Pore Structure and Gas Diffusion Features of Ionic Liquid-Derived Carbon Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of the Carbon/Vycor® Composite Membranes
2.3. Evaluation of Permeation Properties of the Composite Carbon/Vycor® Membranes
3. Results
3.1. Gas Permeation Experimental Results
3.2. Elucidation of the Porous Structure of Carbon/Vycor® Membranes by Performing N2 Adsorption Isotherms at 77K
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burggraaf, A.J. General overview, trends and proscpects. In Fundamentals of Inorganic Membrane Science and Technology; Burggraaf, A.J., Cot, L., Eds.; Membrane Science and Technology Series #4; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; Chapter 1; pp. 1–20. [Google Scholar]
- Leimert, J.M.; Karl, J.; Dillig, M. Dry reforming of methane using a nickel membrane reactor. Processes 2017, 5, 82. [Google Scholar] [CrossRef]
- Paturzo, L.; Gallucci, F.; Basile, A.; Vitulli, G.; Pertici, P. An Ru-based catalytic membrane reactor for dry reforming of methane—Its catalytic performance compared with tubular packed bed reactors. Catal. Today 2003, 82, 57–65. [Google Scholar] [CrossRef]
- Uhlhorn, R.J.R.; Keizer, K.; Burggraaf, A.J. Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes. J. Membr. Sci. 1992, 66, 271–287. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Zhou, S.Y.; Fan, Y.Q.; Xu, N.P.; He, Y.H. Preparation of dense Pd composite membranes on porous Ti-Al alloy support by electroless plating. J. Membr. Sci. 2012, 387–388, 24–29. [Google Scholar] [CrossRef]
- Hashim, S.S.; Mohamed, A.R.; Bhatia, S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew. Sustain. Energy Rev. 2011, 15, 1284–1293. [Google Scholar] [CrossRef]
- Merritt, A.; Rajagopalan, R.; Foley, H.C. High performance nanoporous carbon membranes for air separation. Carbon 2007, 45, 1267–1278. [Google Scholar] [CrossRef]
- Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P. Current challenges in membrane separation of CO2 from natural gas: A review. Int. J. Greenhouse Gas Control 2013, 17, 46–65. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-based technologies for biogas upgrading: A review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- Baker, R.W.; Freeman, B.; Kniep, J.; Wei, X.; Merkel, T. CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs. Int. J. Greenh. Gas Control. 2017, 66, 35–47. [Google Scholar] [CrossRef]
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Ku, A.Y.; Kulkarni, P.; Shisler, R.; Wei, W. Membrane performance requirements for carbon dioxide capture using hydrogen-selective membranes in integrated gasification combined cycle (IGCC) power plants. J. Membr. Sci. 2011, 367, 233–239. [Google Scholar] [CrossRef]
- Stoitsas, K.A.; Gotzias, A.; Kikkinides, E.S.; Steriotis, T.A.; Kanellopoulos, N.K.; Stoukides, M.; Zaspalis, V.T. Porous ceramic membranes for propane–propylene separation via the π-complexation mechanism: Unsupported systems. Micropor. Mesopor. Mater. 2005, 78, 235–243. [Google Scholar] [CrossRef]
- Labropoulos, A.I.; Athanasekou, C.P.; Kakizis, N.K.; Sapalidis, A.A.; Pilatos, G.I.; Romanos, G.E.; Kanellopoulos, N.K. Experimental investigation of the transport mechanism of several gases during the CVD post-treatment of nanoporous membranes. Chem. Eng. J. 2014, 255, 377–393. [Google Scholar] [CrossRef]
