replacement strategy | −60 to 60 °C | 8.5 | 200 ms | 30 days in normal environment | [114] |
rGO/CNT | vacuum filtration process | −40 °C to 200 °C | — | — | 90% capacitance (105 cycles) | [115] |
Graphene/CNT | DIW | humidity/water exposure | 14550.2 (100%) | 170 ms | 10,000 cycles | [99] |
CNT | vacuum-assisted formation of thin CNT networks | RH 35–55%/water exposure | 6–10 | — | — | [116] |
CNT | one-pot | 25–70 °C | S = 20.3 | — | compressive strain (0.1–70%) and loading weight (55–150 g) | [97] |
rGO | chemical reduction, thermal reduction | −60 °C | — | — | 87.5% capacitance(5000 charge/discharge cycles at −20 °C) | [117] |
CNT | CNT suspension was mixed with Ti3C2Tx suspension | −20 to 80 °C | 13.3 (60.3%) | — | 1000 cycles | [118] |
CNT | a direct pyrolysis process | −196 °C | 1.65 | — | 5000 cycles (40%) | [119] |
CNT | the film transfer approach | water | 2.4 | — | — | [93] |
CNT | drying mixing method | hot-humidity/−40 to +50 °C | high sensitivity | — | 150 cycles (50%) | [120] |
SWCNT | dip coating of SWCNTs/chemical polymerization | 144.6 °C | 9.57 | — | 500 cycles (20%) | [121] |
FCNT | a facile spraying method | moisture, acidic, and other harsh environments | 1800 | — | — | [98] |
CNTs/rGO | coating | water | 685.3 (482%) | response/recovery 200 ms | 1000 cycles | [92] |
MWCNT | spray coating | water, pH 13/2 | 69.84 (65–80%), | 60–80 ms | over 1000 cycles | [107] |
CNTs/graphene | freezing-drying | 160 °C | high sensitivity (0.25 kPa−1) | 120 ms | >800 cycles | [111] |
graphene–CNT | thin film using a bar-coating technique | −150 °C to + 150 °C | 118 | — | 5000 cycles | [101] |
GO/RGO | pad dyeing | 22.8 °C to 47.3 °C RH 39–71% | 2.79 (0–50%) | <60 ms | 3000 cycles (10%) | [122] |
graphene | one-pot solution-casting process | pH1–14/humidity | 173.17 (100%) | 2000 cycles (50%) | [108] | |
rGO | dip-coating | humid, sweaty, underwater, −40 °C | −2.08 (0–60%) | 22 ms | 4000 cycles | [102] |
Nanodiamond | coating/in situ polymerization technique | 40 °C for 30 min along with 25 steel balls | 1.4 (40−100%) | — | washing/rubbing | [104] |
Nanodiamond | hydrothermal synthesized method | 11–97% RH | S = 3500, relative humidity 100% | response < 1 s/recovery time∼0.9 s | stable one month | [106] |
Nanodiamond | vacuum-assisted filtration | 100.4 °C | thermal conductivity of 17.43 W/m·K | — | — | [123] |
Nanodiamond | self-assessable | thermal stability | thermal conductivity of 30.99 and 6.34 W/m·K | — | 1000 cycles | [124] |
Ultrananocrystalline diamond | hot filament chemical vapor deposition (HFCVD) and photolithographic and etching processes | 25 °C–300 °C | 9.54 ± 0.32 | — | — | [89] |
Nanodiamond | inkjet printing locally | against harsh media | diamond layer does not hamper the stability of the device | — | — | [105] |
Nanodiamond | a directed patterned growth of NCD film by microwave plasma-enhanced chemical vapour deposition (CVD) | 200 °C | 8 ± 0.5 | — | — | [103] |
4. Carbon Materials Based Strain Sensor on Extreme Temperature Condition
4.1. CNT-Based Strain Sensor on Extreme Temperature Condition
4.2. Graphene Based Strain Sensor on Extreme Temperature Condition
4.3. Nanodiamonds Based Strain Sensor on Extreme Temperature Condition
5. Carbon Materials Based Strain Sensors on Extreme Humidity or Other Harsh Condition
5.1. CNT-Based Strain Sensor on Extreme Humidity or Other Harsh Condition
5.2. Graphene Based Strain Sensor on Extreme Humidity or Other Harsh Condition
5.3. Nanodiamonds Based Strain Sensor on Extreme Humidity or Other Harsh Condition
6. Applications
6.1. Motion Sensing
6.2. Health Monitor
6.3. E-Skin
6.4. Other Application
6.4.1. Intelligent Logistics, Disaster Rescue, and Space Applications
6.4.2. Non-Contact Smart Control
7. Conclusions and Challenges
