Calculation of the Pressure Field for Turbulent Flow around a Surface-Mounted Cube Using the SIMPLE Algorithm and PIV Data
Abstract
1. Introduction
2. Computational Method
2.1. Basic Equations and Discretisation
2.2. Geometry and Experimental Configuration
2.3. Boundary Conditions and Iterative Method
- The pressure correction equation, i.e., Equation (7), is solved once having introduced as initial velocity fields those emanating from the PIV measurements;
- The RANS momentum equations are solved with the corrected velocity and pressure fields, having included the Reynolds Stresses from the PIV data. Reynolds stresses are not corrected in this work.
- The aforementioned iterative steps are repeated until there is the best possible convergence.
2.4. Post-Processing Tools and Validation
3. Results and Discussion
3.1. Results for Plane A
3.2. Results for Plane B
3.3. Results for Plane C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arabgolarcheh, A.; Jannesarahmadi, S.; Benini, E. Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method. Renew. Energy 2022, 185, 871–887. [Google Scholar] [CrossRef]
- Pomaranzi, G.; Amerio, L.; Schito, P.; Lamberti, G.; Gorlé, C.; Zasso, A. Wind tunnel pressure data analysis for peak cladding load estimation on a high-rise building. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104855. [Google Scholar] [CrossRef]
- Van Oudheusden, B. PIV-based pressure measurement. Meas. Sci. Technol. 2013, 24, 032001. [Google Scholar] [CrossRef]
- Klein, C.; Engler, R.H.; Henne, U.; Sachs, W.E. Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel. Exp. Fluids 2005, 39, 475–483. [Google Scholar] [CrossRef]
- Anyoji, M.; Numata, D.; Nagai, H.; Asai, K. Pressure-sensitive paint technique for surface pressure measurements in a low-density wind tunnel. J. Vis. 2015, 18, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Ran, B.; Katz, J. Pressure fluctuations and their effect on cavitation inception within water jets. J. Fluid Mech. 1994, 262, 223–263. [Google Scholar] [CrossRef]
- Van Oudheusden, B.W.; Scarano, F.; Roosenboom, E.W.; Casimiri, E.W.; Souverein, L.J. Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp. Fluids 2007, 43, 153–162. [Google Scholar] [CrossRef]
- Fujisawa, N.; Tanahashi, S.; Srinivas, K. Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement. Meas. Sci. Technol. 2005, 16, 989. [Google Scholar] [CrossRef]
- Vanierschot, M.; Van den Bulck, E. Planar pressure field determination in the initial merging zone of an annular swirling jet based on stereo-PIV measurements. Sensors 2008, 8, 7596–7608. [Google Scholar] [CrossRef]
- De Kat, R.; Van Oudheusden, B.; Scarano, F. Instantaneous planar pressure field determination based on time-resolved Stereo-PIV. In Proceedings of the EWA International Workshop on Advanced Measurement Techniques in Aerodynamics, Delft, The Netherlands, 31 March–1 April 2008; pp. 1–5. [Google Scholar]
- Charonko, J.J.; King, C.V.; Smith, B.L.; Vlachos, P.P. Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol. 2010, 21, 105401. [Google Scholar] [CrossRef]
- Suryadi, A.; Obi, S. The estimation of pressure on the surface of a flapping rigid plate by stereo PIV. Exp. Fluids 2011, 51, 1403–1416. [Google Scholar] [CrossRef]
- Van der Kindere, J.; Laskari, A.; Ganapathisubramani, B.; De Kat, R. Pressure from 2D snapshot PIV. Exp. Fluids 2019, 60, 1–18. [Google Scholar] [CrossRef]
- De Kat, R.; Van Oudheusden, B. Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 2012, 52, 1089–1106. [Google Scholar] [CrossRef]