- Romanos, G.E.; Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K.; Dionysiou, D.D.; Likodimos, V.; Falaras, P. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J. Hazard. Mater. 2012, 211–212, 304–316. [Google Scholar] [CrossRef]
- Hayashi, J.I.; Yamamoto, M.; Kusakabe, K.; Morooka, S. Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp‘ODA polyimide. Ind. Eng. Chem. Res. 1997, 36, 2134–2140. [Google Scholar] [CrossRef]
- Kocherginsky, N.M.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Separ. Purif. Techn. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- de los Rios, A.P.; Hernandez-Fernandez, F.J.; Tomas-Alonso, F.; Palacios, J.M.; Gomez, D.; Rubio, M.; Villora, G. A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids. J. Membr. Sci. 2007, 300, 88–94. [Google Scholar] [CrossRef]
- Tzialla, O.; Labropoulos, A.; Panou, A.; Sanopoulou, M.; Kouvelos, E.; Athanasekou, C.; Beltsios, K.; Likodimos, V.; Falaras, P.; Romanos, G. Phase behavior and permeability of Alkyl-Methyl-Imidazolium Tricyanomethanide ionic liquids supported in nanoporous membranes. Sep. Purif. Technol. 2014, 135, 22–34. [Google Scholar] [CrossRef]
- Karousos, D.S.; Labropoulos, A.I.; Sapalidis, A.; Kanellopoulos, N.K.; Iliev, B.; Schubert, T.J.S.; Romanos, G.E. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chem. Eng. J. 2017, 313, 777–790. [Google Scholar] [CrossRef]
- Tzialla, O.; Veziri, C.; Papatryfon, X.; Beltsios, K.G.; Labropoulos, A.; Iliev, B.; Adamova, G.; Schubert, T.J.S.; Kroon, M.C.; Francisco, M.; et al. Zeolite imidazolate framework—Ionic liquid hybrid membranes for highly selective CO2 separation. J. Phys. Chem. C 2013, 117, 18434–18440. [Google Scholar] [CrossRef]
- Friess, K.; Izák, P.; Kárászová, M.; Pasichnyk, M.; Lanč, M.; Nikolaeva, D.; Luis, P.; Jansen, J.C. A review on ionic liquid gas separation membranes. Membranes 2021, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Romanos, G.E.; Vangeli, O.C.; Stefanopoulos, K.L.; Kouvelos, E.P.; Papageorgiou, S.K.; Favvas, E.P.; Kanellopoulos, N.K. Methods of evaluating pore morphology in hybrid organic–inorganic porous materials. Micropor. Mesopor. Mater. 2009, 120, 53–61. [Google Scholar] [CrossRef]
- Lei, Z.; Dai, C.; Chen, B. Gas solubility in ionic liquids. Chem. Rev. 2014, 114, 1289–1326. [Google Scholar] [CrossRef]
- Ramdin, M.; de Loos, T.W.; Vlugt, T.J.H. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Cui, G.; Zheng, J.; Luo, X.; Lin, W.; Ding, F.; Li, H.; Wang, C. Tuning anion-functionalized ionic liquids for improved SO2 capture. Angew. Chem. Int. Ed. 2013, 52, 10620–10624. [Google Scholar] [CrossRef]
- Steel, K.M.; Koros, W.J. An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon 2005, 43, 1843–1856. [Google Scholar] [CrossRef]
- Favvas, E.P.; Kouvelos, E.P.; Romanos, G.E.; Pilatos, G.I.; Mitropoulos, A.C.; Kanellopoulos, N.K. Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J. Porous Mater. 2008, 15, 625–633. [Google Scholar] [CrossRef]
- Foley, H.C. Carbogenic molecular sieves: Synthesis, properties and applications. Micropor. Mater. 1995, 4, 407–433. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kwon, Y.; Kim, D.; Park, H.; Cho, Y.H.; Nam, S.-E.; Park, Y.-I. A review on polymer precursors of carbon molecular sieve membranes for olefin/paraffin separation. Membranes 2021, 11, 482. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F. Carbon membranes for gas separation processes: Recent progress and future perspective. J. Membr. Sci. Res. 2015, 1, 2–15. [Google Scholar]
