miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human MicroRNA Repository
2.2. HCV Genome
2.3. SARS-CoV-2 Genome
2.4. Computational Identification of the Binding Sites of Human miRNAs along the SARS-CoV-2 RNA Genome
2.5. Benchmarking of the Predicted miRNA Targets in the SARS-CoV-2 RNA Genome
2.6. Expression Profiling of the Predicted SARS-CoV-2-RNA-Genome-Binding Human miRNAs
2.7. Location of the Predicted SARS-CoV-2-RNA-Genome-Binding Human miRNAs
2.8. Gene Ontology (GO) and Pathway Analysis of the Proposed miRNAs
2.9. Conserved Structured and Conserved Unstructured Regions of SARS-CoV-2
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, T.; Rahman, M.S. To trace or not to trace: Saving lives from COVID-19 at the cost of privacy breach in Bangladesh. Qatar Med. J. 2020, 2020, 35. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.L.; Shindo, N. COVID-19: What is next for public health? Lancet 2020, 395, 542–545. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.Y.; Khondaker, M.T.I.; Hoque, I.T.; Al-Absi, H.R.; Rahman, M.S.; Guler, R.; Alam, T.; Rahman, M.S. Toward Preparing a Knowledge Base to Explore Potential Drugs and Biomedical Entities Related to COVID-19: Automated Computational Approach. JMIR Med. Inform. 2020, 8, e21648. [Google Scholar] [CrossRef]
- Chang, K.; Elledge, S.J.; Hannon, G.J. Lessons from Nature: microRNA-based shRNA libraries. Nat. Methods 2006, 3, 707–714. [Google Scholar] [CrossRef]
- Scaria, V.; Hariharan, M.; Maiti, S.; Pillai, B.; Brahmachari, S.K. Host-virus interaction: A new role for microRNAs. Retrovirology 2006, 3, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, C.; Miao, Z.; Bi, X.; Wu, D.; Jin, N.; Wang, L.; Wu, H.; Qian, K.; Li, C.; et al. ViRBase: A resource for virus-host ncRNA-associated interactions. Nucleic Acids Res. 2015, 43, D578–D582. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Liu, Y. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009, 37, D98–D104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Ping, Y.; Li, X.; Zhao, H.; Wang, L.; Fan, H.; Xiao, Y.; Li, X. Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles. Mol. Biosyst. 2014, 10, 2800–2809. [Google Scholar] [CrossRef] [PubMed]
- Luna, J.M.; Scheel, T.K.; Danino, T.; Shaw, K.S.; Mele, A.; Fak, J.J.; Nishiuchi, E.; Takacs, C.N.; Catanese, M.T.; de Jong, Y.P.; et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 2015, 160, 1099–1110. [Google Scholar] [CrossRef] [Green Version]
- Ottosen, S.; Parsley, T.B.; Yang, L.; Zeh, K.; van Doorn, L.J.; van der Veer, E.; Raney, A.K.; Hodges, M.R.; Patick, A.K. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob. Agents Chemother. 2015, 59, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Azad, R.F.; Brown-Driver, V.; Buckheit, R.W., Jr.; Anderson, K.P. Antiviral activity of a phosphorothioate oligonucleotide complementary to human cytomegalovirus RNA when used in combination with antiviral nucleoside analogs. Antivir. Res. 1995, 28, 101–111. [Google Scholar] [CrossRef]
- Flores-Aguilar, M.; Besen, G.; Vuong, C.; Tatebayashi, M.; Munguia, D.; Gangan, P.; Wiley, C.A.; Freeman, W.R. Evaluation of retinal toxicity and efficacy of anti-cytomegalovirus and anti-herpes simplex virus antiviral phosphorothioate oligonucleotides ISIS 2922 and ISIS 4015. J. Infect. Dis. 1997, 175, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Leeds, J.M.; Henry, S.P.; Truong, L.; Zutshi, A.; Levin, A.A.; Kornbrust, D. Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. Drug Metab. Dispos. 1997, 25, 921–926. [Google Scholar]
