Influence of Carbon Nanotube Attributes on Carbon Nanotube/Cu Composite Electrical Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. CNT Templates and Their Characterization
2.2. CNT/Cu Fabrication and Characterization
3. Results
3.1. Nanotube Attributes in the CNT Templates
3.2. Composite Structure and Performances with Various Nanotube Attributes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daneshvar, F.; Chen, H.; Noh, K.; Sue, H.J. Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronics. Nanoscale Adv. 2021, 3, 942–962. [Google Scholar] [CrossRef]
- Sundaram, R.M.; Sekiguchi, A.; Sekiya, M.; Yamada, T.; Hata, K. Copper/carbon nanotube composites: Research trends and outlook. R. Soc. Open Sci. 2018, 5, 180814. [Google Scholar] [CrossRef] [Green Version]
- Tehrani, M. Advanced Electrical Conductors: An Overview and Prospects of Metal Nanocomposite and Nanocarbon Based Conductors. Phys. Status Solidi (A) 2021, 218, 2000704. [Google Scholar] [CrossRef]
- Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D.N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nat. Commun. 2013, 4, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramaniam, C.; Sekiguchi, A.; Yamada, T.; Futaba, D.N.; Hata, K. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube–copper composite with high conductivity, ampacity and stability. Nanoscale 2016, 8, 3888–3894. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Mu, W.; Edwards, M.; Mencarelli, D.; Pierantoni, L.; Fu, Y.; Jeppson, K.; Liu, J. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology 2016, 27, 335705. [Google Scholar] [CrossRef]
- Chen, G.; Sundaram, R.; Sekiguchi, A.; Hata, K.; Futaba, D.N. Through-Silicon-Via Interposers with Cu-Level Electrical Conductivity and Si-Level Thermal Expansion Based on Carbon Nanotube-Cu Composites for Microelectronic Packaging Applications. ACS Appl. Nano Mater. 2020, 4, 869–876. [Google Scholar] [CrossRef]
- Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires. Mater. Today Commun. 2017, 13, 119–125. [Google Scholar] [CrossRef]
- Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube–copper wire composites by copper electrodeposition. Jpn. J. Appl. Phys. 2018, 57, 04FP08. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Thermal expansion of Cu/carbon nanotube composite wires and the effect of Cu-spatial distribution. J. Mater. Res. Technol. 2020, 9, 6944–6949. [Google Scholar] [CrossRef]
- Leggiero, A.P.; Driess, S.D.; Loughran, E.D.; McIntyre, D.J.; Hailstone, R.K.; Cress, C.D.; Puchades, I.; Landi, B.J. Platinum nanometal interconnection of copper–carbon nanotube hybrid electrical conductors. Carbon 2020, 168, 290–301. [Google Scholar] [CrossRef]
- McIntyre, D.J.; Leggiero, A.P.; Hailstone, R.K.; Puchades, I.; Cress, C.D.; Landi, B.J. Integrated Titanium-Carbon Nanotube Conductors via Joule-Heating Driven Chemical Vapor Deposition. ECS Trans. 2020, 97, 321–327. [Google Scholar] [CrossRef]
- McIntyre, D.J.; Hirschman, R.K.; Puchades, I.; Landi, B.J. Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer. J. Mater. Sci. 2020, 55, 6610–6622. [Google Scholar] [CrossRef]
- Leggiero, A.P.; Trettner, K.J.; Ursino, H.L.; McIntyre, D.J.; Schauer, M.; Zeira, E.; Cress, C.D.; Landi, B.J. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition. ACS Appl. Nano Mater. 2018, 2, 118–126. [Google Scholar] [CrossRef]
- Shuai, J.; Xiong, L.; Zhu, L.; Li, W. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite. Compos. Part. A Appl. Sci. Manuf. 2016, 88, 148–155. [Google Scholar] [CrossRef]
- Shuai, J.; Xiong, L.Q.; Lin, Z.H.U.; Li, W.Z. Effects of ply-orientation on microstructure and properties of super-aligned carbon nanotube reinforced copper laminar composites. Trans. Nonferrous Met. Soc. China 2017, 27, 1747–1758. [Google Scholar] [CrossRef]
- Mendoza, M.E.; Solórzano, I.G.; Brocchi, E.A. Mechanical and electrical characterization of Cu-2 wt.% SWCNT nanocomposites synthesized by in situ reduction. Mater. Sci. Eng. A 2012, 544, 21–26. [Google Scholar] [CrossRef]
- Milowska, K.Z.; Ghorbani-Asl, M.; Burda, M.; Wolanicka, L.; Ćatić, N.; Bristowe, P.D.; Koziol, K.K. Breaking the electrical barrier between copper and carbon nanotubes. Nanoscale 2017, 9, 8458–8469. [Google Scholar] [CrossRef]
- Nayan, N.; Shukla, A.K.; Chandran, P.; Bakshi, S.R.; Murty, S.V.S.N.; Pant, B.; Venkitakrishnan, P.V. Processing and characterization of spark plasma sintered copper/carbon nanotube composites. Mater. Sci. Eng. A 2017, 682, 229–237. [Google Scholar] [CrossRef]
