The Role of Long Non-Coding RNAs in Osteosarcoma
Abstract
:1. Introduction
2. Long Non-Coding RNAs in Osteosarcoma; Real-Time Quantitative Polymerase Chain Reaction
2.1. Prognostic Biomarkers
2.2. Predictive Biomarkers
2.3. Therapeutic Targets
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Bielack, S.; Carrle, D.; Casali, P.G.; Group, E.G.W. Osteosarcoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 2009, 20, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Pichler, M.; Calin, G.A. MicroRNAs in cancer: From developmental genes in worms to their clinical application in patients. Br. J. Cancer 2015, 113, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Karbiener, M.; Pehserl, A.M.; Reicher, A.; Resel, M.; Heitzer, E.; Ivan, C.; Bullock, M.; Ling, H.; et al. miR-196b-5p regulates colorectal cancer cell migration and metastases through interaction with HOXB7 and GALNT5. Clin. Cancer Res. 2017, 23, 5255–5266. [Google Scholar] [CrossRef] [PubMed]
- Picler, M.; Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Ivan, C.; Ling, H.; Winter, E.; Zhang, X.; Goblirsch, M.; Wulf-Goldenberg, A.; Ohtsuka, M.; et al. Genome-wide miRNA analysis identifies miR-188-3p as a novel prognostic marker and molecular factor involved in colorectal carcinogenesis. Clin. Cancer Res. 2017, 23, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Rigoutsos, I.; Lee, S.K.; Nam, S.Y.; Anfossi, S.; Pasculli, B.; Pichler, M.; Jing, Y.; Rodriguez-Aguayo, C.; Telonis, A.G.; Rossi, S.; et al. N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biol. 2017, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Vincent, K.; Pichler, M.; Fodde, R.; Berindan-Neagoe, I.; Slack, F.J.; Calin, G.A. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 2015, 34, 5003–5011. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 2011, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Smolle, M.A.; Bullock, M.D.; Ling, H.; Pichler, M.; Haybaeck, J. Long non-coding RNAs in endometrial carcinoma. Int. J. Mol. Sci. 2015, 16, 26463–26472. [Google Scholar] [CrossRef] [PubMed]
- Smolle, M.; Uranitsch, S.; Gerger, A.; Pichler, M.; Haybaeck, J. Current status of long non-coding RNAs in human cancer with specific focus on colorectal cancer. Int. J. Mol. Sci. 2014, 15, 13993–14013. [Google Scholar] [CrossRef] [PubMed]
- Smolle, M.A.; Calin, H.N.; Pichler, M.; Calin, G.A. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 2017, 284, 1952–1966. [Google Scholar] [CrossRef] [PubMed]
- Martens-Uzunova, E.S.; Bottcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 2014, 65, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Malouf, G.G.; Chen, Y.; Zhang, J.; Yao, H.; Valero, V.; Weinstein, J.N.; Spano, J.P.; Meric-Bernstam, F.; Khayat, D.; et al. Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget 2014, 5, 9864–9876. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, M.; Ling, H.; Ivan, C.; Pichler, M.; Matsushita, D.; Goblirsch, M.; Stiegelbauer, V.; Shigeyasu, K.; Zhang, X.; Chen, M.; et al. H19 noncoding RNA, an independent prognostic factor, regulates essential Rb-E2F and CDK8-β-catenin signaling in colorectal cancer. EBioMedicine 2016, 13, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Kanlikilicer, P.; Rashed, M.H.; Bayraktar, R.; Mitra, R.; Ivan, C.; Aslan, B.; Zhang, X.; Filant, J.; Silva, A.M.; Rodriguez-Aguayo, C.; et al. Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 2016, 76, 7194–7207. [Google Scholar] [CrossRef] [PubMed]
- Cerk, S.; Schwarzenbacher, D.; Adiprasito, J.B.; Stotz, M.; Hutterer, G.C.; Gerger, A.; Ling, H.; Calin, G.A.; Pichler, M. Current status of long non-coding RNAs in human breast cancer. Int. J. Mol. Sci. 2016, 17, 1485. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, G.; Yang, J.; Wang, L. Long noncoding RNA NBAT1 negatively modulates growth and metastasis of osteosarcoma cells through suppression of miR-21. Am. J. Cancer Res. 2017, 7, 2009–2019. [Google Scholar] [PubMed]
- Lennox, K.A.; Behlke, M.A. Mini-review: Current strategies to knockdown long non-coding RNAs. J. Rare Dis. Res. Treat. 2016, 1, 66–70. [Google Scholar]