- Orr, R.M. Technology evaluation: Fomivirsen, Isis Pharmaceuticals Inc./CIBA vision. Curr. Opin. Mol. Ther. 2001, 3, 288–294. [Google Scholar]
- Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309, 1577–1581. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhang, M.; Yin, L.; Wang, K.; Zhou, Y.; Zhou, M.; Lu, Y. COVID-19 treatment: Close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int. J. Antimicrob. Agents 2020, 56, 106080. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, V.; Gupta, V. Utilizing drug repurposing against COVID-19—Efficacy, limitations, and challenges. Life Sci. 2020, 259, 118275. [Google Scholar] [CrossRef]
- Khan, J.Y.; Khondaker, M.; Islam, T.; Hoque, I.T.; Al-Absi, H.; Rahman, M.S.; Alam, T.; Rahman, M.S. COVID-19Base: A knowledgebase to explore biomedical entities related to COVID-19. arXiv 2020, arXiv:200505954. [Google Scholar]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010, 39 (Suppl. 1), D152–D157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.; Wang, W.; Hu, Y. A Novel Coronavirus Associated with a Respiratory Disease in Wuhan of Hubei Province, China; Shanghai Public Health Clinical Center & School of Public Health, Fudan University: Shanghai, China, 2020. [Google Scholar]
- Shu, X.; Zang, X.; Liu, X.; Yang, J.; Wang, J. Predicting MicroRNA Mediated Gene Regulation between Human and Viruses. Cells 2018, 7, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Krüger, J.; Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34 (Suppl. 2), W451–W454. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Kir, J.; Liu, D.; Bryant, D.; Guo, Y.; Stephens, R.; Baseler, M.W.; Lane, H.C.; et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007, 35, W169–W175. [Google Scholar] [CrossRef]
- Rangan, R.; Zheludev, I.N.; Hagey, R.J.; Pham, E.A.; Wayment-Steele, H.K.; Glenn, J.S.; Das, R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: A first look. RNA 2020, 26, 937–959. [Google Scholar] [CrossRef]
- Alam, T.; Alazmi, M.; Naser, R.; Huser, F.; Momin, A.A.; Astro, V.; Hong, S.; Walkiewicz, K.W.; Canlas, C.G.; Huser, R.; et al. Proteome-level assessment of origin, prevalence and function of leucine-aspartic acid (LD) motifs. Bioinformatics 2020, 36, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Chavarria-Miró, G.; Anfruns-Estrada, E.; Guix, S.; Paraira, M.; Galofré, B.; Sáanchez, G.; Pintó, R.; Bosch, A. Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. MedRxiv 2020. [Google Scholar] [CrossRef]
- Fongaro, G.; Stoco, P.H.; Souza, D.S.M.; Grisard, E.C.; Magri, M.E.; Rogovski, P.; Schorner, M.A.; Barazzetti, F.H.; Christoff, A.P.; de Oliveira, L.F.V.; et al. SARS-CoV-2 in human sewage in Santa Catalina, Brazil, November 2019. MedRxiv 2020. [Google Scholar] [CrossRef]
- van der Ree, M.H.; de Vree, J.M.; Stelma, F.; Willemse, S.; van der Valk, M.; Rietdijk, S.; Molenkamp, R.; Schinkel, J.; van Nuenen, A.C.; Beuers, U.; et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial. Lancet 2017, 389, 709–717. [Google Scholar] [CrossRef]
- Vos, P.D.; Leedman, P.J.; Filipovska, A.; Rackham, O. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Cell. Mol. Life Sci. 2019, 76, 3745–3752. [Google Scholar] [CrossRef]