- Guiderdoni, C.; Pavlenko, E.; Turq, V.; Weibel, A.; Puech, P.; Estournès, C.; Peigney, A.; Bacsa, W.; Laurent, C. The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties. Carbon 2013, 58, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, Q. Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 2009, 95, 021901. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zheng, Z.; Huang, Z.; Dong, S.; Luo, P.; Zhang, Z.; Wang, Y. Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties. Mater. Sci. Eng. A 2016, 675, 82–91. [Google Scholar] [CrossRef]
- Ghorbani-Asl, M.; Bristowe, P.D.; Koziol, K. A computational study of the quantum transport properties of a Cu–CNT composite. Phys. Chem. Chem. Phys. 2015, 17, 18273–18277. [Google Scholar] [CrossRef] [Green Version]
- Hjortstam, O.; Isberg, P.; Söderholm, S.; Dai, H. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? Appl. Phys. A 2004, 78, 1175–1179. [Google Scholar] [CrossRef]
- Kobayashi, K.; Shukla, B.; Ohmori, S.; Kiyomiya, M.; Hirai, T.; Kuwahara, Y.; Saito, T. Wall-Number Selectivity in Single/Double-Wall Carbon Nanotube Production by Enhanced Direct Injection Pyrolytic Synthesis. Jpn. J. Appl. Phys. 2013, 52(10R), 105102. [Google Scholar] [CrossRef]
- Saito, T.; Ohshima, S.; Okazaki, T.; Ohmori, S.; Yumura, M.; Iijima, S. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol. 2008, 8, 6153–6157. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dodson, B.; Hedges, D.M.; Steffensen, S.C.; Harb, J.N.; Puleo, C.; Galligan, C.; Ashe, J.; Vanfleet, R.R.; Davis, R.C. Fabrication of high aspect ratio millimeter-tall free-standing carbon nanotube-based microelectrode arrays. ACS Biomater. Sci. Eng. 2018, 4, 1900–1907. [Google Scholar] [CrossRef] [PubMed]
- Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Basic Concepts and Physical Properties, 1st ed.; John Wiley & Sons: Weinheim, Germany, 2004; pp. 142–174. [Google Scholar]
- Haynes, W.M. (Ed.) Thermal and physical properties of pure metals. In CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press, Taylor and Francis: Boca Raton, FL, USA, 2016; pp. 12–217. [Google Scholar]
- Behabtu, N.; Young, C.C.; Tsentalovich, D.E.; Kleinerman, O.; Wang, X.; Ma, A.W.; Bengio, E.A.; Waarbeek, R.F.; de Jong, J.J.; Hoogerwerf, R.E.; et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wei, J.; Vajtai, R.; Ajayan, P.M.; Barrera, E.V. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 2011, 1, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niven, J.F.; Johnson, M.B.; Juckes, S.M.; White, M.A.; Alvarez, N.T.; Shanov, V. Influence of annealing on thermal and electrical properties of carbon nanotube yarns. Carbon 2016, 99, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Bulmer, J.S.; Kaniyoor, A.; Elliott, J.A. A Meta-Analysis of Conductive and Strong Carbon Nanotube Materials. Adv. Mater. 2021, 33, 2008432. [Google Scholar] [CrossRef] [PubMed]
- Tsentalovich, D.E.; Headrick, R.J.; Mirri, F.; Hao, J.; Behabtu, N.; Young, C.C.; Pasquali, M. Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl. Mater. Interfaces 2017, 9, 36189–36198. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kikuchi, K.; Kawasaki, A. On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube–copper matrix composite. Acta Mater. 2012, 60, 726–736. [Google Scholar] [CrossRef]
Sample | Composite Properties | CNT Attributes | ||||
---|---|---|---|---|---|---|
Density (g/cm3) | Conductivity (S/cm) | TCR (/K) | Diameter (nm) | G/D | Remarks | |
MW-CNT/Cu wire | 5.1 ± 0.3 | 6.1 × 104 ± 3.2 × 103 | 1.8 × 10−3 ± 2.0 × 10−4 | 21.9 ± 3.9 | ≈500 µm long MWCNTs with multiple ends and nanotube–nanotube junctions | |
1.3 | ||||||
SW-CNT/Cu wire | 2.2 ± 0.2 | 2.1 × 105 ± 6.2 × 104 | 4.4 × 10−4 ± 1.9 × 10−4 | 1.3 ± 0.4 | 33.5 | ≈200–500 µm long SWCNTs with multiple ends and nanotube–nanotube junctions |
SW-CNT/Cu pillar | 5.0 ± 0.2 | 1.8 × 105 ± 7.6 × 104 | 1.1 × 10−3 ± 2.1 × 10−4 | 3.2 ± 0.7 | 7.6 | ≈300 µm long SWCNTs (aligned) running end-to-end |
Cu wire | 8.9 | 5.4 × 105 ± 2.8 × 103 | 3.3 × 10−3 ± 4.3 × 10−4 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundaram, R.; Sekiguchi, A.; Chen, G.; Futaba, D.; Yamada, T.; Kokubo, K.; Hata, K. Influence of Carbon Nanotube Attributes on Carbon Nanotube/Cu Composite Electrical Performances. C 2021, 7, 78. https://doi.org/10.3390/c7040078
Sundaram R, Sekiguchi A, Chen G, Futaba D, Yamada T, Kokubo K, Hata K. Influence of Carbon Nanotube Attributes on Carbon Nanotube/Cu Composite Electrical Performances. C. 2021; 7(4):78. https://doi.org/10.3390/c7040078
Chicago/Turabian StyleSundaram, Rajyashree, Atsuko Sekiguchi, Guohai Chen, Don Futaba, Takeo Yamada, Ken Kokubo, and Kenji Hata. 2021. "Influence of Carbon Nanotube Attributes on Carbon Nanotube/Cu Composite Electrical Performances" C 7, no. 4: 78. https://doi.org/10.3390/c7040078