Self-Consistent Hydrodynamic Model of Electron Vortex Fluid in Solids
Abstract
:1. Introduction
2. Hydrodynamic Model of Electron Fluid in Superconductor
2.1. System of Self-Consistent Equations
2.2. System of Linearized Equations
2.3. Sound Waves in a Superconducting Condensate
2.4. Relation to the London Equations
3. Hydrodynamic Model of Ideal Electron-Hole Fluid in Semiconductor
4. Hydrodynamic Model of Electron Fluid in Normal Metal
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurzhi, R.N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Uspekhi 1968, 11, 255–270. [Google Scholar] [CrossRef]
- de Jong, M.J.M.; Molenkamp, L.W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 1995, 51, 13389. [Google Scholar] [CrossRef] [Green Version]
- Greiter, M.; Wilczek, F.; Witten, E. Hydrodynamic relations in superconductivity. Mod. Phys. Lett. B 1989, 3, 903–918. [Google Scholar] [CrossRef]
- Liu, M. Superconducting hydrodynamics and Higgs analogy. J. Low Temp. Phys. 2002, 126, 911–922. [Google Scholar] [CrossRef]
- Akbari-Moghanjoughi, M.; Eliasson, B. Hydrodynamic theory of partially degenerate electron–hole fluids in semiconductors. Phys. Scr. 2016, 91, 105601. [Google Scholar] [CrossRef] [Green Version]
- Maack, J.R.; Mortensen, N.A.; Wubs, M. Two-fluid hydrodynamic model for semiconductors. Phys. Rev. B 2018, 97, 115415. [Google Scholar] [CrossRef] [Green Version]
- Svintsov, D.; Vyurkov, V.; Yurchenko, S.; Otsuji, T.; Ryzhii, V. Hydrodynamic model for electron-hole plasma in grapheme. J. Appl. Phys. 2012, 111, 083715. [Google Scholar] [CrossRef]
- Pellegrino, F.M.D.; Torre, I.; Geim, A.K.; Polini, M. Electron hydrodynamics dilemma: Whirlpools or no whirlpools. Phys. Rev. B 2016, 94, 155414. [Google Scholar] [CrossRef] [Green Version]
- Aharon-Steinberg, A.; Völkl, T.; Kaplan, A.; Pariari, A.K.; Roy, I.; Holder, T.; Wolf, Y.; Meltzer, A.Y.; Myasoedov, Y.; Huber, M.E.; et al. Direct observation of vortices in an electron fluid. Nature 2022, 607, 74–80. [Google Scholar] [CrossRef]
- Logan, J.G. Hydrodynamic analog of the classical field equations. Phys. Fluids 1962, 5, 868–869. [Google Scholar] [CrossRef]
- Marmanis, H. Analogy between the Navier-Stokes equations and Maxwell’s equations: Application to turbulence. Phys. Fluids 1998, 10, 1428–1437. [Google Scholar] [CrossRef]
- Kambe, T. A new formulation of equation of compressible fluids by analogy with Maxwell’s equations. Fluid Dyn. Res. 2010, 42, 055502. [Google Scholar] [CrossRef]
- Kambe, T. On fluid Maxwell equations. In Springer Proceedings in Physics, Vol. 145. Frontiers of Fundamental Physics and Physics Education Research; Sidharth, B.G., Michelini, M., Santi., L., Eds.; Springer: Heidelberg, Germany, 2014; pp. 287–296. [Google Scholar]
- Demir, S.; Tanişli, M. Spacetime algebra for the reformulation of fluid field equations. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750075. [Google Scholar] [CrossRef]
- Thompson, R.J.; Moeller, T.M. Numerical and closed-form solutions for the Maxwell equations of incompressible flow. Phys. Fluids 2018, 30, 083606. [Google Scholar] [CrossRef]
- Mendes, C.R.; Takakura, F.I.; Abreu, E.M.C.; Neto, J.A. Compressible fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan-Boltzmann law. Ann. Phys. 2017, 380, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Mendes, C.R.; Takakura, F.I.; Abreu, E.M.C.; Neto, J.A.; Silva, P.P.; Frossad, J.V. Helicity and vortex generation. Ann. Phys. 2018, 398, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Tanişli, M.; Demir, S.; Sahin, N. Octonic formulations of Maxwell type fluid equations. J. Math. Phys. 2015, 56, 091701. [Google Scholar] [CrossRef]
- Demir, S.; Tanişli, M.; Kansu, M.E. Octonic Maxwell-type multifluid plasma equations. Eur. Phys. J. Plus 2021, 136, 332. [Google Scholar] [CrossRef]
- Thompson, R.J.; Moeller, T.M. A Maxwell formulation for the equations of a plasma. Phys. Plasmas 2012, 19, 010702. [Google Scholar] [CrossRef]
- Thompson, R.J.; Moeller, T.M. Classical field isomorphisms in two-fluid plasmas. Phys. Plasmas 2012, 19, 082116. [Google Scholar] [CrossRef]
- Chanyal, C.; Pathak, M. Quaternionic approach to dual Magneto-hydrodynamics of dyonic cold plasma. Adv. High Energy Phys. 2018, 13, 7843730. [Google Scholar]
- Tanişli, M.; Demir, S.; Sahin, N.; Kansu, M.E. Biquaternionic reformulation of multifluid plasma equations. Chin. J. Phys. 2017, 55, 1329. [Google Scholar]
- Helmholtz, H. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Für Die Reine Und Angew. Math. 1858, 55, 25–55. [Google Scholar]
- Mironov, V.L.; Mironov, S.V. Generalized sedeonic equations of hydrodynamics. Eur. Phys. J. Plus 2020, 135, 708. [Google Scholar] [CrossRef]
- Mironov, V.L. Self-consistent hydrodynamic two-fluid model of vortex plasma. Phys. Fluids 2021, 33, 037116. [Google Scholar] [CrossRef]
- London, F.; London, H. The electromagnetic equations of supraconductor. Proc. R. Soc. Lond. A 1935, 149, 71–88. [Google Scholar]
- Mironov, V.L. Generalization of London equations with space-time sedeons. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150039. [Google Scholar] [CrossRef]
- Weng, Z.-H. Superconducting currents and charge gradients in the octonion spaces. Eur. Phys. J. Plus 2020, 135, 443. [Google Scholar] [CrossRef]
- Mironov, V.L. Quaternion equations for hydrodynamic two-fluid model of vortex plasma. Int. J. Geom. Methods Mod. Phys. 2022; in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironov, V.L. Self-Consistent Hydrodynamic Model of Electron Vortex Fluid in Solids. Fluids 2022, 7, 330. https://doi.org/10.3390/fluids7100330
Mironov VL. Self-Consistent Hydrodynamic Model of Electron Vortex Fluid in Solids. Fluids. 2022; 7(10):330. https://doi.org/10.3390/fluids7100330
Chicago/Turabian StyleMironov, Victor L. 2022. "Self-Consistent Hydrodynamic Model of Electron Vortex Fluid in Solids" Fluids 7, no. 10: 330. https://doi.org/10.3390/fluids7100330
APA StyleMironov, V. L. (2022). Self-Consistent Hydrodynamic Model of Electron Vortex Fluid in Solids. Fluids, 7(10), 330. https://doi.org/10.3390/fluids7100330