# Numerical Simulation of High-Density Ratio Bubble Motion with interIsoFoam

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Code Description and Methods

## 3. Results

#### 3.1. interIsoFoam Validation

#### 3.1.1. 2D Stationary Drop

`symmetry`BC has been set on the sides of the square, while the

`empty`BC, which is the standard condition in OpenFOAM for boundaries positioned in the non-considered direction of a 2D model, has been used on the faces. Through the utility

`setAlphaField`, we have imposed ${r}_{\alpha}=1$ in the CVs inside the circumference and ${r}_{\alpha}=0$ in the external CVs, initializing the drop.

`pointCellsLeastSquares`scheme for the gradient discretization, the

`limitedLinearV`scheme with a blending factor equal to 1 for the velocity advection term discretization and the

`vanLeer`scheme has been employed for the volume fraction advection discretization. Three PISO cycles and three external PIMPLE cycles have been performed, using the solver

`smoothSolver`with the

`symGaussSeidel`smoother for the velocity resolution and the GAMG solver with the DIC smoother for the pressure. The isoAdvector method with 2 plic-RDF iterations in the reconstruction-step of the interface has been used. As indicated in [24], the maximum CFL number was imposed equal to 0.2 to guarantee a second order convergence for the interface advection step.

^{−7}(about 125 s of transient) in the range $1\xf74.5$ h.

#### 3.1.2. 2D Rising Bubble

`noSlip`condition for the bottom and top boundaries and the

`slip`condition, which imposes a zero shear stress, on the vertical boundaries. For pressure, the

`zeroGradient`BC has been employed, whereas for the faces normal to the non-considered direction the

`empty`condition has been employed. The light phase constituting the bubble (${\alpha}_{2}$) is initialized as described in Section 3.1.1, as well as the numerical set up, with the only difference in the value of the gravity acceleration which, in this case, has a finite value (Table 2). The mesh used is triangular and unstructured, shown in Figure 3b.

#### 3.1.3. 3D Rising Bubble

`noSlip`condition for the velocity and

`zeroGradient`for the pressure on all faces. The mesh used, shown in Figure 8b, is prismatic and unstructured. The mesh was generated from a 2D mesh extruded along the cylinder axis direction for a s number of steps. The resolution of the grid is greater around the axis of symmetry of the cylinder, where a uniform grid size h has been imposed, to maximize the resolution of the bubble. The mesh grows towards the edge of the cylinder, where the elements reach their maximum size. The same numerical setup described in Section 3.1.1 was used.

#### 3.1.4. Co-Axial Coalescence of Two Bubbles

`setAlphaField`utility, has the same diameter d as the first bubble shown Figure 8a and is positioned aligned with it with respect to the y-direction at a distance from its centroid equal to $1.5d$. The characteristic parameters for this case are: $Eo=16,Mo=2\times {10}^{-4},{\eta}_{\rho}=100$ and ${\eta}_{\mu}=100$.

