# Linear Stability of a Combined Convective Flow in an Annulus

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Formulation of the Problem

## 3. Bifurcation Analysis

## 4. Linear Stability Analysis

## 5. Numerical Results

## 6. Discussion

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hudoba, A.; Molokov, S. Linear stability of buoyant convective flow in a vertical channel with internal heat sources and a transverse magnetic field. Phys. Fluids
**2016**, 28, 114103. [Google Scholar] [CrossRef] [Green Version] - Lewandowski, W.M.; Ryms, M.; Kosakowski, W. Thermal biomass conversion: A review. Processes
**2020**, 8, 516. [Google Scholar] [CrossRef] - Barmina, I.; Purmalis, M.; Valdmanis, R.; Zake, M. Electrodynamic control of the combustion characteristics and energy production. Combust. Sci. Technol.
**2016**, 188, 190–206. [Google Scholar] [CrossRef] - Richard, Y. Physics of mantle convection. In Treatise of Geophysics; Elsevier: New York, NY, USA, 2015; Volume 7, pp. 23–71. [Google Scholar]
- Carkovs, J.; Matvejevs, A. Stochastic stability of pipeline induced by pulsed fluid flow. In Proceedings of the 15th Conference on Applied Mathematics Aplimat 2016, Bratislava, Slovakia, 2–4 February 2016; pp. 189–196. [Google Scholar]
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control
**1992**, 55, 531–534. [Google Scholar] [CrossRef] - Jones, C.A. The transition to wavy Taylor vortices. J. Fluid Mech.
**1985**, 157, 135–162. [Google Scholar] [CrossRef] - Avila, M.; Barkley, D.; Hof, B. Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech.
**2023**, 55, 575–602. [Google Scholar] [CrossRef] - Greenblatt, D.; Moss, E.A. Rapid transition to turbulence in pipe flows accelerated from rest. J. Fluid Eng.
**2003**, 125, 1072–1075. [Google Scholar] [CrossRef] - Gershuni, G.Z.; Zhukhovitskii, E.M.; Iakimov, A.A. Two kinds of instability of stationary convective motion induced by internal heat sources. J. Appl. Math. Mech.
**1973**, 37, 544–548. [Google Scholar] [CrossRef] - Takashima, M. The stability of natural convection in a vertical fluid layer with internal heat generation. J. Phys. Soc. Jpn.
**1983**, 52, 2364–2370. [Google Scholar] [CrossRef] - Takashima, M. The stability of natural convection due to internal heat sources in a vertical fluid layer. Fluid Dyn. Res.
**1990**, 6, 15–23. [Google Scholar] - Rogers, B.B.; Yao, L.S. The importance of Prandtl number for mixed-convection instability. Trans. ASME C J. Heat Transf.
**1993**, 115, 482–486. [Google Scholar] [CrossRef] - Kolyshkin, A.A.; Vaillancourt, R. Stability of internally generated thermal convection in a tall vertical annulus. Can. J. Phys.
**1991**, 69, 743–748. [Google Scholar] [CrossRef] - Kolyshkin, A.; Koliskina, V. Stability of a convective flow in a pipe caused by internal heat generation. JP J. Heat Mass Transf.
**2018**, 15, 515–530. [Google Scholar] [CrossRef] - Shankar, B.M.; Kumar, J.; Shivakumara, I.S. Stability of mixed convection in a differentially heated vertical fluid layer with internal heat sources. Fluid Dyn. Res.
**2019**, 51, 055501. [Google Scholar] - Shikhov, V.M.; Yakushin, V.I. Stability of convective motion caused by inhomogeneously distributed internal heat sources. Fluid Dyn.
**1977**, 12, 457–461. [Google Scholar] [CrossRef] - Rashevski, M.; Slavtchev, S.; Stoyanova, M. Natural and mixed convection in a vertical water-flow chamber in the presence of solar radiation. Eng. Sci. Technol.
**2022**, 33, 10173. [Google Scholar] [CrossRef] - Kolyshkin, A.A.; Vaillancourt, R. On the stability of convective motion caused by inhomogeneous heat sources. Arab. J. Sci. Eng.
**1992**, 17, 655–662. [Google Scholar] - Saravan, S.; Kandaswamy, P. Thermal instability of a nonunoformly heat generating annual fluid layer. Int. J. Heat Mass Transf.
**2006**, 49, 269–280. [Google Scholar] [CrossRef] - Kolyshkin, A.; Koliskina, V.; Volodko, I.; Iltins, I. Convective instability of a steady flow in an annulus caused by internal heat generation. Proc. Latv. Acad. Sci. Sect. B
**2020**, 74, 293–298. [Google Scholar] [CrossRef] - Yamakawa, C.K.; Quin, F.; Mussatto, S.I. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy
**2018**, 119, 54–60. [Google Scholar] [CrossRef] - Nussbauer, T. Combustion and co-combustion of biomass: Fundamentals, technologies and primary measures for emission reduction. Energy Fuels
**2003**, 17, 1510–1521. [Google Scholar] [CrossRef] - Luo, Z.; Zhou, J. Thermal convection of biomass. In Handbook of Climate Change Mitigation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1001–1042. [Google Scholar]
- Kalis, H.; Marinaki, M.; Strautins, U.; Zake, M. On numerical simulation of electromagnetic field effects in the combustion process. Math. Model. Anal.
