Recovery of Pd(II) Ions from Aqueous Solutions Using Activated Carbon Obtained in a Single-Stage Synthesis from Cherry Seeds
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Synthesis Parameters on the Surface Area
3.2. Effect of Synthesis Parameters on the Point of Zero Charge
3.3. DSC-TGA Analysis of Cherry Pits
3.4. FT-IR Analysis of Activated Carbon
3.5. Adsorption Properties of Carbon
3.6. SEM Images and EDS Analysis
4. Discussion
5. Conclusions
- The temperature and time of the synthesis have an immense effect on the properties of the resulting carbon. Increasing the synthesis temperature from 500 °C to 600 °C resulted in drastically degrading the carbon specific area. Synthesis parameters also significantly affected the PZC of the obtained carbon—the PZC decreased with longer synthesis time and increased with higher synthesis temperatures. Elevated synthesis temperatures also negatively affected the presence of the functional groups in the obtained carbon, which was shown by the FT-IR tests;
- Adsorption tests showed a near-linear correlation between the adsorption capacity of the carbon and equilibrium Pd(II) concentrations. The highest value for adsorption capacity we obtained was 15.6 mg/g, which was for carbon synthesized at 400 °C for 3 h. Carbon synthesized in elevated temperatures showed worse adsorption properties, thus corresponding with other tests we conducted (such as FT-IR showing less functional groups for those carbons). It is very likely that further optimization of synthesis parameters will result in AC that will outperform our sample synthesized at 400 °C;
- Pd(II) adsorption from aqueous solutions was carried out, where several different equilibrium forms were present. In the Pd(II)— Cl−—H2O system at pH = 1, the most dominant form is [PdCl2(H2O)2] at approximately 55.87%. Since the activated carbon surface is negatively charged at pH = 1 (as concluded by determination of the PZC), it is suggested that this complex is preferably adsorbed as all other complexes are negatively charged and thus will be repelled from AC. The only exception would be a [PdCl(H2O)3]+ complex, which will be attracted to negatively charged AC; however, it has a miniscule share of about 3.37% [50].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, C.Y.; Aroua, M.K.; Daud, W.M.A.W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 2007, 52, 403–415. [Google Scholar] [CrossRef]
- Li, L.; Quinlivan, P.A.; Knappe, D.R. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 2002, 40, 2085–2100. [Google Scholar] [CrossRef]
- Mpinga, C.N.; Bradshaw, S.M.; Akdogan, G.; Snyders, C.A.; Eksteen, J.J. The extraction of Pt, Pd and Au from an alkaline cyanide simulated heap leachate by granular activated carbon. Miner. Eng. 2014, 55, 11–17. [Google Scholar] [CrossRef]
- Chand, R.; Watari, T.; Inoue, K.; Kawakita, H.; Luitel, H.N.; Parajuli, D.; Torikai, T.; Yada, M. Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner. Eng. 2009, 22, 1277–1282. [Google Scholar] [CrossRef]
- Lo, S.F.; Wang, S.Y.; Tsai, M.J.; Lin, L.D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. [Google Scholar] [CrossRef]
- Guo, M.; Qiu, G.; Song, W. Poultry litter-based activated carbon for removing heavy metal ions in water. Waste Manag. 2010, 30, 308–315. [Google Scholar] [CrossRef]
- Guo, L.; Gao, H.; Guan, Q.; Hu, H.; Deng, J.; Liu, J.; Liu, F.; Wu, Q. Substituent effects of the backbone in α-diimine palladium catalysts on homo- and copolymerization of ethylene with methyl acrylate. Organometallics 2012, 31, 6054–6062. [Google Scholar] [CrossRef]