- Vu, D.Q.; Koros, W.J.; Miller, S.J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind. Eng. Chem. Res. 2002, 41, 367–380. [Google Scholar] [CrossRef]
- Chu, Y.; He, X. Process simulation and cost evaluation of carbon membranes for CO2 removal from high-pressure natural gas. Membranes 2018, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-H.; Shih, K.; Shiu, P.-T.; Wey, M.-Y. Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. J. Membr. Sci. 2012, 405–406, 250–260. [Google Scholar] [CrossRef]
- Centeno, T.A.; Fuertes, A.B. Supported carbon molecular sieve membranes based on a phenolic resin. J. Membr. Sci. 1999, 160, 201–211. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Foley, H.C. Study of the effect of morphology of nanoporous carbon membranes on permselectivity. Mater. Res. Soc. Symp.-Proc. 2003, 752, 225–230. [Google Scholar] [CrossRef]
- Ismail, N.H.; Salleh, W.N.W.; Sazali, N.; Ismail, A.F.; Yusof, N.; Aziz, F. Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere. Separ. Purif. Techn. 2018, 195, 295–304. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Gavalas, G.R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J. Membr. Sci. 2000, 177, 25–31. [Google Scholar] [CrossRef]
- Pels, J.R.; Kapteijn, F.; Moulijn, J.A.; Zhu, Q.; Thomas, K.M. Evolution of Nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653. [Google Scholar] [CrossRef]
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A.B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- Qu, Z.; Sun, F.; Liu, X.; Gao, J.; Zhipeng, Q.; Zhao, G. The effect of Nitrogen-containing functional groups on SO2 adsorption on carbon surface: Enhanced physical adsorption interactions. Surf. Sci. 2018, 677, 78–82. [Google Scholar] [CrossRef]
- To, J.W.F.; He, J.; Mei, J.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S.; Bae, W.-G.; Pan, L.; Tok, J.B.-H.; et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.Y.; Sui, J.H.; Yin, G.P.; Gao, Y.Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B 2008, 79, 89–99. [Google Scholar] [CrossRef]
- Ren, M.; Jia, Z.; Tian, Z.; Lopez, D.; Cai, J.; Titirici, M.-M.; Jorge, A.B. High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications. ChemElectroChem 2018, 5, 2686–2693. [Google Scholar] [CrossRef]
- Li, J.-S.; Li, S.-L.; Tang, Y.-L.; Li, K.; Zhou, L.; Kong, N.; Lan, Y.-Q.; Bao, J.-C.; Dai, Z.-H. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Nat. Sci. Rep. 2014, 4, 5130. [Google Scholar] [CrossRef]
- Qiu, B.; Pan, C.; Qian, W.; Peng, Y.; Qiu, L.; Yan, F. Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J. Mater. Chem. A 2013, 1, 6373–6378. [Google Scholar] [CrossRef]
- Tzialla, O.; Kakosimos, G.; Athanasekou, C.; Galata, E.; Romanos, G.E.; Pilatos, G.; Zubeir, L.F.; Kroon, M.C.; Iliev, B.; Schubert, T.J.S.; et al. Porous carbons from ionic liquid precursors confined within nanoporous silicas. Micropor. Mesopor. Mater. 2016, 223, 163–175. [Google Scholar] [CrossRef]
