The Perturbation of Ozone and Nitrogen Oxides Impacted by Blue Jet Considering the Molecular Diffusion
Abstract
:1. Introduction
2. Methods
2.1. Chemical Reactions Models
2.2. Molecular Diffusion Models
- (a)
- Diffusion coefficients of studied chemical species
- (b) Analytical solution of the diffusion equation
2.3. Coupling Chemical Reaction-Diffusion Processes
3. Results and Discussions
3.1. Investigation of the Impact of Diffusion Parameters
- (a)
- Estimation of time step in diffusion processes
- (b) Evaluation of diffusion effect distance from other points of interest
3.2. Diffusion Impacts in the Chemical Reaction Evolutions at 18–28 km
- (a)
- In the first 100 s after the blue jet discharge
- (b) In 48 h after blue jet discharge
3.3. Diffusion Impacts of Multisource Points at 30 km
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wescott, E.M.; Sentman, D.; Osborne, D.; Hampton, D.; Heavner, M. Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets. Geophys. Res. Lett. 1995, 22, 1209–1212. [Google Scholar] [CrossRef]
- Wescott, E.M.; Sentman, D.D.; Stenbaek-Nielsen, H.C.; Huet, P.; Heavner, M.J.; Moudry, D.R. New evidence for the brightness and ionization of blue starters and blue jets. J. Geophys. Res. Space Phys. 2001, 106, 21549–21554. [Google Scholar] [CrossRef]
- Mishin, E.V.; Milikh, G.M. Blue jets: Upward lightning. Space Sci. Rev. 2008, 137, 473–488. [Google Scholar] [CrossRef]
- Pasko, V.P. Blue jets and gigantic jets: Transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys. Control. Fusion 2008, 50, 124050. [Google Scholar] [CrossRef] [Green Version]
- Hiraki, Y.; Tong, L.; Fukunishi, H.; Nanbu, K.; Kasai, Y.; Ichimura, A. Generation of metastable oxygen atom O (1D) in sprite halos. Geophys. Res. Lett. 2004, 31, L14105. [Google Scholar] [CrossRef]
- Croizé, L.; Payan, S.; Bureau, J.; Duruisseau, F.; Thiéblemont, R.; Huret, N. Effect of blue jets on atmospheric composition: Feasibility of measurement from a stratospheric balloon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3183–3192. [Google Scholar] [CrossRef]
- Chou, J.K.; Hsu, R.R.; Su, H.T.; Chen, A.B.C.; Kuo, C.L.; Huang, S.M.; Chang, S.C.; Peng, K.M.; Wu, Y.J. ISUAL-observed blue luminous events: The associated sferics. J. Geophys. Res. Space Phys. 2018, 123, 3063–3077. [Google Scholar] [CrossRef]
- Mishin, E.V. Ozone layer perturbation by a single blue jet. Geophys. Res. Lett. 1997, 24, 1919–1922. [Google Scholar] [CrossRef]
- Smirnova, N.V.; Lyakhov, A.N.; Kozlov, S.I. Lower stratosphere response to electric field pulse. Int. J. Geomagn. Aeron. 2003, 3, 281–287. [Google Scholar]
- Winkler, H.; Notholt, J. A model study of the plasma chemistry of stratospheric Blue Jets. J. Atmos. Sol.-Terr. Phys. 2015, 122, 75–85. [Google Scholar] [CrossRef]
- Xu, C.; Huret, N.; Garnung, M.; Celestin, S. A new detailed plasma-chemistry model for the potential impact of blue jet streamers on atmospheric chemistry. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Hami, M.L. A comprehensive model of functionals for three-dimensional non-isothermal steady flow with molecular and convective diffusion and a chemical reaction of arbitrary order. Chem. Eng. Sci. 2005, 60, 3693–3701. [Google Scholar] [CrossRef]
- Cheng, H.-J.; Zhang, X.-C.; Jia, Y.-F.; Yang, F.; Tu, S.-T. A finite element simulation on fully coupled diffusion, stress and chemical reaction. Mech. Mater. 2022, 166, 104–217. [Google Scholar] [CrossRef]
- Ramaroson, R.; Pirre, M.; Cariolle, D. A box model for on-line computations of diurnal variations in a 1-Dmodel-Potential for application in multidimensional cases. Ann. Geophys. 1992, 10, 416–428. [Google Scholar]
- Da Silva, C.L.; Pasko, V.P. Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets. J. Geophys. Res. Atmos. 2013, 118, 13–561. [Google Scholar] [CrossRef]