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S.; Zhao, X.; Fu, Q.; Zhang, T.; Zhu, J.; Hou, F.; Ni, J.; Zhu, C.; Li, T.; Wang, Y. Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 2022, 126, 152–160. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Lei, X.; Peng, Z.; Wan, T.; Maganti, S.; Huang, M.; Murugadoss, V.; Seok, I.; Jiang, Q. Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv. Compos. Hybrid Mater. 2022, 5, 853–863. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Hessien, M.M.; Du, K.; Ibrahim, M.M.; Su, Y.; Mersal, G.A.; Ma, R.; El-Bahy, S.M.; Huang, M. Flexible barium titanate@ polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage. Adv. Compos. Hybrid Mater. 2022, 5, 2106–2115. [Google Scholar] [CrossRef]
- Das, H.S.; Roymahapatra, G.; Kumar, P.; Das, R. Study the effect of ZnO/Cu/ZnO multilayer structure by RF magnetron sputtering for flexible display applications. ES Energy Environ. 2021, 13, 50–56. [Google Scholar] [CrossRef]
- Lai, C.; Wang, Y.; Fu, L.; Song, H.; Liu, B.; Pan, D.; Guo, Z.; Seok, I.; Li, K.; Zhang, H. Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv. Compos. Hybrid Mater. 2022, 5, 536–546. [Google Scholar] [CrossRef]
- Wang, R.; Sun, L.; Zhu, X.; Ge, W.; Li, H.; Li, Z.; Zhang, H.; Huang, Y.; Li, Z.; Zhang, Y.F. Carbon nanotube-based strain sensors: Structures, fabrication, and applications. Adv. Mater. Technol. 2023, 8, 2200855. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Zhu, X.; Peng, Z.; Zhang, G.; Yang, J.; Wang, F.; Zhang, Y.F.; Sun, L.; Wang, R. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv. Sci. 2022, 9, 2105331. [Google Scholar] [CrossRef]
- Shintake, J.; Piskarev, Y.; Jeong, S.H.; Floreano, D. Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv. Mater. Technol. 2018, 3, 1700284. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F.E.; Li, X.; Wang, K.; Cheng, H.; Lin, C.T. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater. 2016, 26, 1322–1329. [Google Scholar] [CrossRef]
- Eom, J.; Jaisutti, R.; Lee, H.; Lee, W.; Heo, J.-S.; Lee, J.-Y.; Park, S.K.; Kim, Y.-H. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 2017, 9, 10190–10197. [Google Scholar] [CrossRef]
- Ramalingame, R.; Lakshmanan, A.; Müller, F.; Thomas, U.; Kanoun, O. Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and PDMS polymer nanocomposite. J. Sens. Sens. Syst. 2019, 8, 87–94. [Google Scholar] [CrossRef]
- You, I.; Kim, B.; Park, J.; Koh, K.; Shin, S.; Jung, S.; Jeong, U. Stretchable E-skin apexcardiogram sensor. Adv. Mater. 2016, 28, 6359–6364. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Lai, D.T.; Wang, Y.; Yap, L.W.; Si, K.J.; Shi, Q.; Jason, N.N.; Sridhar, T.; Uddin, H.; Cheng, W. Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl. Mater. Interfaces 2015, 7, 19700–19708. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Li, W.; Xu, M.; Xu, N.; Chen, P.; Han, M.; Xie, B. Strain sensors based on chromium nanoparticle arrays. Nanoscale 2014, 6, 3930–3933. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 2017, 27, 1700845. [Google Scholar] [CrossRef]
- Duan, S.; Wang, Z.; Zhang, L.; Liu, J.; Li, C. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 2018, 3, 1800020. [Google Scholar] [CrossRef]
- Narongthong, J.; Das, A.; Le, H.H.; Wießner, S.; Sirisinha, C. An efficient highly flexible strain sensor: Enhanced electrical conductivity, piezoresistivity and flexibility of a strongly piezoresistive composite based on conductive carbon black and an ionic liquid. Compos. Part A Appl. Sci. Manuf. 2018, 113, 330–338. [Google Scholar] [CrossRef]
- Seong, M.; Hwang, I.; Lee, J.; Jeong, H.E. A pressure-insensitive self-attachable flexible strain sensor with bioinspired adhesive and active CNT layers. Sensors 2020, 20, 6965. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Li, P.; Li, Q.; Gao, Y.; Qian, B.; Xuan, F. Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors. ACS Appl. Mater. Interfaces 2018, 10, 37760–37766. [Google Scholar] [CrossRef]