- Ion-Ebrașu, D.; Andrei Radu, D.; Enache, S.; Căprărescu, S.; Negrilă, C.C.; Jianu, C.; Enache, A.; Boerașu, I.; Carcadea, E.; Varlam, M.; et al. Nitrogen functionalization of CVD grown three-dimensional graphene foam for hydrogen evolution reactions in alkaline media. Materials 2021, 14, 4952. [Google Scholar] [CrossRef]
- Kamedulski, P.; Truszkowski, S.; Lukaszewicz, J.P. Highly effective methods of obtaining N-doped graphene by gamma irradiation. Materials 2020, 13, 4975. [Google Scholar] [CrossRef]
- Perumal, S.; Kishore, S.C.; Atchudan, R.; Sundramoorthy, A.K.; Alagan, M.; Lee, Y.R. Sustainable synthesis of N/S-doped porous carbon from waste-biomass as electroactive material for energy harvesting. Catalysts 2022, 12, 436. [Google Scholar] [CrossRef]
- Labropoulos, A.I.; Romanos, G.E.; Kouvelos, E.; Falaras, P.; Likodimos, V.; Francisco, M.; Kroon, M.C.; Iliev, B.; Adamova, G.; Schubert, T.J.S. Alkyl-methylimidazolium tricyanomethanide ionic liquids under extreme confinement onto nanoporous ceramic membranes. J. Phys. Chem. C 2013, 117, 10114–10127. [Google Scholar] [CrossRef]
- Nordberg, M.E. Properties of some Vycor-brand glasses. J. Am. Ceramic Soc. 1944, 27, 299–305. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Thomas, A.; Antonietti, M. A detailed view on the polycondensation of ionic liquid monomers towards Nitrogen doped carbon materials. J. Mater. Chem. 2010, 20, 6746–6758. [Google Scholar] [CrossRef]
- Fellinger, T.P.; Su, D.S.; Engenhorst, M.; Gautam, D.; Schlogl, R.; Antonietti, M. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: Mechanism, structure analysis and electronic properties. J. Mater. Chem. 2012, 22, 23996–24005. [Google Scholar] [CrossRef]
- Steriotis, T.A.; Katsaros, F.K.; Mitropoulos, A.C.; Stubos, A.K.; Galiatsatou, P.; Zouridakis, N.; Kanellopoulos, N.K. Novel design for high pressure, integral, differential, absolute, and relative multicomponent permeability measurements. Rev. Sci. Instrum. 1996, 67, 2545–2548. [Google Scholar] [CrossRef]
- Lin, C.; Flowers, D.; Liu, P. Characterization of ceramic membranes II. Modified commercial membranes with pore size under 40 Å. J. Membr. Sci. 1994, 92, 45–58. [Google Scholar] [CrossRef]
- Onyestyák, G.; Valyon, J.; Pál-Borbély, G.; Rees, L. The skeletal isomerization of n-butene over ferrierite catalysts. Appl. Surf. Sci. 2002, 196, 401–407. [Google Scholar] [CrossRef]
- Mehio, N.; Dai, S.; Jiang, D. Quantum mechanical basis for kinetic diameters of small gaseous molecules. J. Phys. Chem. A 2014, 118, 1150–1154. [Google Scholar] [CrossRef]
- Kanezashi, M.; Kawano, M.; Yoshioka, T.; Tsuru, T. Organic–inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation. Ind. Eng. Chem. Res. 2011, 51, 944–953. [Google Scholar] [CrossRef]
- Kentish, S.E.; Scholes, C.A.; Stevens, G.W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem. Eng. 2008, 1, 52–66. [Google Scholar] [CrossRef]
- Gilron, J.; Soffer, A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. J. Membr. Sci. 2002, 209, 339–352. [Google Scholar] [CrossRef]
- Beltsios, K.; Charalambopoulou, G.; Romanos, G.; Kanellopoulos, N. A Vycor® membrane with reduced size surface pores I. Preparation and characterization. J. Porous Mater. 1999, 6, 25–31. [Google Scholar] [CrossRef]
- Burggraaf, A.J. Single gas permeation of thin zeolite (MFI) membranes: Theory and analysis of experimental observations. J. Membr. Sci. 1999, 155, 45–65. [Google Scholar] [CrossRef]