- Van Gent, P.; Michaelis, D.; Van Oudheusden, B.; Weiss, P.; Kat, R.; Laskari, A.; Jeon, Y.; David, L.; Schanz, D.; Huhn, F.; et al. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Exp. Fluids 2017, 58, 1–23. [Google Scholar] [CrossRef]
- Ragni, D.; Ashok, A.; Van Oudheusden, B.; Scarano, F. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas. Sci. Technol. 2009, 20, 074005. [Google Scholar] [CrossRef]
- De Kat, R.; van Oudheusden, B.; Scarano, F. Instantaneous pressure field determination in a 3d flow using time resolved thin volume tomographic-PIV. In Proceedings of the 8th International Symposium on Particle Image Velocimetry—PIV09, Melbourne, Australia, 25–28 August 2009. [Google Scholar]
- Violato, D.; Moore, P.; Scarano, F. Lagrangian and Eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV. Exp. Fluids 2011, 50, 1057–1070. [Google Scholar] [CrossRef]
- Koschatzky, V.; Overmars, E.; Boersma, B.; Westerweel, J. Comparison of planar PIV and tomographic PIV for aeroacoustics. In Proceedings of the 16th International Symposium on Applications of Laser Techniques to Fluids Mechanics, Lisbon, Portugal, 9–12 July 2012. [Google Scholar]
- Percin, M.; Vanierschot, M.; Van Oudheusden, B. Analysis of the pressure fields in a swirling annular jet flow. Exp. Fluids 2017, 58, 1–13. [Google Scholar] [CrossRef]
- Hayase, T.; Hayashi, S. State estimator of flow as an integrated computational method with the feedback of online experimental measurement. J. Fluids Eng. Trans. ASME 1997, 119, 814–822. [Google Scholar] [CrossRef][Green Version]
- Neeteson, N.J.; Rival, D.E. State observer-based data assimilation: A PID control-inspired observer in the pressure equation. Meas. Sci. Technol. 2019, 31, 014003. [Google Scholar] [CrossRef]
- Hayase, T. A review of measurement-integrated simulation of complex real flows. J. Flow Control. Meas. Vis. 2015, 3, 51. [Google Scholar] [CrossRef][Green Version]
- Saredi, E.; Ramesh, N.T.; Sciacchitano, A.; Scarano, F. State observer data assimilation for RANS with time-averaged 3D-PIV data. Comput. Fluids 2021, 218, 104827. [Google Scholar] [CrossRef]
- Jaw, S.Y.; Chen, J.H.; Wu, P.C. Measurement of pressure distribution from PIV experiments. J. Vis. 2009, 12, 27–35. [Google Scholar] [CrossRef]
- Gunaydinoglu, E.; Kurtulus, D.F. Pressure–velocity coupling algorithm-based pressure reconstruction from PIV for laminar flows. Exp. Fluids 2020, 61, 1–20. [Google Scholar] [CrossRef]
- Alfonsi, G.; Lauria, A.; Primavera, L. On evaluation of wave forces and runups on cylindrical obstacles. J. Flow Vis. Image Process. 2013, 20, 269–291. [Google Scholar] [CrossRef]
- Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data assimilation in the geosciences: An overview of methods, issues, and perspectives. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e535. [Google Scholar] [CrossRef]
- Tandeo, P.; Ailliot, P.; Bocquet, M.; Carrassi, A.; Miyoshi, T.; Pulido, M.; Zhen, Y. A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation. Mon. Weather. Rev. 2020, 148, 3973–3994. [Google Scholar] [CrossRef]
- Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.; Yorke, J.A. A local ensemble Kalman filter for atmospheric data assimilation. Tellus A Dyn. Meteorol. Oceanogr. 2004, 56, 415–428. [Google Scholar] [CrossRef]
- Asch, M.; Bocquet, M.; Nodet, M. Data Assimilation: Methods, Algorithms, and Applications; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar]
- Gronskis, A.; Heitz, D.; Mémin, E. Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation. J. Comput. Phys. 2013, 242, 480–497. [Google Scholar] [CrossRef]
- Suzuki, T. Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation. J. Fluid Mech. 2012, 709, 249–288. [Google Scholar] [CrossRef]