- Liu, H.; Gao, H.; Hu, G. Highly sensitive natural rubber/pristine graphene strain sensor prepared by a simple method. Compos. Part B Eng. 2019, 171, 138–145. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Tao, L.-Q.; Pang, Y.; Tian, H.; Ju, Z.-Y.; Wu, X.-M.; Yang, Y.; Ren, T.-L. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 2018, 10, 11524–11530. [Google Scholar] [CrossRef] [PubMed]
- Rycewicz, M.; Ficek, M.; Gajewski, K.; Kunuku, S.; Karczewski, J.; Gotszalk, T.; Wlasny, I.; Wysmołek, A.; Bogdanowicz, R. Low-strain sensor based on the flexible boron-doped diamond-polymer structures. Carbon 2021, 173, 832–841. [Google Scholar] [CrossRef]
- Lee, H.; Seong, B.; Moon, H.; Byun, D. Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes. Rsc Adv. 2015, 5, 28379–28384. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Gong, H.; Zhang, X.; Wang, Y.; Jin, X. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture. ACS Appl. Mater. Interfaces 2019, 11, 40592–40601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ying, C.; Gao, H.; Liu, Q.; Fu, X.; Hu, S. Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Compos. Sci. Technol. 2019, 171, 218–225. [Google Scholar] [CrossRef]
- Kim, H.-J.; Thukral, A.; Yu, C. Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor. ACS Appl. Mater. Interfaces 2018, 10, 5000–5006. [Google Scholar] [CrossRef]
- Xu, W.; Hu, S.; Zhao, Y.; Zhai, W.; Chen, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Nacre-inspired tunable strain sensor with synergistic interfacial interaction for sign language interpretation. Nano Energy 2021, 90, 106606. [Google Scholar] [CrossRef]
- Wrbanek, J.; Fralick, G.; Gonzalez, J. Developing multilayer thin film strain sensors with high thermal stability. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006; p. 4580. [Google Scholar]
- Read, I.; Foote, P. Sea and flight trials of optical fibre Bragg grating strain sensing systems. Smart Mater. Struct. 2001, 10, 1085. [Google Scholar] [CrossRef]
- Zrelli, A.; Ezzedine, T. Design of optical and wireless sensors for underground mining monitoring system. Optik 2018, 170, 376–383. [Google Scholar] [CrossRef]
- Mattmann, C.; Clemens, F.; Tröster, G. Sensor for measuring strain in textile. Sensors 2008, 8, 3719–3732. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mu, L.; Zhang, H.; Ma, S.; Liang, Y.; Ren, L. Flexible strain sensor with ridge-like microstructures for wearable applications. Polym. Adv. Technol. 2022, 33, 96–103. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Y.; Qiu, Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring. Micromachines 2021, 12, 695. [Google Scholar] [CrossRef]
- Wang, J.; Dai, T.; Zhou, Y.; Mohamed, A.; Yuan, G.; Jia, H. Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J. Colloid Interface Sci. 2022, 613, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.; Lee, H.; Park, H.; Kim, J.; Kim, J.W.; Kim, D.S.; Keum, K.; Lee, Y.H.; Ha, J.S. Temperature-tolerant flexible supercapacitor integrated with a strain sensor using an organohydrogel for wearable electronics. Chem. Eng. J. 2022, 450, 138379. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, X.; Zhang, H.; Yu, Q.; Wang, X.; He, S.; Yao, F.; Li, J. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J. Mater. Chem. A 2020, 8, 4447–4456. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Z.; Wang, J.; Gai, L.; Ji, X.; Jiang, H.; Liu, L. Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1 at −40° C through hydrated lithium ion hopping migration. Adv. Funct. Mater. 2021, 31, 2009438. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Liu, J.; Long, Y.; Fang, L.; Wang, Q.; Liu, T. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. J. Mater. Chem. A 2020, 8, 6219–6228. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.-P.; Zang, Q.; Shi, Q.; Wang, Y.; Xiao, Z.; Zhang, Q.; Wang, L. Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors. J. Mater. Chem. A 2022, 10, 11277–11287. [Google Scholar] [CrossRef]