- Lanford, R.E.; Hildebrandt-Eriksen, E.S.; Petri, A.; Persson, R.; Lindow, M.; Munk, M.E.; Kauppinen, S.; Ørum, H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010, 327, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Dua, K.; Wadhwa, R.; Singhvi, G.; Rapalli, V.; Shukla, S.D.; Shastri, M.D.; Gupta, G.; Satija, S.; Mehta, M.; Khurana, N.; et al. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev. Res. 2019, 80, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, W.; Hu, G.; Xia, S.; Sun, Z.; Liu, Z.; Xie, Y.; Zhang, R.; Jiang, S.; Lu, L. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell. Mol. Immunol. 2020, 7, 1–3. [Google Scholar]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
- Forster, P.; Forster, L.; Renfrew, C.; Forster, M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. USA 2020, 117, 9241–9243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA | Accession No. | mirTarP | miRanda |
---|---|---|---|
hsa-miR-122-5p | MIMAT0000421 | −30.9 ± 0 | −23.77 ± 0 |
hsa-miR-766-3p | MIMAT0003888 | −27.98 ± 2.72 | −25.22 ± 0 |
hsa-miR-1910-5p | MIMAT0007884 | −27.96 ± 3.14 | −26.07 ± 0 |
hsa-miR-4761-5p | MIMAT0019908 | −29.3 ± 3.176 | −29.43 ± 0 |
hsa-miR-296-3p | MIMAT0004679 | −29.83 ± 1.65 | −29.19 ± 1.46 |
hsa-miR-598-5p | MIMAT0026620 | −31 ± 0.464 | −24.7 ± 0 |
hsa-miR-885-3p | MIMAT0004948 | −30.066 ± 1.290 | −27.78 ± 0 |
hsa-miR-6834-5p | MIMAT0027568 | −31.083 ± 3.283 | −30.56 ± 0 |
hsa-miR-187-5p | MIMAT0004561 | −31.3 ± 0 | −29.62 ± 0 |
hsa-miR-149-3p | MIMAT0004609 | −31.8 ± 0 | −23.98 ± 0 |
hsa-miR-1304-5p | MIMAT0005892 | −32 ± 0 | −28.1 ± 30 |
hsa-miR-1307-3p | MIMAT0005951 | −37.6 + 0 | −33.56 ± 0 |
hsa-miR-1912-5p | MIMAT0037333 | −32 ± 0 | −27.25 ± 0 |
hsa-miR-514b-5p | MIMAT0015087 | −31 ± 0 | −26.82 ± 0 |
KEGG Term | Description | p-Value | FDR |
---|---|---|---|
hsa05214 | Glioma | 7.6400 × 10−5 | 0.0164 |
hsa04115 | p53 signaling pathway | 1.2500 × 10−4 | 0.0164 |
hsa04066 | HIF-1 signaling pathway | 7.4300 × 10−4 | 0.0491 |
hsa04550 | Signaling pathways regulating pluripotency of stem cells | 8.1000 × 10−4 | 0.0491 |
hsa05220 | Chronic myeloid leukemia | 1.0337 × 10−3 | 0.0491 |
hsa05205 | Proteoglycans in cancer | 1.1209 × 10−3 | 0.0491 |
hsa05230 | Central carbon metabolism in cancer | 1.5538 × 10−3 | 0.0497 |
hsa04152 | AMPK signaling pathway | 1.6337 × 10−3 | 0.0497 |
hsa04110 | Cell cycle | 1.8644 × 10−3 | 0.0497 |
hsa05219 | Bladder cancer | 2.1258 × 10−3 | 0.0497 |
hsa05218 | Melanoma | 2.2046 × 10−3 | 0.0497 |
hsa04012 | ErbB signaling pathway | 2.2693 × 10−3 | 0.0497 |
hsa04919 | Thyroid hormone signaling pathway | 2.4828 × 10−3 | 0.0502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, T.; Lipovich, L. miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery. Non-Coding RNA 2021, 7, 18. https://doi.org/10.3390/ncrna7010018
Alam T, Lipovich L. miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery. Non-Coding RNA. 2021; 7(1):18. https://doi.org/10.3390/ncrna7010018
Chicago/Turabian StyleAlam, Tanvir, and Leonard Lipovich. 2021. "miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery" Non-Coding RNA 7, no. 1: 18. https://doi.org/10.3390/ncrna7010018
APA StyleAlam, T., & Lipovich, L. (2021). miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery. Non-Coding RNA, 7(1), 18. https://doi.org/10.3390/ncrna7010018