#### 3.2. Rising He Bubble in PbLi

#### 3.2.1. Axisymmetric and Skirted Regimes

#### 3.2.2. Oscillatory Regime

#### 3.2.3. Peripheral and Central Breakup Regimes

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kikuchi, M.; Lackner, K.; Quang, M. Fusion Physics; International Atomic Energy Agency (IAEA): Vienna, Austria, 2012. [Google Scholar]
- Batet, L.; Fradera, J.; Valls, E.M.D.L.; Sedano, L.A. Numeric implementation of a nucleation, growth and transport model for helium bubbles in lead-lithium HCLL breeding blanket channels: Theory and code development. Fusion Eng. Des.
**2011**, 86, 421–428. [Google Scholar] [CrossRef] - Kordač, M.; Košek, L. Helium bubble formation in Pb-16Li within the breeding blanket. Fusion Eng. Des.
**2017**, 124, 700–704. [Google Scholar] [CrossRef] - Prosperetti, A.; Tryggvason, G. Computational Methods for Multiphase Flow; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef][Green Version]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.
**1981**, 39, 201–225. [Google Scholar] [CrossRef] - Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.
**1988**, 79, 12–49. [Google Scholar] [CrossRef][Green Version] - Deshpande, S.S.; Anumolu, L.; Trujillo, M.F. Evaluating the performance of the two-phase flow solver interFoam. Comput. Sci. Discov.
**2012**, 5, 014016. [Google Scholar] [CrossRef] - Cummins, S.J.; Francois, M.M.; Kothe, D.B. Estimating curvature from volume fractions. Comput. Struct.
**2005**, 83, 425–434. [Google Scholar] [CrossRef] - Wang, Z.; Yang, J.; Stern, F. An improved particle correction procedure for the particle level set method. J. Comput. Phys.
**2009**, 228, 5819–5837. [Google Scholar] [CrossRef] - Balcázar, N.; Lehmkuhl, O.; Jofre, L.; Rigola, J.; Oliva, A. A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes. Comput. Fluids
**2016**, 124, 12–29. [Google Scholar] [CrossRef][Green Version] - Nave, J.C.; Rosales, R.R.; Seibold, B. A gradient-augmented level set method with an optimally local, coherent advection scheme. J. Comput. Phys.
**2010**, 229, 3802–3827. [Google Scholar] [CrossRef][Green Version] - Francois, M.M.; Cummins, S.J.; Dendy, E.D.; Kothe, D.B.; Sicilian, J.M.; Williams, M.W. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys.
**2006**, 213, 141–173. [Google Scholar] [CrossRef] - Tryggvason, G.; Scardovelli, R.; Zaleski, S. Direct Numerical Simulations of Gas–Liquid Multiphase Flows; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Zhang, C.; Eckert, S.; Gerbeth, G. Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. Int. J. Multiph. Flow
**2005**, 31, 824–842. [Google Scholar] [CrossRef] - Schwarz, S.; Fröhlich, J. Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field. Int. J. Multiph. Flow
**2014**, 62, 134–151. [Google Scholar] [CrossRef] - Zhang, J.; Ni, M.J. A numerical study of a bubble pair rising side by side in external magnetic fields. J. Fluid Mech.
**2021**, 926. [Google Scholar] [CrossRef] - Kessel, C.E.; Andruczyk, D.; Blanchard, J.P.; Bohm, T.; Davis, A.; Hollis, K.; Humrickhouse, P.W.; Hvasta, M.; Jaworski, M.; Jun, J.; et al. Critical Exploration of Liquid Metal Plasma-Facing Components in a Fusion Nuclear Science Facility. Fusion Sci. Technol.
**2019**, 75, 886–917. [Google Scholar] [CrossRef] - Smolentsev, S.; Rognlien, T.; Tillack, M.; Waganer, L.; Kessel, C. Integrated Liquid Metal Flowing First Wall and Open-Surface Divertor for Fusion Nuclear Science Facility: Concept, Design, and Analysis. Fusion Sci. Technol.
**2019**, 75, 939–958. [Google Scholar] [CrossRef] - Siriano, S.; Tassone, A.; Caruso, G. Numerical Simulation of Thin-Film MHD Flow for Nonuniform Conductivity Walls. Fusion Sci. Technol.
**2021**, 77, 144–158. [Google Scholar] [CrossRef] - OpenFOAM: User Guide. Available online: https://www.openfoam.com/documentation/user-guide (accessed on 27 March 2022).
- Weller, H.G. A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow; Report TR/HGW; OpenCFD Ltd.: Bracknell, UK, 2008; Volume 4. [Google Scholar]
- Roenby, J.; Bredmose, H.; Jasak, H. A computational method for sharp interface advection. R. Soc. Open Sci.
**2016**, 3, 160405. [Google Scholar] [CrossRef] [PubMed][Green Version] - Roenby, J.; Bredmose, H.; Jasak, H. Isoadvector: Geometric vof on general meshes. In OpenFOAM—Selected Papers of the 11th Workshop; Springer: Cham, Switzerland, 2019; pp. 281–296. [Google Scholar] [CrossRef]
- Scheufler, H.; Roenby, J. Accurate and efficient surface reconstruction from volume fraction data on general meshes. J. Comput. Phys.
**2019**, 383, 1–23. [Google Scholar] [CrossRef][Green Version] - Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys.
**1992**, 100, 335–354. [Google Scholar] [CrossRef] - Gamet, L.; Scala, M.; Roenby, J.; Scheufler, H.; Pierson, J.L. Validation of volume-of-fluid OpenFOAM® isoAdvector solvers using single bubble benchmarks. Comput. Fluids
**2020**, 213, 104722. [Google Scholar] [CrossRef] - Hysing, S. Mixed element FEM level set method for numerical simulation of immiscible fluids. J. Comput. Phys.
**2012**, 231, 2449–2465. [Google Scholar] [CrossRef] - Popinet, S. Numerical Models of Surface Tension. Annu. Rev. Fluid Mech.
**2018**, 50, 49–75. [Google Scholar] [CrossRef][Green Version] - Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L. Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids
**2009**, 60, 1259–1288. [Google Scholar] [CrossRef] - Hua, J.; Stene, J.F.; Lin, P. Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J. Comput. Phys.
**2008**, 227, 3358–3382. [Google Scholar] [CrossRef][Green Version] - Bhaga, D.; Weber, M.E. Bubbles in viscous liquids: Shapes, wakes and velocities. J. Fluid Mech.
**1981**, 105, 61–85. [Google Scholar] [CrossRef][Green Version] - Hnat, J.G.; Buckmaster, J.D. Spherical cap bubbles and skirt formation. Phys. Fluids
**1976**, 19, 182–194. [Google Scholar] [CrossRef] - Brereton, G.; Korotney, D. Coaxial and oblique coalescence of two rising bubbles. Dyn. Bubbles Vortices Near Free. Surf.
**1991**, 119, 50–73. [Google Scholar] - Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci.
**2005**, 60, 2999–3011. [CrossRef] - Balcázar, N.; Jofre, L.; Lehmkuhl, O.; Castro, J.; Rigola, J. A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int. J. Multiph. Flow
**2014**, 64, 55–72. [Google Scholar] [CrossRef] - Clift, R.; Grace, J.; Weber, M. Bubbles, Drops and Particles; Dover Publications, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Tripathi, M.K.; Sahu, K.C.; Govindarajan, R. Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun.
**2015**, 6, 6268. [Google Scholar] [CrossRef][Green Version] - Sharaf, D.M.; Premlata, A.R.; Tripathi, M.K.; Karri, B.; Sahu, K.C. Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids
**2017**, 29, 122104. [Google Scholar] [CrossRef][Green Version] - The Engineering ToolBox. Helium—Density and Specific Weight. Available online: https://www.engineeringtoolbox.com/helium-density-specific-weight-temperature-pressure-d_2090.html (accessed on 27 March 2022).
- The Engineering ToolBox. Gases—Dynamic Viscosity. Available online: https://www.engineeringtoolbox.com/gases-absolute-dynamic-viscosity-d_1888.html (accessed on 27 March 2022).
- Zhang, J.; Ni, M.J. Direct simulation of multi-phase MHD flows on an unstructured Cartesian adaptive system. J. Comput. Phys.
**2014**, 270, 345–365. [Google Scholar] [CrossRef]