- Paul, S.; Clark, J.H. Structure-activity relationship between some novel silica supported palladium catalysts: A study of the Suzuki reaction. J. Mol. Catal. A Chem. 2004, 215, 107–111. [Google Scholar] [CrossRef]
- Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum group metals: A review of resources, production and usage with a focus on catalysts. Resources 2021, 10, 93. [Google Scholar] [CrossRef]
- Corti, C.W. The 23rd Santa Fe symposium on jewelry manufacturing technology. Platin. Met. Rev. 2009, 53, 198–202. [Google Scholar] [CrossRef]
- Xu, B.; Chen, Y.; Zhou, Y.; Zhang, B.; Liu, G.; Li, Q.; Yang, Y.; Jiang, T. A Review of Recovery of Palladium from the Spent Automobile Catalysts. Metals 2022, 12, 533. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Birinci, E.; Gülfen, M.; Aydin, A.O. Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Hydrometallurgy 2009, 95, 15–21. [Google Scholar] [CrossRef]
- Sandarenu, P.C.; Samaraweera, G.C. Export market of coconut shell charcoal and coconut shell activated carbon in Sri Lanka: Drivers and bottlenecks. In Proceedings of the Greener Agriculture and Environment through Convergence of Technologies, University of Ruhuna, Matara, Sri Lanka, 19 January 2017. [Google Scholar]
- Sujiono, E.H.; Zabrian, D.; Zharvan, V.; Humairah, N.A. Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results Chem. 2022, 4, 100291. [Google Scholar] [CrossRef]
- Lutfi, M.; Hanafi; Susilo, B.; Prasetyo, J.; Sandra; Prajogo, U. Characteristics of activated carbon from coconut shell (Cocos nucifera) through chemical activation process. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012134. [Google Scholar] [CrossRef]
- Keppetipola, N.M.; Dissanayake, M.; Dissanayake, P.; Karunarathne, B.; Dourges, M.A.; Talaga, D.; Servant, L.; Olivier, C.; Toupance, T.; Uchida, S.; et al. Graphite-type activated carbon from coconut shell: A natural source for eco-friendly non-volatile storage devices. RSC Adv. 2021, 11, 2854–2865. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.B.; Borges, S.M.S.; Do Carmo Rangel, M.; Marchetti, S.G. Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass. J. Braz. Chem. Soc. 2013, 24, 344–354. [Google Scholar] [CrossRef]
- Kwasi Opoku, B.; Isaac, A.; Akrofi Micheal, A.; Kwesi Bentum, J.; Paul Muyoma, W. Characterization of Chemically Activated Carbons Produced from Coconut and Palm Kernel Shells Using SEM and FTIR Analyses. Am. J. Appl. Chem. 2021, 9, 90. [Google Scholar] [CrossRef]
- Le Van, K.; Luong Thi, T.T. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog. Nat. Sci. 2014, 24, 191–198. [Google Scholar] [CrossRef]
- Ahiduzzaman, M.; Sadrul Islam, A.K.M. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. Springerplus 2016, 5, 1248. [Google Scholar] [CrossRef]
- Alam, M.M.; Hossain, M.A.; Hossain, M.D.; Johir, M.A.H.; Hossen, J.; Rahman, M.S.; Zhou, J.L.; Hasan, A.T.M.K.; Karmakar, A.K.; Ahmed, M.B. The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes 2020, 8, 203. [Google Scholar] [CrossRef]
- Chafidz, A.; Astuti, W.; Hartanto, D.; Mutia, A.S.; Sari, P.R. Preparation of activated carbon from banana peel waste for reducing air pollutant from motorcycle muffler. MATEC Web Conf. 2018, 154, 01021. [Google Scholar] [CrossRef]
- Da Costa, W.K.O.C.; Gavazza, S.; Duarte, M.M.M.B.; Freitas, S.K.B.; de Paula, N.T.G.; Paim, A.P.S. Preparation of Activated Carbon from Sugarcane Bagasse and Removal of Color and Organic Matter from Real Textile Wastewater. Water Air Soil Pollut. 2021, 232, 358. [Google Scholar] [CrossRef]