- Rong, Q.; Lei, W.; Huang, J.; Liu, M. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 2018, 8, 1801967. [Google Scholar] [CrossRef]
- Feng, E.; Li, J.; Zheng, G.; Yan, Z.; Li, X.; Gao, W.; Ma, X.; Yang, Z. Long-term anti-freezing active organohydrogel based superior flexible supercapacitor and strain sensor. ACS Sustain. Chem. Eng. 2021, 9, 7267–7276. [Google Scholar] [CrossRef]
- Wang, P.; Wei, W.; Li, Z.; Duan, W.; Han, H.; Xie, Q. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance. J. Mater. Chem. A 2020, 8, 3509–3516. [Google Scholar] [CrossRef]
- Huang, J.; Peng, S.; Gu, J.; Chen, G.; Gao, J.; Zhang, J.; Hou, L.; Yang, X.; Jiang, X.; Guan, L. Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 2020, 7, 2085–2096. [Google Scholar] [CrossRef]
- Ma, D.; Wu, X.; Wang, Y.; Liao, H.; Wan, P.; Zhang, L. Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel. ACS Appl. Mater. Interfaces 2019, 11, 41701–41709. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Yin, J.; Li, N.; Zhang, Z.; Xu, Y.; Zhang, L.; Qin, Z.; Jiao, T. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 2022, 241, 110052. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, T.; Cao, P.; Cui, Y.; Nie, J.; Chen, T.; Yang, H.; Wang, F.; Sun, L. Carbonized silk nanofibers in biodegradable, flexible temperature sensors for extracellular environments. ACS Appl. Mater. Interfaces 2022, 14, 18110–18119. [Google Scholar] [CrossRef]
- Lee, J.-H.; Chen, H.; Kim, E.; Zhang, H.; Wu, K.; Zhang, H.; Shen, X.; Zheng, Q.; Yang, J.; Jeon, S. Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature. Mater. Horiz. 2021, 8, 1488–1498. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Ding, S.; Lei, M.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B. A superhydrophobic and anti-corrosion strain sensor for robust underwater applications. J. Mater. Chem. A 2021, 9, 15282–15293. [Google Scholar] [CrossRef]
- Hu, X.; Yang, F.; Wu, M.; Sui, Y.; Guo, D.; Li, M.; Kang, Z.; Sun, J.; Liu, J. A Super-Stretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics. Adv. Mater. Technol. 2022, 7, 2100769. [Google Scholar] [CrossRef]
- Tsang, A.C.H.; Hui, K.N.; Hui, K.S.; Liu, B.; Yu, L.; Shi, B.; Huang, H. Ink-printed metal/graphene aerogel for glucose electro-oxidation. Battery Energy 2022, 1, 20220004. [Google Scholar] [CrossRef]
- Shao, C.; Qiu, S.; Wu, G.; Cui, B.; Chu, H.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Rambutan-like hierarchically porous carbon microsphere as electrode material for high-performance supercapacitors. Carbon Energy 2021, 3, 361–374. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, C.; Huang, Z.; Zhang, Q.; Chai, X.; Yi, D.; Fang, Y.; Wu, M.; Wang, X.; Tang, Y. Dual-Silica Template-Mediated Synthesis of Nitrogen-Doped Mesoporous Carbon Nanotubes for Supercapacitor Applications. Small 2023, 19, 2205725. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Li, B.; Liu, J.; Shen, Y.; Zhang, M.; Ji, K.; Mao, X.; Sun, R.; Zhou, F. Advances in Carbon-Based Resistance Strain Sensors. ACS Appl. Electron. Mater. 2023, 5, 674–689. [Google Scholar] [CrossRef]
- Afroze, J.D.; Tong, L.; Abden, M.J.; Chen, Y. Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 2023, 6, 18. [Google Scholar] [CrossRef]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Kim, S.; Xiao, X.; Chen, J. Advances in Photoplethysmography for Personalized Cardiovascular Monitoring. Biosensors 2022, 12, 863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bick, M.; Xiao, X.; Chen, G.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Chen, G.; Zhao, X.; Chen, J. Self-powered sensing technologies for human Metaverse interfacing. Joule 2022, 6, 1381–1389. [Google Scholar] [CrossRef]
- Rim, Y.S.; Bae, S.H.; Chen, H.; De Marco, N.; Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016, 28, 4415–4440. [Google Scholar] [CrossRef] [PubMed]