- Ho, T.T.; Zhou, N.; Huang, J.; Koirala, P.; Xu, M.; Fung, R.; Wu, F.; Mo, Y.Y. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 2015, 43, e17. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lima, W.F.; Zhang, H.; Fan, A.; Sun, H.; Crooke, S.T. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J. Biol. Chem. 2004, 279, 17181–17189. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.Z.; Guo, X.J.; Zhao, Y.M.; Fang, Y. Decreased expression of long non-coding RNA MEG3 acts as a potential predictor biomarker in progression and poor prognosis of osteosarcoma. Int. J. Clin. Exp. Pathol. 2015, 8, 15138–15142. [Google Scholar] [PubMed]
- Kong, D.; Wang, Y. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J. Cell. Biochem. 2018, 119, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wang, C.; Wang, Y.; Zhang, L. Long noncoding RNA ATB promotes osteosarcoma cell proliferation, migration and invasion by suppressing miR-200s. Am. J. Cancer Res. 2017, 7, 770–783. [Google Scholar] [PubMed]
- Chen, F.; Mo, J.; Zhang, L. Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumor Biol. 2016, 37, 13403–13412. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, X.; Fu, C.; Wang, X.; Zou, J.; Hua, H.; Bi, Z. Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol. Biol. Rep. 2016, 43, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Liu, Y.; Yang, W.; Xia, Y.; Yang, C.; Yang, S.; Liu, X. Long noncoding RNA MALAT1 as a potential therapeutic target in osteosarcoma. J. Orthop. Res. 2016, 34, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Kotake, Y.; Goto, T.; Naemura, M.; Inoue, Y.; Okamoto, H.; Tahara, K. Long noncoding RNA panda positively regulates proliferation of osteosarcoma cells. Anticancer Res. 2017, 37, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Ba, Z.; Gu, L.; Hao, S.; Wang, X.; Cheng, Z.; Nie, G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif. 2017, 51. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Shi, L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem. Biophys. Res. Commun. 2017, 495, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, J. Long noncoding RNA ZEB1-AS1 acts as an oncogene in osteosarcoma by epigenetically activating ZEB1. Am. J. Transl. Res. 2016, 8, 4095–4105. [Google Scholar] [PubMed]
- Zhang, C.L.; Zhu, K.P.; Ma, X.L. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. 2017, 396, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.H.; Cao, Y.M.; Huang, Y.; Shi, Q.W.; Guo, J.H.; Fan, Z.W.; Li, J.G.; Chen, B.W.; Wu, B.Y. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumor Biol. 2016, 37, 15031–15041. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Li, M.; Zhang, L.; Huang, M.; Lei, J.B.; Fu, G.H.; Liu, C.X.; Lai, Q.W.; Chen, Q.Q.; Wang, Y.L. Upregulation of long non-coding RNA TUG1 correlates with poor prognosis and disease status in osteosarcoma. Tumor Biol. 2016, 37, 4445–4455. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Ding, H.; He, E.; Chen, J.; Li, M. Overexpression of long non-coding RNA MFI2 promotes cell proliferation and suppresses apoptosis in human osteosarcoma. Oncol. Rep. 2016, 36, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.H.; Li, W.; Liu, X.H.; Sun, M.; Zhang, M.L.; Wu, W.Q.; Xie, W.P.; Hou, Y.Y. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 2013, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.D.; Liu, Z.J.; Zhang, E.; Kong, R.; Zhang, Z.H.; Guo, R.H. Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumor Biol. 2015, 36, 4851–4859. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, C.; Xu, J.; Feng, Y.; Wang, L.; Cui, T. Long noncoding RNA EWSAT1 promotes osteosarcoma cell growth and metastasis through suppression of MEG3 expression. DNA Cell Biol. 2016, 35, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.H.; Yang, L.B.; Geng, X.L.; Wang, R.; Zhang, Z.C. Increased expression of lncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int. J. Clin. Exp. Pathol. 2015, 8, 2994–3000. [Google Scholar] [PubMed]
- Liu, C.; Pan, C.; Cai, Y.; Wang, H. Interplay between long noncoding RNA ZEB1-AS1 and miR-200s regulates osteosarcoma cell proliferation and migration. J. Cell. Biochem. 2017, 118, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Zhou, Y.M.; Yang, G.S. Upregulation of long non-coding RNA BCAR4 predicts a poor prognosis in patients with osteosarcoma, and promotes cell invasion and metastasis. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4445–4451. [Google Scholar] [PubMed]
