Wind-Forced Submesoscale Symmetric Instability around Deep Convection in the Northwestern Mediterranean Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glider Measurements
2.2. Numerical Model
2.3. Thermodynamic and Wind Effects of Surface Forcing
2.4. Potential Vorticity
2.5. Flow Instabilities
2.6. Estimating PV with Gliders
2.7. Validation of Glider-Based PV
3. Results
3.1. Deep Convection and Seasonality of Submesoscale
3.2. Northern Current Frontal Dynamics during a Down-Front Wind Event
3.3. The Basin-Scale PV Response to Typical Winter Mistral Wind Event
3.4. Seasonal PV Destruction Along the Northern Current Front
3.5. Symmetric Instability in the Northern Current Observed by Gliders
3.6. Wind Forcing of Symmetric Instability
3.7. Vertical Circulations and Biogeochemical Implications
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D’Ortenzio, F.; Bouin, M.N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; et al. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period. J. Geophys. Res. Ocean. 2016, 121, 8139–8171. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Schott, F. Open-ocean convection: Observations, theory, and models. Rev. Geophys. 1999, 37, 1–64. [Google Scholar] [CrossRef] [Green Version]
- Send, U.; Marshall, J. Integral Effects of Deep Convection. J. Phys. Oceanogr. 1995, 25, 855–872. [Google Scholar] [CrossRef]
- Koelling, J.; Wallace, D.W.R.; Send, U.; Karstensen, J. Intense oceanic uptake of oxygen during 2014–2015 winter convection in the Labrador Sea. Geophys. Res. Lett. 2017, 44, 7855–7864. [Google Scholar] [CrossRef] [Green Version]
- Coppola, L.; Prieur, L.; Taupier-Letage, I.; Estournel, C.; Testor, P.; Lefevre, D.; Belamari, S.; LeReste, S.; Taillandier, V. Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013. J. Geophys. Res. Ocean. 2017, 122, 6325–6341. [Google Scholar] [CrossRef] [Green Version]
- Ulses, C.; Estournel, C.; Fourrier, M.; Coppola, L.; Kessouri, F.; Lefèvre, D.; Marsaleix, P. Oxygen budget of the north-western Mediterranean deep-convection region. Biogeosciences 2021, 18, 937–960. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Lavigne, H.; Besson, F.; Claustre, H.; Coppola, L.; Garcia, N.; Laës-Huon, A.; Reste, S.L.; Malardé, D.; Migon, C.; et al. Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment. Geophys. Res. Lett. 2014, 41, 6443–6451. [Google Scholar] [CrossRef] [Green Version]
- Lacour, L.; Claustre, H.; Prieur, L.; D’Ortenzio, F. Phytoplankton biomass cycles in the North Atlantic subpolar gyre: A similar mechanism for two different blooms in the Labrador Sea. Geophys. Res. Lett. 2015, 42, 5403–5410. [Google Scholar] [CrossRef] [Green Version]
- Mayot, N.; D’Ortenzio, F.; Taillandier, V.; Prieur, L.; de Fommervault, O.P.; Claustre, H.; Bosse, A.; Testor, P.; Conan, P. Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment). J. Geophys. Res. Ocean. 2017, 122, 9999–10019. [Google Scholar] [CrossRef]
- Fröb, F.; Olsen, A.; Våge, K.; Moore, G.W.K.; Yashayaev, I.; Jeansson, E.; Rajasakaren, B. Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior. Nat. Commun. 2016, 7, 13244. [Google Scholar] [CrossRef]
- Spall, M.A. Dynamics of Downwelling in an Eddy-Resolving Convective Basin. J. Phys. Oceanogr. 2010, 40, 2341–2347. [Google Scholar] [CrossRef] [Green Version]
- Waldman, R.; Brüggemann, N.; Bosse, A.; Spall, M.; Somot, S.; Sevault, F. Overturning the Mediterranean Thermohaline Circulation. Geophys. Res. Lett. 2018, 45, 8407–8415. [Google Scholar] [CrossRef] [Green Version]
- Somot, S.; Houpert, L.; Sevault, F.; Testor, P.; Bosse, A.; Taupier-Letage, I.; Bouin, M.N.; Waldman, R.; Cassou, C.; Sanchez-Gomez, E.; et al. Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea. Clim. Dyn. 2018, 51, 1179–1210. [Google Scholar] [CrossRef]