**Figure 1.**Computational domain, BCs, ICs (

**a**) and the detail of the mesh at the interface for the 2D static drop (

**b**). Red colour corresponds to ${r}_{\alpha}=1$ whereas the blue one to ${r}_{\alpha}=0$.

**Figure 2.**Pressure profile on the horizontal axis passing through the centre of the model (

**a**) and velocity vectors on the upper-right quarter, representing the spurious velocities, for the M3 mesh (${\eta}_{\rho}=1$) (

**b**).

**Figure 3.**Computational domain, BCs, ICs (

**a**) and mesh detail on the bubble at $t=0$ (

**b**) for the 2D rising bubble test. The black line in (

**b**) is the ${r}_{\alpha}=0.5$ contour.

**Figure 4.**Evolution of ${u}_{c}$ (

**a**) and $\xi $ (

**b**) for the C1 case provided by plicRDF on M4 mesh compared with Ref. [10].

**Figure 5.**2D bubble shape evolution for the C1 (

**a**) and C2 (

**b**) scenario represented through contour ${r}_{\alpha}=0.5$.

**Figure 6.**Evolution of ${u}_{c}$ (

**a**) and $\xi $ (

**b**) for the 2D C2 case provided by plicRDF compared with FreeLIFE code in Ref. [29].

**Figure 7.**Bubble shape at the end of the transient for cases C1 (

**a**), C2 (

**b**) and C3 (

**c**) represented through the half contour ${r}_{\alpha}=0.5$.

**Figure 8.**Half computational domain, BCs, ICs (

**a**) and mesh detail on the xz plane that cuts the bubble in half at $t=0$ (

**b**) for the 3D rising bubble test. The bubble, coloured in cyan, is represented through the isovolume $0\le \alpha \le 0.5$.

**Figure 9.**Evolution of Ga (

**a**) and $\mathsf{\Phi}$ (

**b**) for the 3D C1 case provided by plicRDF (M4 mesh) compared with Ref. [10].

**Figure 10.**Evolution of Ga (

**a**) and $\mathsf{\Phi}$ (

**b**) for the 3D C2 case provided by plicRDF compared with Ref. [10].

**Figure 11.**Evolution of ${u}^{*}$ (

**a**) and $\mathsf{\Phi}$ (

**b**) for the 3D C3 case provided by plicRDF compared with Ref. [10].

**Figure 12.**Bubble shapes for the coalescence test represented through the half contour ${r}_{\alpha}=0.5$, with velocity vectors, at four different times: ${t}^{*}=0.42$ (

**a**), ${t}^{*}=0.60$ (

**b**), ${t}^{*}=0.63$ (

**c**) and ${t}^{*}=0.97$ (

**d**).

**Figure 13.**Evolution of Ga for the coalescence case provided by plicRDF compared with Ref. [10].

**Figure 14.**Water-air phase plot showing different regions of bubble behaviours, adapted from Ref. [38].

**Table 1.**Mesh data and results for the mesh sensitivity study and for the ${\eta}_{\rho}=1000$ case, simulated with the M2 mesh.