- Krueger, A.J.; Minzner, R.A. A mid-latitude ozone model for the 1976 US Standard Atmosphere. J. Geophys. Res. 1976, 81, 4477–4481. [Google Scholar] [CrossRef]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Nonuniform Gases; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Davis, E.J. Transport phenomena with single aerosol particles. Aerosol Sci. Technol. 1983, 2, 121–144. [Google Scholar] [CrossRef]
- Halpern, A.M.; Eric, D. Glendening, estimating molecular collision diameters using computational methods. J. Mol. Struct. THEOCHEM 1996, 365, 9–12. [Google Scholar] [CrossRef]
- Wong, M.W.; Wiberg, K.B.; Frisch, M.J. Ab initio calculation of molar volumes: Comparison with experiment and use in solvation models. J. Comput. Chem. 1995, 16, 385–394. [Google Scholar] [CrossRef]
- Lefèvre, F.; Brasseur, G.P.; Folkins, I.; Smith, A.K.; Simon, P. Chemistry of the 1991–1992 stratospheric winter: Three-dimensional model simulations. J. Geophys. Res. Atmos. 1994, 99, 8183–8195. [Google Scholar] [CrossRef]
- Popov, N.A.; Shneider, M.N.; Milikh, G.M. Similarity analysis of the streamer zone of Blue jets. J. Atmos. Sol.-Terr. Phys. 2016, 147, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Chipperfield, M.P. Multiannual simulations with a three-dimensional chemical transport model. J. Geophys. Res. Atmos. 1999, 104, 1781–1805. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J. Air plasma kinetics under the influence of sprites. J. Phys. D Appl. Phys. 2008, 41, 234016. [Google Scholar] [CrossRef] [Green Version]
- Kossyi, I.A.; Kostinsky, A.Y.; Matveyev, A.A.; Silakov, V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1992, 1, 207. [Google Scholar] [CrossRef]
- Sander, S.P.; Golden, D.M.; Kurylo, M.J.; Moortgat, G.K.; Wine, P.H.; Ravishankara, A.R.; Kolb, C.E.; Molina, M.J.; Finlayson-Pitts, B.J.; Orkin, V.L. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2006. [Google Scholar]
- Sentman, D.D.; Stenbaek-Nielsen, H.C.; McHarg, M.G.; Morrill, J.S. Correction to “Plasma chemistry of sprite streamers”. J. Geophys. Res. Atmos. 2008, 113, D14399. [Google Scholar] [CrossRef] [Green Version]
- Viggiano, A.A. Much improved upper limit for the rate constant for the reaction of O2+ with N2. J. Phys. Chem. A 2006, 110, 11599–11601. [Google Scholar] [CrossRef]
- Yaron, M.; Von Engel, A.; Vidaud, P.H. The collisional quenching of O2*(1Δg) by NO and CO2. Chem. Phys. Lett. 1976, 37, 159–161. [Google Scholar] [CrossRef]
Altitude (km) | Temperature (K) | NO2 | NO | O3 | N2O | ||||
---|---|---|---|---|---|---|---|---|---|
CD | MW | CD | MW | CD | MW | CD | MW | ||
4.422 | 46 | 3.954 | 30 | 4.56 | 48 | 4.219 | 44 | ||
18 | 199.016 | 0.649 | 0.908 | 0.605 | 0.719 | ||||
20 | 207.14 | 0.662 | 0.927 | 0.617 | 0.733 | ||||
22 | 211.13 | 0.668 | 0.936 | 0.623 | 0.74 | ||||
24 | 218.578 | 0.68 | 0.952 | 0.634 | 0.753 | ||||
26 | 222.658 | 0.686 | 0.961 | 0.64 | 0.76 | ||||
28 | 224.302 | 0.689 | 0.964 | 0.642 | 0.763 | ||||
30 | 227.794 | 0.694 | 0.972 | 0.647 | 0.769 |
Gas | At 18 km, Night, T = 199.016 K | ||||
---|---|---|---|---|---|
Diffusion Coefficient (cm2/s) | Stratospheric Concentration (cm−3) | Concentration After Leader Discharge (cm−3) | |||
10−2 s | 0.2 s | 1 s | |||
NO2 | 0.649 | ||||
NO | 0.908 | 0 | |||
O3 | 0.605 | 0.2 | |||
N2O | 0.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Zhang, W. The Perturbation of Ozone and Nitrogen Oxides Impacted by Blue Jet Considering the Molecular Diffusion. Fluids 2023, 8, 176. https://doi.org/10.3390/fluids8060176
Xu C, Zhang W. The Perturbation of Ozone and Nitrogen Oxides Impacted by Blue Jet Considering the Molecular Diffusion. Fluids. 2023; 8(6):176. https://doi.org/10.3390/fluids8060176
Chicago/Turabian StyleXu, Chen, and Wei Zhang. 2023. "The Perturbation of Ozone and Nitrogen Oxides Impacted by Blue Jet Considering the Molecular Diffusion" Fluids 8, no. 6: 176. https://doi.org/10.3390/fluids8060176
APA StyleXu, C., & Zhang, W. (2023). The Perturbation of Ozone and Nitrogen Oxides Impacted by Blue Jet Considering the Molecular Diffusion. Fluids, 8(6), 176. https://doi.org/10.3390/fluids8060176