- Araromi, O.A.; Graule, M.A.; Dorsey, K.L.; Castellanos, S.; Foster, J.R.; Hsu, W.-H.; Passy, A.E.; Vlassak, J.J.; Weaver, J.C.; Walsh, C.J. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224. [Google Scholar] [CrossRef]
- Chao, M.; Wang, Y.; Ma, D.; Wu, X.; Zhang, W.; Zhang, L.; Wan, P. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy 2020, 78, 105187. [Google Scholar] [CrossRef]
- Yi, J.; Xianyu, Y. Gold Nanomaterials-Implemented Wearable Sensors for Healthcare Applications. Adv. Funct. Mater. 2022, 32, 2113012. [Google Scholar] [CrossRef]
- Peng, Z.; Shi, J.; Xiao, X.; Hong, Y.; Li, X.; Zhang, W.; Cheng, Y.; Wang, Z.; Li, W.J.; Chen, J. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat. Commun. 2022, 13, 7835. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Wu, Y.; Yi, W.; Pan, Z. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors. Sens. Actuators A Phys. 2021, 327, 112755. [Google Scholar] [CrossRef]
- He, S.; Hong, Y.; Liao, M.; Li, Y.; Qiu, L.; Peng, H. Flexible sensors based on assembled carbon nanotubes. Aggregate 2021, 2, e143. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Q.; Wang, Q.; Zhang, Y.; Wang, P.; Li, Y. A review of wearable carbon-based sensors for strain detection: Fabrication methods, properties, and mechanisms. Text. Res. J. 2023, 93, 2918–2940. [Google Scholar] [CrossRef]
- Liu, F.; Xie, D.; Lv, F.; Shen, L.; Tian, Z.; Zhao, J. Additive Manufacturing of Stretchable Polyurethane/Graphene/Multiwalled Carbon Nanotube-Based Conducting Polymers for Strain Sensing. ACS Appl. Nano Mater. 2023, 6, 4522–4531. [Google Scholar] [CrossRef]
- Chen, H.; Zhuo, F.; Zhou, J.; Liu, Y.; Zhang, J.; Dong, S.; Liu, X.; Elmarakbi, A.; Duan, H.; Fu, Y. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576. [Google Scholar] [CrossRef]
- O’connell, M.J. Carbon Nanotubes: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Maniecki, T.; Shtyka, O.; Mierczynski, P.; Ciesielski, R.; Czylkowska, A.; Leyko, J.; Mitukiewicz, G.; Dubkov, S.; Gromov, D. Carbon nanotubes: Properties, synthesis, and application. Fibre Chem. 2018, 50, 297–300. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Elapolu, M.S.; Tabarraei, A. Mechanical and fracture properties of polycrystalline graphene with hydrogenated grain boundaries. J. Phys. Chem. C 2021, 125, 11147–11158. [Google Scholar] [CrossRef]
- Abergel, D.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261–482. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.-H. Nanodiamonds: Emerging face of future nanotechnology. Carbon 2019, 143, 678–699. [Google Scholar] [CrossRef]
- Mochalin, V.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. In Nano-Enabled Medical Applications; Jenny Stanford Publishing: New York, NY, USA, 2020; pp. 313–350. [Google Scholar]
- Hilding, J.; Grulke, E.A.; George Zhang, Z.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41. [Google Scholar] [CrossRef]
- Szroeder, P.; Sagalianov, I.Y.; Radchenko, T.M.; Tatarenko, V.A.; Prylutskyy, Y.I.; Strupiński, W. Effect of uniaxial stress on the electrochemical properties of graphene with point defects. Appl. Surf. Sci. 2018, 442, 185–188. [Google Scholar] [CrossRef]
- Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319. [Google Scholar] [CrossRef]
- Zeiger, M.; Jäckel, N.; Mochalin, V.N.; Presser, V. Carbon onions for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 3172–3196. [Google Scholar] [CrossRef]
- Mohr, M.; Caron, A.; Herbeck-Engel, P.; Bennewitz, R.; Gluche, P.; Brühne, K.; Fecht, H.-J. Young’s modulus, fracture strength, and Poisson’s ratio of nanocrystalline diamond films. J. Appl. Phys. 2014, 116, 124308. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Zhang, L.; Peng, S.; Weng, Z.; Wang, J.; Wu, L.; Zheng, L. Mechanical exfoliation assisted with carbon nanospheres to prepare a few-layer graphene for flexible strain sensor. Appl. Surf. Sci. 2023, 611, 155649. [Google Scholar] [CrossRef]