- Xing, W.; Liu, C.; Zhou, Z.; Zhang, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Gao, H.; Wang, G.; Qiao, S.Z. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 2012, 5, 7323–7327. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Linares-Solano, A.; Rand, B. Water adsorption on activated carbons: Study of water adsorption in micro-and mesopores. J. Phys. Chem. B 2001, 105, 7998–8006. [Google Scholar] [CrossRef]
- Dubinin, M.; Serpinsky, V. Isotherm equation for water vapor adsorption by microporous carbonaceous adsorbents. Carbon 1981, 19, 402–403. [Google Scholar] [CrossRef]
- Kainourgiakis, M.; Stubos, A.; Konstantinou, N.; Kanellopoulos, N.; Milisic, V. A network model for the permeability of condensable vapours through mesoporous media. J. Membr. Sci. 1996, 114, 215–225. [Google Scholar] [CrossRef]
- Zhu, X.; Chai, S.; Tian, C.; Fulvio, P.; Han, K.; Hagaman, E.; Veith, G.; Mahurin, S.; Brown, S.; Liu, H.; et al. Synthesis of porous, Nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. Macromol. Rapid Commun. 2013, 34, 452–459. [Google Scholar] [CrossRef]
- Mahurin, S.M.; Lee, J.S.; Wang, X.; Dai, S. Ammonia-activated mesoporous carbon membranes for gas separations. J. Membr. Sci. 2011, 368, 41–47. [Google Scholar] [CrossRef]
- Ismail, A.F.; David, L. A review on the latest development of carbon membranes for gas separation. J. Membr. Sci. 2001, 193, 1–18. [Google Scholar] [CrossRef]
- Beltsios, K.G.; Steriotis, T.A.; Stephanopoulos, K.L.; Kanellopoulos, N.K. Membrane Science and Applications. In Handbook of Porous Solids; Schüth, F., Sing, K.S.W., Weitkamp, J., Eds.; Wiley-VCH: Weinheim, Germany, 2002; Chapter 6.2.1; pp. 2281–2433. [Google Scholar]
- Puibasset, J. Adsorption/desorption hysteresis of simple fluids confined in realistic heterogeneous silica mesopores of micrometric length: A new analysis exploiting a multiscale Monte Carlo approach. J. Chem. Phys. 2007, 127, 154701. [Google Scholar] [CrossRef] [PubMed]
- Krull, F.; Hechinger, M.; Kloeckner, W.; Verhuelsdonk, M.; Buchbender, F.; Giese, H.; Melin, T. Ionic liquid imbibition of ceramic nanofiltration membranes. Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 182–190. [Google Scholar] [CrossRef]
- Martínez-Palou, R.; Aburto, J. Ionic liquids as surfactants–applications as demulsifiers of petroleum emulsions. In Ionic Liquids-Current State of the Art, Ionic Liquids—Current State of the Art; Handy, S., Ed.; IntechOpen: London, UK, 2015; Chapter 11; pp. 305–326. [Google Scholar] [CrossRef]
- Hussin, L.H.; Yaakob, M.H.; Osman, N.; Mazlan, N.A. Effect of surfactants on the thermal decomposition of Li7La3Zr2O12 ceramics powder. Int. J. Lat. Res. Sci. Technol. 2013, 6, 49–52. [Google Scholar]
Physical Property | Value |
---|---|
Density | 2.18 g cm−3 |
Specific surface area | 200 m2 g−1 |
Pore size | 4–20 nm |
Young modulus | 6.62 × 1010 Pa |
Membrane | Preparation Process | Probe Gases and Vapors | Tmem (°C) |
---|---|---|---|
CM1 | Single impregnation (Reference) | He, N2, CO2, CO, C3H6, C4H8, H2O, | 25 |
CM2 | Two impregnations Second impregnation for 0.5 min | N2 | 25 |
He, N2, CO2, H2 | 90 | ||
CM3 | Two impregnations Second impregnation for 1 min | He, N2, CO2, SF6 | 25 |
CO2 | 50 | ||
He, N2, CO2, H2 | 90 | ||