- Kakom, S.M.; Abdelmonem, N.M.; Ismail, I.M.; Refaat, A.A. Activated Carbon from Sugarcane Bagasse Pyrolysis for Heavy Metals Adsorption. Sugar Tech 2022, 25, 619–629. [Google Scholar] [CrossRef]
- Kaushik, A.; Basu, S.; Singh, K.; Batra, V.S.; Balakrishnan, M. Activated carbon from sugarcane bagasse ash for melanoidins recovery. J. Environ. Manag. 2017, 200, 29–34. [Google Scholar] [CrossRef]
- Bachrun, S.; Ayurizka, N.; Annisa, S.; Arif, H. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas. IOP Conf. Ser. Mater. Sci. Eng. 2016, 105, 012027. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Guo, L. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 2010, 31, 233–238. [Google Scholar] [CrossRef]
- Zanzi, R.A.; Petrov, N.; Budinova, T.; Razvigorova, M.; Minkova, V.; Zanzi, R.; Björnbom, E. Preparation of activated carbons from cherry stones, apricot stones and grape seeds for removal of metal ions from water. In Proceedings of the 2nd OlleIndstorm Symposium on Renewable energy-Bioenergy, Stockholm, Sweden, 1 July 1999. [Google Scholar]
- Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Appl. Surf. Sci. 2006, 252, 5967–5971. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 2007, 21, 2942–2949. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.M.N. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Chen, J.P.; Wu, S. Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties. Langmuir 2004, 20, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Neme, I.; Gonfa, G.; Masi, C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon 2022, 8, e11940. [Google Scholar] [CrossRef] [PubMed]
- Pak, S.H.; Jeon, M.J.; Jeon, Y.W. Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal. Int. Biodeterior. Biodegrad. 2016, 113, 195–200. [Google Scholar] [CrossRef]
- Diao, Y.; Walawender, W.P.; Fan, L.T. Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresour. Technol. 2002, 81, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wan Ibrahim, W.M.H.; Mohamad Amini, M.H.; Sulaiman, N.S.; Wan Abdul Kadir, W.R. Evaluation of alkaline-based activated carbon from Leucaena Leucocephala produced at different activation temperatures for cadmium adsorption. Appl. Water Sci. 2021, 11, 1. [Google Scholar] [CrossRef]
- Geng, Z.; Xiao, Q.; Lv, H.; Li, B.; Wu, H.; Lu, Y.; Zhang, C. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture. Sci. Rep. 2016, 6, 30049. [Google Scholar] [CrossRef]
- Wojnicki, M. Kinetic studies of the sorption process of Pd(II) chloride complex ions from diluted aqua solutions using commercially available activated carbon. React. Kinet. Mech. Catal. 2017, 122, 177–192. [Google Scholar] [CrossRef]
- Hanum, F.; Bani, O.; Wirani, L.I. Characterization of activated carbon from rice husk by HCl activation and its application for lead (Pb) removal in car battery wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2017, 180, 012151. [Google Scholar] [CrossRef]
- Askari, R.; Mohammadi, F.; Moharrami, A.; Afshin, S.; Rashtbari, Y.; Vosoughi, M.; Dargahi, A. Synthesis of activated carbon from cherry tree waste and its application in removing cationic red 14 dye from aqueous environments. Appl. Water Sci. 2023, 13, 90. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Görgüç, A.; Karaaslan, M.; Vardin, H.; Ersus Bilek, S.; Uygun, Ö.; Bircan, C. Sour Cherry By-products: Compositions, Functional Properties and Recovery Potentials–A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3549–3563. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 March 2023).