- De Marchi, L.; Pretti, C.; Gabriel, B.; Marques, P.A.; Freitas, R.; Neto, V. An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Sci. Total Environ. 2018, 631, 1440–1456. [Google Scholar] [CrossRef] [PubMed]
- Turcheniuk, K.; Mochalin, V.N. Biomedical applications of nanodiamond. Nanotechnology 2017, 28, 252001. [Google Scholar] [CrossRef] [PubMed]
- Petrák, V.; Živcová, Z.V.; Krýsová, H.; Frank, O.; Zukal, A.; Klimša, L.; Kopeček, J.; Taylor, A.; Kavan, L.; Mortet, V. Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 2017, 114, 457–464. [Google Scholar] [CrossRef]
- Wiora, N.; Mertens, M.; Mohr, M.; Bruehne, K.; Fecht, H.-J. Piezoresistivity of n-type conductive ultrananocrystalline diamond. Diam. Relat. Mater. 2016, 70, 145–150. [Google Scholar] [CrossRef]
- Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Rifai, A.; Pirogova, E.; Fox, K. Diamond, carbon nanotubes and graphene for biomedical applications. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–11. [Google Scholar]
- Sun, H.; Bu, Y.; Liu, H.; Wang, J.; Yang, W.; Li, Q.; Guo, Z.; Liu, C.; Shen, C. Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Sci. Bull. 2022, 67, 1669–1678. [Google Scholar] [CrossRef]
- Ahuja, P.; Akiyama, S.; Ujjain, S.K.; Kukobat, R.; Vallejos-Burgos, F.; Futamura, R.; Hayashi, T.; Kimura, M.; Tomanek, D.; Kaneko, K. A water-resilient carbon nanotube based strain sensor for monitoring structural integrity. J. Mater. Chem. A 2019, 7, 19996–20005. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Xu, X.; Hua, L.; Lu, Z. In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 2022, 16, 8161–8171. [Google Scholar] [CrossRef]
- Badatya, S.; Bharti, D.K.; Sathish, N.; Srivastava, A.K.; Gupta, M.K. Humidity sustainable hydrophobic poly(vinylidene fluoride)-carbon nanotubes foam based piezoelectric nanogenerator. ACS Appl. Mater. Interfaces 2021, 13, 27245–27254. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.; Li, M.; Zhu, Y.; Zhang, C.; Zhang, R.; Song, Y. Frost-resistant and ultrasensitive strain sensor based on a tannic acid-nanocellulose/sulfonated carbon nanotube-reinforced polyvinyl alcohol hydrogel. Int. J. Biol. Macromol. 2022, 219, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Song, S.; Li, Q.; Wang, J.; Liu, Z.; Zhang, S.; Zhang, Y. One-pot facile fabrication of covalently cross-linked carbon nanotube/PDMS composite foam as a pressure/temperature sensor with high sensitivity and stability. J. Mater. Chem. C 2021, 9, 15337–15345. [Google Scholar] [CrossRef]
- Gao, J.; Wu, L.; Guo, Z.; Li, J.; Xu, C.; Xue, H. A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit. J. Mater. Chem. C 2019, 7, 4199–4209. [Google Scholar] [CrossRef]
- Zhu, W.-B.; Xue, S.-S.; Zhang, H.; Wang, Y.-Y.; Huang, P.; Tang, Z.-H.; Li, Y.-Q.; Fu, S.-Y. Direct ink writing of a graphene/CNT/silicone composite strain sensor with a near-zero temperature coefficient of resistance. J. Mater. Chem. C 2022, 10, 8226–8233. [Google Scholar] [CrossRef]
- Lee, H.; Jung, G.; Keum, K.; Kim, J.W.; Jeong, H.; Lee, Y.H.; Kim, D.S.; Ha, J.S. A textile-based temperature-tolerant stretchable supercapacitor for wearable electronics. Adv. Funct. Mater. 2021, 31, 2106491. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, M.; Tripathi, C. Fabrication of flexible and sensitive laser-patterned serpentine-structured graphene–CNT paper for strain sensor applications. Appl. Phys. A 2022, 128, 1131. [Google Scholar] [CrossRef]
- Lu, D.; Liao, S.; Chu, Y.; Cai, Y.; Wei, Q.; Chen, K.; Wang, Q. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv. Fiber Mater. 2023, 5, 223–234. [Google Scholar] [CrossRef]
- Kulha, P.; Kromka, A.; Babchenko, O.; Vanecek, M.; Husak, M.; Williams, O.A.; Haenen, K. Nanocrystalline diamond piezoresistive sensor. Vacuum 2009, 84, 53–56. [Google Scholar] [CrossRef]
- Rehman, A.; Houshyar, S.; Reineck, P.; Padhye, R.; Wang, X. Multifunctional smart fabrics through nanodiamond-polyaniline nanocomposites. ACS Appl. Polym. Mater. 2020, 2, 4848–4855. [Google Scholar] [CrossRef]