Grid Size h (m) | Number of Elements | ${\mathit{L}}_{1}\left(\mathit{u}\right)$ | $\mathit{E}(\mathbf{\Delta}\mathit{p})$ | |
---|---|---|---|---|

M1 | 0.04 | 1400 | 2.68 × 10^{−3} | 0.125 |

M2 | 0.02 | 5678 | 1.84 × 10^{−3} | 0.068 |

M3 | 0.01 | 22,902 | 1.30 × 10^{−3} | 0.146 |

${\eta}_{\rho}=1000$ | 0.02 | 5678 | 4.1 × 10^{−1} | 0.075 |

${\mathit{\eta}}_{\mathit{\rho}}$ | ${\mathit{\eta}}_{\mathit{\mu}}$ | g (m s${}^{-2}$) | $\mathit{\gamma}$ (N m${}^{-1}$) | Eo | Ga | |
---|---|---|---|---|---|---|

C1 | 10 | 10 | 0.98 | 24.5 | 10 | 35 |

C2 | 1000 | 100 | 0.98 | 1.96 | 125 | 35 |

Grid Size h (m) | Number of Elements | |
---|---|---|

M1 | 0.01250 | 29,344 |

M2 | 0.00833 | 66,854 |

M3 | 0.00625 | 116,142 |

M4 | 0.00500 | 184,398 |

isoAlpha | plicRDF | |||||
---|---|---|---|---|---|---|

${\mathit{\xi}}_{\mathit{min}}$ | ${\mathit{u}}_{\mathit{c},\mathit{max}}$ (m s${}^{-1}$) | ${\mathit{y}}_{\mathit{c}}$ (t = 3 s) | ${\mathit{\xi}}_{\mathit{min}}$ | ${\mathit{u}}_{\mathit{c},\mathit{max}}$ (m s${}^{-1}$) | ${\mathit{y}}_{\mathit{c}}$ (t = 3 s) | |

M1 | 0.8939 | 0.2414 | 1.0831 | 0.8945 | 0.2413 | 1.0832 |

M2 | 0.8947 | 0.2409 | 1.0833 | 0.8946 | 0.2408 | 1.0834 |

M3 | 0.8952 | 0.2415 | 1.0839 | 0.8953 | 0.2413 | 1.0840 |

M4 | 0.8952 | 0.2417 | 1.0840 | 0.8955 | 0.2414 | 1.0841 |

${\mathit{\xi}}_{\mathit{min}}$ | ${\mathit{t}|}_{\mathit{\xi}={\mathit{\xi}}_{\mathit{min}}}$ | ${\mathit{u}}_{\mathit{c},\mathit{max}}$ (m s${}^{-1}$) | ${\mathit{t}|}_{{\mathit{u}}_{\mathit{c}}={\mathit{u}}_{\mathit{c},\mathit{max}}}$ | ${\mathit{y}}_{\mathit{c}}$ (t = 3 s) | |
---|---|---|---|---|---|

isoAlpha | 0.8952 | 1.8900 | 0.2415 | 0.9260 | 1.0839 |

plicRDF | 0.8953 | 1.9000 | 0.2413 | 0.9280 | 1.0840 |

Ref. [10] | 0.9005 | 1.8934 | 0.2414 | 0.9260 | 1.0809 |

Ref. [29] | 0.9014 | 1.9070 | 0.2419 | 0.9281 | 1.0812 |

**Table 6.**Benchmark results for the C2 case for both isoAlpha and pliRFD method compared with Ref. [29].

${\mathit{\xi}}_{\mathit{min}}$ | ${\mathit{t}|}_{\mathit{\xi}={\mathit{\xi}}_{\mathit{min}}}$ | ${\mathit{u}}_{\mathit{c},\mathit{max}}$ (m s${}^{-1}$) | ${\mathit{t}|}_{{\mathit{u}}_{\mathit{c}}={\mathit{u}}_{\mathit{c},\mathit{max}}}$ | ${\mathit{y}}_{\mathit{c}}$ (t = 3 s) | |
---|---|---|---|---|---|