- Wojnicki, M.; Socha, R.P.; Pȩdzich, Z.; Mech, K.; Tokarski, T.; Fitzner, K. Palladium(II) Chloride Complex Ion Recovery from Aqueous Solutions Using Adsorption on Activated Carbon. J. Chem. Eng. Data 2018, 63, 702–711. [Google Scholar] [CrossRef]
- Saad, E.; Mostafa, M. Pyrolysis characteristics and kinetics parameters determination of biomass fuel powders by differential thermal gravi-metric analysis tga/dtg. Energy Convers. Manag. 2014, 85, 165. [Google Scholar] [CrossRef]
- Buettner, L.C.; Leduc, C.A.; Glover, T.G. Instantaneous ignition of activated carbon. Ind. Eng. Chem. Res. 2014, 53, 15793–15797. [Google Scholar] [CrossRef]
- Du, J.; Dou, B.; Zhang, H.; Wu, K.; Gao, D.; Wang, Y.; Chen, H.; Xu, Y. Non-isothermal kinetics of biomass waste pyrolysis by TG-MS/DSC. Carbon Capture Sci. Technol. 2023, 6, 100097. [Google Scholar] [CrossRef]
- Abbas, Q.; Mirzaeian, M.; Ogwu, A.A.; Mazur, M.; Gibson, D. Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors. Int. J. Hydrogen Energy 2020, 45, 13586–13595. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. J. Chem. Eng. 2019, 366, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Wojnicki, M.; Fitzner, K. Kinetic modeling of the adsorption process of Pd(II) complex ions onto activated carbon. React. Kinet. Mech. Catal. 2018, 124, 453–468. [Google Scholar] [CrossRef]
- Mansour, A.T.; Alprol, A.E.; Abualnaja, K.M.; El-Beltagi, H.S.; Ramadan, K.M.A.; Ashour, M. Dried Brown Seaweed’s Phytoremediation Potential for Methylene Blue Dye Removal from Aquatic Environments. Polymers 2022, 14, 1375. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Rocher, V.; Kyriakou, G.; Greenway, G.M. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. J. Ind. Eng. Chem. 2014, 20, 3467–3473. [Google Scholar] [CrossRef]
- Petrović, J.; Ercegović, M.; Simić, M.; Kalderis, D.; Koprivica, M.; Milojković, J.; Radulović, D. Novel Mg-doped pyro-hydrochars as methylene blue adsorbents: Adsorption behavior and mechanism. J. Mol. Liq. 2023, 376, 121424. [Google Scholar] [CrossRef]
- Podborska, A.; Wojnicki, M. Spectroscopic and theoretical analysis of Pd2+–Cl−–H2O system. J. Mol. Struct. 2017, 1128, 117–122. [Google Scholar] [CrossRef]
- Kasaini, H.; Goto, M.; Furusaki, S. Selective separation of Pd(II), Rh(III), and Ru(III) ions from a mixed chloride solution using activated carbon pellets. Sep. Sci. Technol. 2000, 35, 1307–1327. [Google Scholar] [CrossRef]
- Sharififard, H.; Soleimani, M.; Ashtiani, F.Z. Evaluation of activated carbon and bio-polymer modified activated carbon performance for palladium and platinum removal. J. Taiwan Inst. Chem. Eng. 2012, 43, 696–703. [Google Scholar] [CrossRef]
- Di Natale, F.; Orefice, M.; La Motta, F.; Erto, A.; Lancia, A. Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Sep. Purif. Technol. 2017, 174, 183–193. [Google Scholar] [CrossRef]
