Next Article in Journal
Local Tandem Repeat Expansion in Xist RNA as a Model for the Functionalisation of ncRNA
Previous Article in Journal
LncRNAs in TGF-β-Driven Tissue Fibrosis
Article Menu

Export Article

Open AccessArticle
Non-Coding RNA 2018, 4(4), 27; https://doi.org/10.3390/ncrna4040027

Copaifera langsdorffii Novel Putative Long Non-Coding RNAs: Interspecies Conservation Analysis in Adaptive Response to Different Biomes

1
Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
2
Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil
3
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, Rio de Janeiro 22460-030, Brazil
4
Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
*
Author to whom correspondence should be addressed.
Received: 17 July 2018 / Revised: 26 September 2018 / Accepted: 28 September 2018 / Published: 8 October 2018
Full-Text   |   PDF [2474 KB, uploaded 8 October 2018]   |  

Abstract

Long non-coding RNAs (lncRNAs) are involved in multiple regulatory pathways and its versatile form of action has disclosed a new layer in gene regulation. LncRNAs have their expression levels modulated during plant development, and in response to stresses with tissue-specific functions. In this study, we analyzed lncRNA from leaf samples collected from the legume Copaifera langsdorffii Desf. (copaíba) present in two divergent ecosystems: Cerrado (CER; Ecological Station of Botanical Garden in Brasília, Brazil) and Atlantic Rain Forest (ARF; Rio de Janeiro, Brazil). We identified 8020 novel lncRNAs, and they were compared to seven Fabaceae genomes and transcriptomes, to which 1747 and 2194 copaíba lncRNAs were mapped, respectively, to at least one species. The secondary structures of the lncRNAs that were conserved and differentially expressed between the populations were predicted using in silico methods. A few selected lncRNA were confirmed by RT-qPCR in the samples from both biomes; Additionally, the analysis of the lncRNA sequences predicted that some might act as microRNA (miRNA) targets or decoys. The emerging studies involving lncRNAs function and conservation have shown their involvement in several types of biotic and abiotic stresses. Thus, the conservation of lncRNAs among Fabaceae species considering their rapid turnover, suggests they are likely to have been under functional conservation pressure. Our results indicate the potential involvement of lncRNAs in the adaptation of C. langsdorffii in two different biomes. View Full-Text
Keywords: novel lncRNA; lncRNA conservation; Copaifera; epigenetics; adaptive response novel lncRNA; lncRNA conservation; Copaifera; epigenetics; adaptive response
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Danilevicz, M.F.; Moharana, K.C.; Venancio, T.M.; Franco, L.O.; Cardoso, S.R.S.; Cardoso, M.; Thiebaut, F.; Hemerly, A.S.; Prosdocimi, F.; Ferreira, P.C.G. Copaifera langsdorffii Novel Putative Long Non-Coding RNAs: Interspecies Conservation Analysis in Adaptive Response to Different Biomes. Non-Coding RNA 2018, 4, 27.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Non-Coding RNA EISSN 2311-553X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top