- Kato, H.; Obayashi, S. Integration of CFD and wind tunnel by data assimilation. J. Fluid Sci. Technol. 2011, 6, 717–728. [Google Scholar] [CrossRef]
- Manolesos, M.; Gao, Z.; Bouris, D. Experimental investigation of the atmospheric boundary layer flow past a building model with openings. Build. Environ. 2018, 141, 166–181. [Google Scholar] [CrossRef]
- Konstantinidis, E.; Bouris, D. Vortex synchronization in the cylinder wake due to harmonic and non-harmonic perturbations. J. Fluid Mech. 2016, 804, 248–277. [Google Scholar] [CrossRef]
- Kopanidis, A.; Theodorakakos, A.; Gavaises, E.; Bouris, D. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int. J. Heat Mass Transf. 2010, 53, 2539–2550. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow, 1st ed.; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Rhie, C.M.; Chow, W.L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 1983, 21, 1525–1532. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: Berlin/Heidelberg, Germany, 1998; Volume 2. [Google Scholar]
- Adrian, R.J. Twenty years of particle image velocimetry. Exp. Fluids 2005, 39, 159–169. [Google Scholar] [CrossRef]
- Jurelionis, A.; Bouris, D. Impact of urban morphology on infiltration-induced building energy consumption. Energies 2016, 9, 177. [Google Scholar] [CrossRef]
- Bouris, D.; Triantafyllou, A.; Krestou, A.; Leivaditou, E.; Skordas, J.; Konstantinidis, E.; Kopanidis, A.; Wang, Q. Urban-Scale Computational Fluid Dynamics Simulations with Boundary Conditions from Similarity Theory and a Mesoscale Model. Energies 2021, 14, 5624. [Google Scholar] [CrossRef]
- Bouris, D.; Bergeles, G. 2D LES of vortex shedding from a square cylinder. J. Wind Eng. Ind. Aerodyn. 1999, 80, 31–46. [Google Scholar] [CrossRef]
- Manolesos, M.; Gao, Z.; Xing, Z.; Panos, M.; Bouris, D. Experimental study of the flow past a cube with openings embedded in a turbulent boundary layer. In Proceedings of the 10th International Symposium on Turbulence and Shear Flow Phenomena, Chicago, IL, USA, 7–9 July 2017. [Google Scholar]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Courier Corporation: Chelmsford, MA, USA, 2007. [Google Scholar]
- Hölscher, N.; Niemann, H.J. Towards quality assurance for wind tunnel tests: A comparative testing program of the Windtechnologische Gesellschaft. J. Wind Eng. Ind. Aerodyn. 1998, 74, 599–608. [Google Scholar] [CrossRef]
- Castro, I.; Robins, A. The flow around a surface-mounted cube in uniform and turbulent streams. J. Fluid Mech. 1977, 79, 307–335. [Google Scholar] [CrossRef]
Plane | ||||
---|---|---|---|---|
A | 130 | 126 | 1.68 | 1.63 |
Plane | ||||
---|---|---|---|---|
B | 99 | 104 | 1.52 | 1.60 |
Plane | ||||
---|---|---|---|---|
C | 44 | 50 | 1.32 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallas, N.-P.; Bouris, D. Calculation of the Pressure Field for Turbulent Flow around a Surface-Mounted Cube Using the SIMPLE Algorithm and PIV Data. Fluids 2022, 7, 140. https://doi.org/10.3390/fluids7040140
Pallas N-P, Bouris D. Calculation of the Pressure Field for Turbulent Flow around a Surface-Mounted Cube Using the SIMPLE Algorithm and PIV Data. Fluids. 2022; 7(4):140. https://doi.org/10.3390/fluids7040140
Chicago/Turabian StylePallas, Nikolaos-Petros, and Demetri Bouris. 2022. "Calculation of the Pressure Field for Turbulent Flow around a Surface-Mounted Cube Using the SIMPLE Algorithm and PIV Data" Fluids 7, no. 4: 140. https://doi.org/10.3390/fluids7040140
APA StylePallas, N.-P., & Bouris, D. (2022). Calculation of the Pressure Field for Turbulent Flow around a Surface-Mounted Cube Using the SIMPLE Algorithm and PIV Data. Fluids, 7(4), 140. https://doi.org/10.3390/fluids7040140