CM4 | Two impregnations Second impregnation for 1.5 min | He, N2, CO2, C3H6, C4H8, SF6, H2 | 25 |
He, N2, CO2 | 70 | ||
He, N2, CO2, SF6 | 100 | ||
CM5 | Two impregnations Second impregnation for 3 min | He, N2, CO2, CH4 | 100 |
CM6 | Two impregnations Second impregnation for 2 min | ― | ― |
Gas | Molar Mass (g mol−1) | Kinetic Diameter (Å) | Ref. |
---|---|---|---|
SF6 | 146.06 | 5.5 | [43] |
C4H8 | 56.11 | 5.0 | [44] |
CO2 | 44.01 | 3.3 | [59] |
C3H6 | 42.08 | 4.5 | [60] |
N2 | 28.01 | 3.64 | [59] |
CO | 28.01 | 3.76 | [59] |
H2O | 18.02 | 2.65 | [61] |
CH4 | 16.04 | 3.8 | [61] |
He | 4.00 | 2.6 | [59] |
H2 | 2.02 | 2.89 | [59] |
Membrane | Experimental Ideal Selectivity | P * (mbar) | T (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
Gas Pair | |||||||||
He/H2 | He/N2 | He/CO | He/CO2 | He/C3H6 | He/C4H8 | He/SF6 | |||
CM1 | - | 2.24 | 2.21 | 2.24 | 1.81 | 1.76 | - | 300 | 25 |
1.85 | 1.01 | 1.99 | 1.41 | 1.41 | 600 | 25 | |||
1.67 | 1.04 | 1.71 | 1.26 | 1.23 | 750 | 25 | |||
1.51 | 1.52 | 1.60 | 1.16 | 1.18 | 950 | 25 | |||
CM2 | 0.69 | 2.64 | - | 2.87 | - | - | - | 300 | 25 |
- | 3.36 | - | 4.31 | - | - | 7.06 | 1000 | 25 | |
CM3 ** | - | 3.50 | - | 2.96 | - | - | 300–950 | 25 | |
1.23 | 5.02 | - | 4.58 | - | - | 300–900 | 90 | ||
CM4 ** | 0.85 | 2.47 | 2.31 | 1.62 | 1.72 | 5.89 | 200–1000 | 25 | |
Knudsen ideal selectivity | |||||||||
Gas pair | |||||||||
He/H2 | He/N2 | He/CO | He/CO2 | He/C3H6 | He/C4H8 | He/SF6 | |||
0.71 | 2.65 | 2.65 | 3.32 | 3.24 | 3.75 | 6.04 |
Gas Pair | He/N2 | He/CO2 | He/CH4 | Pressure He (mbar) | Pressure N2 (mbar) | Pressure CO2 (mbar) | Pressure CH4 (mbar) |
---|---|---|---|---|---|---|---|
Experimental ideal selectivity He/N2 | 2.01 | 249.01 | 256.12 | ||||
1.75 | 497.97 | 504.08 | |||||
1.78 | 730.94 | 747.69 | |||||
1.87 | 1006.14 | 993.73 | |||||
Experimental ideal selectivity He/CO2 | 2.14 | 249.10 | 246.02 | ||||
1.49 | 497.97 | 498.18 | |||||
1.24 | 730.94 | 740.56 | |||||
1.01 | 1004.13 | 987.74 | |||||
Experimental ideal selectivity He/CH4 | 246.64 | 248.11 | |||||
507.24 | 504.41 | ||||||
736.12 | 745.93 | ||||||
997.81 | 987.08 | ||||||
Average ideal selectivity | 1.85 | 1.47 | 1.43 | ||||
Knudsen ideal selectivity | 2.65 | 3.32 | 2.00 |
Membrane | CM1 | CM4 | CM6 |
---|---|---|---|
Vp,t (cm3 liqN2 g−1) | 0.180 | 0.171 | 0.199 |
SBET (m2 g−1) | 174.48 | 142.58 | 171.32 |
Vm (cm3 liqN2 g−1) | 40.219 | 32.993 | 39.569 |
Vmicro (cm3 liqN2 g−1) | 0.064 | 0.051 | 0.061 |
Vmeso (cm3 liqN2 g−1) | 0.115 | 0.120 | 0.138 |
Vmeso BJH (cm3 liqN2 g−1) | 0.111 | 0.128 | 0.145 |
εmicro (-) | 0.123 | 0.100 | 0.118 |
εtotal (-) | 0.281 | 0.271 | 0.303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzialla, O.; Labropoulos, A.; Pilatos, G.; Romanos, G.; Beltsios, K.G. Pore Structure and Gas Diffusion Features of Ionic Liquid-Derived Carbon Membranes. C 2022, 8, 25. https://doi.org/10.3390/c8020025
Tzialla O, Labropoulos A, Pilatos G, Romanos G, Beltsios KG. Pore Structure and Gas Diffusion Features of Ionic Liquid-Derived Carbon Membranes. C. 2022; 8(2):25. https://doi.org/10.3390/c8020025
Chicago/Turabian StyleTzialla, Ourania, Anastasios Labropoulos, Georgios Pilatos, Georgios Romanos, and Konstantinos G. Beltsios. 2022. "Pore Structure and Gas Diffusion Features of Ionic Liquid-Derived Carbon Membranes" C 8, no. 2: 25. https://doi.org/10.3390/c8020025