**2018**, 23, 327–343. [Google Scholar] [CrossRef] [Green Version] - Eremin, E.A. On the stability of steady convective motion generated by internal heat sources. Fluid Dyn.
**1983**, 18, 438–441. [Google Scholar] [CrossRef] - Frank-Kamenetskii, D.A. Diffusion and Heat Exchange in Chemical Kinetics; Princeton: Princeton, NJ, USA, 1955. [Google Scholar]
- Boussinesq, J. Théory Analytique de la Chaleur; Gauthier-Villars: Paris, France, 1903. [Google Scholar]
- Spiegel, E.A.; Veronis, G. On the Boussinesq approximation for a compressible fluid. Astrophys. J.
**1960**, 131, 442–447. [Google Scholar] [CrossRef] - Mihailjan, J.M. A rigorous exposition of the Boussinesq approximation applicable to a thin layer of luid. Astrophys. J.
**1962**, 136, 1126–1133. [Google Scholar] [CrossRef] - Gershuni, G.Z.; Zhukhovitskii, E.M. Convective Stability of Incompressible Fluids; Ketter Publications: Jerusalem, Israel, 1976. [Google Scholar]
- Gray, D.D.; Giorgini, A. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf.
**1976**, 19, 545–551. [Google Scholar] [CrossRef] - White, D., Jr.; Johns, L.E. The Frank-Kamenetskii transformation. Chem. Eng. Sci.
**1987**, 42, 1849–1851. [Google Scholar] [CrossRef] - Bachelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Choi, I.G.; Corpela, S.A. Stability of the conduction regime of natural convection in a tall vertical annulus. J. Fluid Mech.
**1980**, 99, 725–738. [Google Scholar] [CrossRef] - Bebernes, J.; Eberly, D. Mathematical Problems from Combustion Theory; Springer: New York, NY, USA, 1989. [Google Scholar]
- Gritsans, A.; Kolyshkin, A.; Ogorelova, D.; Sadyrbaev, F.; Samuilik, I.; Yermachenko, I. Solutions of nonlinear boundary value problem with applications to biomass thermal conversion. In Proceedings of the 20th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 26–28 May 2021; pp. 837–842. [Google Scholar]
- Iltins, I.; Iltina, M.; Kolyshkin, A.; Koliskina, V. Linear stability of a convective flow in an annulus with a nonlinear heat source. JP J. Heat Mass Transfer.
**2019**, 18, 315–329. [Google Scholar] [CrossRef] - Noguchi, T.; Noda, Y.; Yamasaki, Y.; Inoue, S.; Kawai, Y.; Shimizu, Y.; Minowa, T.; Matsumura, Y. Heat transfer characteristics of biomass slurry under high pressure and high temperature. J. Jpn. Inst. Energy
**2011**, 90, 874–880. [Google Scholar] [CrossRef] [Green Version] - Wang, B.F.; Zhou, L.; Wan, Z.H.; Ma, D.J.; Sun, D.J. Stability analysis of Rayleigh-Benard convection in a cylinder with internal heat generation. Phys. Rev. E
**2016**, 94, 013108. [Google Scholar] [CrossRef] - Aranson, I.; Kramer, L. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys.
**2002**, 74, 99–143. [Google Scholar] [CrossRef] [Green Version] - Martinand, D.; Serre, E.; Lueptow, R.M. Linear and weakly nonlinear analyses of cylindrical Couette flow with axial and radial flows. J. Fluid Mech.
**2017**, 824, 438–476. [Google Scholar] [CrossRef] - Kolyshkin, A.A.; Ghidaoui, M.S. Stabiliy analysis of shallow wake flows. J. Fluid Mech.
**2003**, 494, 355–377. [Google Scholar] [CrossRef] [Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gritsans, A.; Koliskina, V.; Kolyshkin, A.; Sadyrbaev, F.
Linear Stability of a Combined Convective Flow in an Annulus. *Fluids* **2023**, *8*, 130.
https://doi.org/10.3390/fluids8040130

**AMA Style**

Gritsans A, Koliskina V, Kolyshkin A, Sadyrbaev F.
Linear Stability of a Combined Convective Flow in an Annulus. *Fluids*. 2023; 8(4):130.
https://doi.org/10.3390/fluids8040130

**Chicago/Turabian Style**

Gritsans, Armands, Valentina Koliskina, Andrei Kolyshkin, and Felix Sadyrbaev.
2023. "Linear Stability of a Combined Convective Flow in an Annulus" *Fluids* 8, no. 4: 130.
https://doi.org/10.3390/fluids8040130