isoAlpha | 0.4743 | 3.0000 | 0.2491 | 0.7170 | 1.1175 |

plicRDF | 0.4725 | 3.0000 | 0.2491 | 0.7180 | 1.1175 |

TP2D | 0.5869 | 2.4004 | 0.2524 | 0.7332 | 1.1380 |

FreeLIFE | 0.4647 | 3.0000 | 0.2514 | 0.7281 | 1.1249 |

MooNMD | 0.5144 | 3.0000 | 0.2502 | 0.7317 | 1.1376 |

${\mathit{\eta}}_{\mathit{\rho}}$ | ${\mathit{\eta}}_{\mathit{\mu}}$ | g (m s${}^{-2}$) | $\mathit{\gamma}$ (N m${}^{-1}$) | Eo | Mo | |
---|---|---|---|---|---|---|

C1 | 100 | 100 | 9.81 | 8.37 × 10^{−3} | 116 | 41.1 |

C2 | 100 | 100 | 9.81 | 2.86 × 10^{−3} | 339 | 43.1 |

C3 | 714 | 6670 | 9.81 | 2.49 × 10^{−2} | 39.4 | 0.065 |

Grid Size h (cm) | Axial Divisions s | Number of Elements | |
---|---|---|---|

M1 | 0.067 | 120 | 222,720 |

M2 | 0.050 | 160 | 774,400 |

M3 | 0.033 | 240 | 2,881,200 |

M4 | 0.025 | 320 | 7,128,320 |

**Table 9.**Mesh sensitivity study results for 3D rising bubble C1 case. Absolute error E has as reference value that of the M4 mesh.

$\mathbf{\Phi}$ | ${\mathit{E}}_{\mathbf{\Phi}}(\%)$ | Ga | ${\mathit{E}}_{Ga}(\%)$ | |
---|---|---|---|---|

M1 | 0.8341 | 2.807 | 7.0894 | 0.263 |

M2 | 0.8181 | 0.901 | 7.1176 | 0.134 |

M3 | 0.8126 | 0.234 | 7.1032 | 0.068 |

M4 | 0.8107 | - | 7.1080 | - |

Ga | ${\mathit{E}}_{Ga}(\%)$ | $\mathbf{\Phi}$ | ${\mathit{E}}_{\mathbf{\Phi}}(\%)$ | |
---|---|---|---|---|

pliRDF | 7.09 | - | 0.82 | - |

Ref. [10] | 7.02 | 0.98 | 0.81 | 0.71 |

Ref. [31] | 7.16 | 1.00 | - | - |

Ref. [30] | 7.0 | 1.27 | - | - |

${\mathit{u}}^{*}$ | ${\mathit{E}}_{{\mathit{u}}^{*}}(\%)$ | |
---|---|---|

pliRDF | 0.6195 | - |

Ref. [10] | 0.6110 | 1.40 |

Ref. [32] | 0.6226 | 0.49 |

$\mathit{d}/2$ (mm) | ${\mathit{\eta}}_{\mathit{\rho}}$ | ${\mathit{\eta}}_{\mathit{\mu}}$ | Ga | Eo | |
---|---|---|---|---|---|

B1 | 0.2 | 1.24 × 10^{5} | 61 | 44 | 8.44 × 10^{−3} |

B2 | 116 | 5.00 × 10^{4} | 100 | 12 | 4.86 × 10^{3} |

B3 | 1 | 1.24 × 10^{5} | 61 | 497 | 0.21 |

B4 | 10 | 1.24 × 10^{5} | 61 | 1.57 × 10^{4} | 21.1 |

B5 | 100 | 1.24 × 10^{5} | 61 | 4.97 × 10^{5} | 2.11 × 10^{3} |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Siriano, S.; Balcázar, N.; Tassone, A.; Rigola, J.; Caruso, G. Numerical Simulation of High-Density Ratio Bubble Motion with interIsoFoam. *Fluids* **2022**, *7*, 152.
https://doi.org/10.3390/fluids7050152

**AMA Style**

Siriano S, Balcázar N, Tassone A, Rigola J, Caruso G. Numerical Simulation of High-Density Ratio Bubble Motion with interIsoFoam. *Fluids*. 2022; 7(5):152.
https://doi.org/10.3390/fluids7050152

**Chicago/Turabian Style**

Siriano, Simone, Néstor Balcázar, Alessandro Tassone, Joaquim Rigola, and Gianfranco Caruso. 2022. "Numerical Simulation of High-Density Ratio Bubble Motion with interIsoFoam" *Fluids* 7, no. 5: 152.
https://doi.org/10.3390/fluids7050152