- Kirschmann, D.A.; Seftor, E.A.; Hardy, K.M.; Seftor, R.E.; Hendrix, M.J. Molecular pathways: Vasculogenic mimicry in tumor cells: Diagnostic and therapeutic implications. Clin. Cancer Res. 2012, 18, 2726–2732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, Q.; Zeng, F.; Liu, H. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the RAC1/JNK pathway via targeting miR-509. Oncol. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Huang, J.; Ni, J.; Song, D.; Ding, M.; Wang, J.; Huang, X.; Li, W. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle 2017, 16, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Dai, Z.; Luo, Q.; Lv, G. The long noncoding RNA cancer susceptibility candidate 2 inhibits tumor progression in osteosarcoma. Mol. Med. Rep. 2018, 17, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
LncRNA (Reference) | Expression | Reported Medium | Test | Clinical Value |
---|---|---|---|---|
MEG3 [22] | Underexpression in comparison to normal adjacent tissue (p < 0.05) | Human osteosarcoma tissue samples | qRT-PCR | Prognostic |
HULC [23] | Overexpression in comparison to osteoblast cell line hFOB1.19 (p < 0.05) and adjacent normal tissue (p < 0.05) | Human osteosarcoma tissue; osteosarcoma cell lines MG-63, U2OS, OS-732, and Saos-2 | qRT-PCR | Prognostic, therapeutic |
LncRNA-ATB [24] | Overexpression in serum samples in comparison to healthy controls (p < 0.0001) and in osteosarcoma cell lines vs. hFOB1.19 (p < 0.01) | Human osteosarcoma tissue and serum samples; osteosarcoma cell lines U2OS, Saos-2, MG-63, and HOS | qRT-PCR | Diagnostic, prognostic |
BCAR4 [25] | Overexpression in comparison to adjacent normal tissue (p < 0.001) | Human osteosarcoma tissue samples | qRT-PCR | Therapeutic |
FGFR3-AS1 [26] | Overexpression as compared with pair-matched normal tissue (p < 0.001) | Human osteosarcoma tissue samples | qRT-PCR | Prognostic |
MALAT-1 [27] | Overexpression in comparison to normal tissue and as compared with hFOB1.19 (p < 0.05) | Human osteosarcoma tissue samples; osteosarcoma cell lines Saos-2, U2OS, HOS | qRT-PCR | Therapeutic |
PANDA [28] | Overexpression as compared with cell lines TIG-3, HeLA, A549, H1299 and MCF7 | Osteosarcoma cell line U2OS | qRT-PCR | Therapeutic |
CASC2 [29] | Underexpression as compared with non-tumor tissues (p < 0.01) and hFOB1.19 | Osteosarcoma cell lines MG-63, U2OS, SAOS2, and SOSP-9607 | qRT-PCR | Therapeutic |
LUCAT1 [30] | Overexpression vs. corresponding parental cell lines (p < 0.05) | Methotrexate-resistant osteosarcoma cell line MG63/MTX | qRT-PCR | Predictive |
NBAT1 [18] | Underexpression in osteosarcoma tissue samples vs. adjacent normal tissue (p < 0.05) and osteosarcoma cell lines in comparison to osteoblast cell line Nhost (p < 0.05) | Human osteosarcoma tissue samples; osteosarcoma cell lines KHOS, LM7, 143b, USOS, and MG-63 | qRT-PCR | Therapeutic |
ZEB1-AS1 [31] | Overexpression in osteosarcoma tissue vs. adjacent normal tissue (p < 0.001) and osteosarcoma cell lines vs. hFOB1.19 (p < 0.01) | Human osteosarcoma tissue; osteosarcoma cell lines HOS, U2OS, MG63 and Saos-2 | qRT-PCR | Prognostic |
FOXC2-AS1 [32] | Overexpression in osteosarcoma tissues resistant to doxorubicin vs. non-resistant tissue (p < 0.008) and doxorubicin-resistant cell lines vs. doxorubicin-sensitive ones (p < 0.05) | Human osteosarcoma tissue samples; doxorubicin-resistant osteosarcoma cell lines MG63/DXR and KH-OS/DXR | qRT-PCR | Predictive |
TUG1 [33,34] | Overexpression in osteosarcoma tissue vs. adjacent normal tissue (p < 0.01) and osteosarcoma cell lines vs. hFOB1.19 (p < 0.01) | Human osteosarcoma tissue and serum samples; osteosarcoma cell lines U2OS, Saos-2, HOS and MG63 | qRT-PCR | Diagnostic, prognostic |
MFI2 [35] | Overexpression in osteosarcoma tissue samples vs. adjacent normal tissue (p < 0.0001) | Human osteosarcoma tissue | qRT-PCR | Therapeutic |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolle, M.A.; Pichler, M. The Role of Long Non-Coding RNAs in Osteosarcoma. Non-Coding RNA 2018, 4, 7. https://doi.org/10.3390/ncrna4010007
Smolle MA, Pichler M. The Role of Long Non-Coding RNAs in Osteosarcoma. Non-Coding RNA. 2018; 4(1):7. https://doi.org/10.3390/ncrna4010007
Chicago/Turabian StyleSmolle, Maria Anna, and Martin Pichler. 2018. "The Role of Long Non-Coding RNAs in Osteosarcoma" Non-Coding RNA 4, no. 1: 7. https://doi.org/10.3390/ncrna4010007
APA StyleSmolle, M. A., & Pichler, M. (2018). The Role of Long Non-Coding RNAs in Osteosarcoma. Non-Coding RNA, 4(1), 7. https://doi.org/10.3390/ncrna4010007