- Bähr, M.; Käpplinger, I.; Pobedinskas, P.; Frank, T.; Grün, A.; Haenen, K.; Ortlepp, T. Pressure Sensor Devices Featuring a Chemical Passivation Made of a Locally Synthesized Diamond Layer. Phys. Status Solidi (a) 2023, 220, 2200309. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Ding, X.; Yu, X.; Zhao, X.; Chen, X. Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sens. Actuators B Chem. 2020, 317, 128168. [Google Scholar] [CrossRef]
- Ding, Y.-R.; Xue, C.-H.; Fan, Q.-Q.; Zhao, L.-L.; Tian, Q.-Q.; Guo, X.-J.; Zhang, J.; Jia, S.-T.; An, Q.-F. Fabrication of superhydrophobic conductive film at air/water interface for flexible and wearable sensors. Chem. Eng. J. 2021, 404, 126489. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, Y.; Wang, S.; Sun, H.; Yue, Y.; Xu, X.; Mei, C.; Xiao, H.; Fu, Q.; Han, J. Interface design of stretchable and environment-tolerant strain sensors with hierarchical nanocellulose-supported graphene nanocomplexes. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107313. [Google Scholar] [CrossRef]
- Ma, S.; Jia, T.; Wang, C.; Xu, H.; Zhou, H.; Zhao, X.; Chen, C.; Wang, D.; Liu, C.; Qu, C. Anisotropic MWCNT/polyimide aerogels with multifunctional EMI shielding and strain sensing capabilities. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107208. [Google Scholar] [CrossRef]
- Barlian, A.A.; Park, W.-T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Semiconductor piezoresistance for microsystems. Proc. IEEE 2009, 97, 513–552. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Zhang, Y.; Cui, C.; Li, A.; Wang, W.; Guo, R.; Qin, W.; Ren, E.; Xiao, H.; Zhou, M. Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor. ACS Sustain. Chem. Eng. 2021, 9, 14029–14039. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, H.; Zhang, K.; Shao, J.; Qiu, J.; Wu, J.; Wu, Y.; Yan, L. A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte. Nanoscale 2021, 13, 3010–3018. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; Zheng, Y.; Zhai, Y.; Liu, X.; Liu, C.; Mi, L.; Guo, Z.; Shen, C. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 42594–42606. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, Y.; Jiao, S.; Wang, C.; Jia, Y.; Dai, K.; Zheng, G.; Liu, C.; Wan, P.; Shen, C. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 2021, 31, 2101696. [Google Scholar] [CrossRef]
- Zang, X.; Zhang, R.; Zhen, Z.; Lai, W.; Yang, C.; Kang, F.; Zhu, H. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy 2017, 40, 224–232. [Google Scholar] [CrossRef]
- Nankali, M.; Nouri, N.M.; Navidbakhsh, M.; Malek, N.G.; Amindehghan, M.A.; Shahtoori, A.M.; Karimi, M.; Amjadi, M. Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: The effect of environmental factors on strain sensing performance. J. Mater. Chem. C 2020, 8, 6185–6195. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Q.; Wang, L.; Gao, G.; Lu, W. Low-temperature-resistant flexible solid supercapacitors based on organohydrogel electrolytes and microvoid-incorporated reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 2021, 13, 12432–12441. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; He, P.; Wang, S.; Ling, K.; Liu, L.; Lei, P.; Huang, X.; Zhao, H.; Cao, J. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883. [Google Scholar] [CrossRef]
- Zhu, S.; Peng, S.; Qiang, Z.; Ye, C.; Zhu, M. Cryogenic-environment resistant, highly elastic hybrid carbon foams for pressure sensing and electromagnetic interference shielding. Carbon 2022, 193, 258–271. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Feng, H.; Wang, C.; Rong, Q.; Liu, M. Conductive, sensing stable and mechanical robust silicone rubber composites for large-strain sensors. Polym. Compos. 2021, 42, 6394–6402. [Google Scholar] [CrossRef]