Sample Number | Synthesis Temperature [°C] | Synthesis Time [h] |
---|---|---|
1 | 400 | 1 |
2 | 400 | 2 |
3 | 400 | 3 |
4 | 500 | 3 |
5 1 | 500 | 3 |
6 | 600 | 3 |
7 | 700 | 3 |
Sample Number | Mixture Temperature [°C] | K [(mg/g)(L/mol)n] | n |
---|---|---|---|
20 | 0.22 | 1.69 | |
3 | 30 | 0.24 | 1.76 |
40 | 0.80 | 1.41 | |
50 | 1.73 | 1.34 | |
20 | 0.28 | 1.44 | |
4 | 30 | 0.46 | 1.27 |
40 | 0.29 | 1.41 | |
50 | 0.31 | 1.64 | |
20 | 0.49 | 1.36 | |
6 | 30 | 0.72 | 1.18 |
40 | 0.67 | 1.25 | |
50 | 0.31 | 1.69 |
Point Number | Mass % | |||||||
---|---|---|---|---|---|---|---|---|
C | N | O | Mg | Si | P | K | Ca | |
001 | 70.48 | 4.31 | 22.42 | 0.62 | 0.02 | 0.87 | 0.92 | 0.36 |
002 | 90.09 | ND | 9.27 | 0.02 | 0.33 | 0.06 | 0.18 | 0.04 |
003 | 81.33 | 2.41 | 14.67 | 0.20 | 0.36 | 0.45 | 0.32 | 0.26 |
004 | 85.34 | ND | 12.76 | 0.30 | 0.39 | 0.50 | 0.54 | 0.16 |
Point Number | Mass % | ||||||
---|---|---|---|---|---|---|---|
C | N | O | Si | P | Cl | Pd | |
001 | 69.58 | 8.29 | 20.83 | 0.29 | 0.11 | 0.84 | 0.05 |
002 | 56.73 | ND | 26.58 | 0.52 | 0.18 | 0.62 | 15.38 |
003 | 57.98 | 11.40 | 14.94 | 0.13 | 0.89 | 4.66 | 9.99 |
004 | 75.89 | 5.52 | 8.22 | 1.25 | 1.28 | 7.24 | 0.61 |
Reference | Maximum Adsorption Capacity [mg/g] | pH | Adsorbent Dose [g/L] | Initial Pd(II) Concentration [M] | Temperature [°C] |
---|---|---|---|---|---|
This study (Sample no. 3) | 15.6 | 1 | 1.67 | 0.002 | 50 |
This study (Sample no. 4) | 6.69 | 1 | 1.67 | 0.002 | 50 |
This study (Sample no. 5) | 4.37 | 1 | 1.67 | 0.001 | 50 |
[55] | 27 | 1 | 5–7.5 | 0.0018 | 25 |
[56] | 35.7 | 2 | 6 | 0.0009 | 45 |
[57] | 51.6 | 1 | 0.61 | 0.1 | 20 |
[57] | 41.4 | 1 | 0.7 | 0.1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michałek, T.; Wojtaszek, K.; Małecki, S.; Kornaus, K.; Wandor, S.; Druciarek, J.; Fitzner, K.; Wojnicki, M. Recovery of Pd(II) Ions from Aqueous Solutions Using Activated Carbon Obtained in a Single-Stage Synthesis from Cherry Seeds. C 2023, 9, 46. https://doi.org/10.3390/c9020046
Michałek T, Wojtaszek K, Małecki S, Kornaus K, Wandor S, Druciarek J, Fitzner K, Wojnicki M. Recovery of Pd(II) Ions from Aqueous Solutions Using Activated Carbon Obtained in a Single-Stage Synthesis from Cherry Seeds. C. 2023; 9(2):46. https://doi.org/10.3390/c9020046
Chicago/Turabian StyleMichałek, Tomasz, Konrad Wojtaszek, Stanisław Małecki, Kamil Kornaus, Szymon Wandor, Julia Druciarek, Krzysztof Fitzner, and Marek Wojnicki. 2023. "Recovery of Pd(II) Ions from Aqueous Solutions Using Activated Carbon Obtained in a Single-Stage Synthesis from Cherry Seeds" C 9, no. 2: 46. https://doi.org/10.3390/c9020046
APA StyleMichałek, T., Wojtaszek, K., Małecki, S., Kornaus, K., Wandor, S., Druciarek, J., Fitzner, K., & Wojnicki, M. (2023). Recovery of Pd(II) Ions from Aqueous Solutions Using Activated Carbon Obtained in a Single-Stage Synthesis from Cherry Seeds. C, 9(2), 46. https://doi.org/10.3390/c9020046