- Sadi, M.S.; Kumpikaitė, E. Highly conductive composites using polypyrrole and carbon nanotubes on polydopamine functionalized cotton fabric for wearable sensing and heating applications. Cellulose 2023, 30, 7981–7999. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Zhao, Z.; Sun, W.; Zhao, G.; Liu, J.; Xu, J.; Li, Y.; Liu, Z.; Li, Y. Calotropis gigantea Fiber-Based Sensitivity-Tunable Strain Sensors with Insensitive Response to Wearable Microclimate Changes. Adv. Fiber Mater. 2023, 5, 1378–1391. [Google Scholar] [CrossRef]
- Jiao, E.; Wu, K.; Liu, Y.; Zhang, H.; Zheng, H.; Xu, C.-a.; Shi, J.; Lu, M. Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond. J. Mater. Sci. 2022, 57, 2584–2596. [Google Scholar] [CrossRef]
- Wang, X.; Cao, W.; Su, Z.; Zhao, K.; Dai, B.; Gao, G.; Zhao, J.; Zhao, K.; Wang, Z.; Sun, T. Fabrication of High Thermal Conductivity Nanodiamond/Aramid Nanofiber Composite Films with Superior Multifunctional Properties. ACS Appl. Mater. Interfaces 2023, 15, 27130–27143. [Google Scholar] [CrossRef]
- Li, L.; Bai, Y.; Li, L.; Wang, S.; Zhang, T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 2017, 29, 1702517. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Lin, L.; Wang, H.; Huang, X.; Xue, H.; Gao, J. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 2019, 362, 89–98. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Cai, C.; Liu, K.; Liu, W.; Zhang, M.; Du, H.; Si, C.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Wu, Z.; Luo, J.; Li, B.; Huang, X.; Xue, H.; Gao, J. Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. Compos. Part B Eng. 2019, 176, 107358. [Google Scholar] [CrossRef]
- Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X.; Razal, J.M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249. [Google Scholar] [CrossRef]
- Qu, R.; Zhang, W.; Liu, N.; Zhang, Q.; Liu, Y.; Li, X.; Wei, Y.; Feng, L. Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: Dynamic catalysis under natural light. ACS Sustain. Chem. Eng. 2018, 6, 8019–8028. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Q.; Du, W.; Li, C.; Shi, G. Transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl. Mater. Interfaces 2018, 10, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, C.; Wu, X.; Zhang, X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J. Mater. Chem. A 2017, 5, 9824–9832. [Google Scholar] [CrossRef]
- Pang, Y.; Yang, Z.; Han, X.; Jian, J.; Li, Y.; Wang, X.; Qiao, Y.; Yang, Y.; Ren, T.-L. Multifunctional mechanical sensors for versatile physiological signal detection. ACS Appl. Mater. Interfaces 2018, 10, 44173–44182. [Google Scholar] [CrossRef]
- Houshyar, S.; Nayak, R.; Padhye, R.; Shanks, R.A. Fabrication and characterization of nanodiamond coated cotton fabric for improved functionality. Cellulose 2019, 26, 5797–5806. [Google Scholar] [CrossRef]
- Houshyar, S.; Padhye, R.; Shanks, R.A.; Nayak, R. Nanodiamond fabrication of superhydrophilic wool fabrics. Langmuir 2019, 35, 7105–7111. [Google Scholar] [CrossRef] [PubMed]
Carbon Material | Electrical Conductivity | Thermal Conductivity | Young’s Modulus | Crystal Lattice Parameters | Band Gap |
---|---|---|---|---|---|
CNT | 0.17–2.0 × 107 S m−1 | 6600 Wm−1K−1 | 270 to 950 GPa | sp2 1.7 nm | ~0.2 eV |
Graphene | 2248108 S m−1 | 5000 Wm−1K−1 | 853.3 ± 0.9 Gpa | sp2 0.25 nm | 1.25 eV |
Nanodiamond | 400 S m−1 | 2000 Wm−1K−1 | 880 ± 90 GP | sp3 2 to 3 nm | ~5.5 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lim, E.G.; Hoettges, K.; Song, P. A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C 2023, 9, 108. https://doi.org/10.3390/c9040108
Wang X, Lim EG, Hoettges K, Song P. A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C. 2023; 9(4):108. https://doi.org/10.3390/c9040108
Chicago/Turabian StyleWang, Xiaoyan, Eng Gee Lim, Kai Hoettges, and Pengfei Song. 2023. "A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments" C 9, no. 4: 108. https://doi.org/10.3390/c9040108
APA StyleWang, X., Lim, E. G., Hoettges, K., & Song, P. (2023). A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C, 9(4), 108. https://doi.org/10.3390/c9040108