- Schroeder, K.; Ribotti, A.; Borghini, M.; Sorgente, R.; Perilli, A.; Gasparini, G.P. An extensive western Mediterranean deep water renewal between 2004 and 2006. Geophys. Res. Lett. 2008, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, K.; Chiggiato, J.; Bryden, H.L.; Borghini, M.; Ben Ismail, S. Abrupt climate shift in the Western Mediterranean Sea. Sci. Rep. 2016, 6, 23009. [Google Scholar] [CrossRef] [Green Version]
- Margirier, F.; Testor, P.; Heslop, E.; Mallil, K.; Bosse, A.; Houpert, L.; Mortier, L.; Bouin, M.N.; Coppola, L.; D’ortenzio, F.; et al. Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Somot, S.; Sevault, F.; Déqué, M. Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim. Dyn. 2006, 27, 851–879. [Google Scholar] [CrossRef] [Green Version]
- Somot, S.; Sevault, F.; Déqué, M.; Crépon, M. 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob. Planet. Chang. 2008, 63, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.; Estournel, C.; Adloff, F.; Diaz, F. Impact of climate change on the northwestern Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle. J. Geophys. Res. Ocean. 2014, 119, 5815–5836. [Google Scholar] [CrossRef]
- Macias, D.; Garcia-Gorriz, E.; Stips, A. Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios. Sci. Rep. 2018, 8, 6626. [Google Scholar] [CrossRef]
- MEDOC Group. Observation of Formation of Deep Water in the Mediterranean Sea, 1969. Nature 1970, 225, 1037–1040. [Google Scholar] [CrossRef]
- Testor, P.; Bosse, A.; Houpert, L.; Margirier, F.; Mortier, L.; Legoff, H.; Dausse, D.; Labaste, M.; Karstensen, J.; Hayes, D.; et al. Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms. J. Geophys. Res. Ocean. 2018, 123, 1745–1776. [Google Scholar] [CrossRef] [Green Version]
- Leaman, K.D.; Schott, F.A. Hydrographic Structure of the Convection Regime in the Gulf of Lions: Winter 1987. J. Phys. Oceanogr. 1991, 21, 575–598. [Google Scholar] [CrossRef] [Green Version]
- Gascard, J.C. Mediterranean deep water formation baroclinic instability and oceanic eddies. Oceanol. Acta 1978, 1, 315–330. [Google Scholar]
- Legg, S.; Marshall, J.C. A Heton Model of the Spreading Phase of Open-Ocean Deep Convection. J. Phys. Oceanogr. 1993, 23, 1040–1056. [Google Scholar] [CrossRef] [Green Version]
- Visbeck, M.; Marshall, J.; Jones, H. Dynamics of Isolated Convective Regions in the Ocean. J. Phys. Oceanogr. 1996. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Marshall, J. Restratification after Deep Convection. J. Phys. Oceanogr. 1997, 27, 2276–2287. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, J.C. Submesoscale, coherent vortices in the ocean. Rev. Geophys. 1985, 23, 165. [Google Scholar] [CrossRef]
- Lilly, J.M.; Rhines, P.B. Coherent Eddies in the Labrador Sea Observed from a Mooring. J. Phys. Oceanogr. 2002, 32, 585–598. [Google Scholar] [CrossRef]
- Testor, P.; Gascard, J.C. Large-Scale Spreading of Deep Waters in the Western Mediterranean Sea by Submesoscale Coherent Eddies. J. Phys. Oceanogr. 2003, 33, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Testor, P.; Gascard, J.C.C. Post-convection spreading phase in the Northwestern Mediterranean Sea. Deep. Sea Res. Part I 2006, 53, 869–893. [Google Scholar] [CrossRef]
- Bower, A.S.; Hendry, R.M.; Amrhein, D.E.; Lilly, J.M. Direct observations of formation and propagation of subpolar eddies into the subtropical North Atlantic. Deep Sea Res. II 2013, 85, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, P.; Xu, L.; Li, C.; Zhao, W.; Tian, J.; Qu, T. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014. Geophys. Res. Lett. 2015, 42, 6438–6445. [Google Scholar] [CrossRef] [Green Version]
- Bosse, A.; Testor, P.; Houpert, L.; Damien, P.; Prieur, L.; Hayes, D.; Taillandier, V.; Durrieu de Madron, X.; d’Ortenzio, F.; Coppola, L.; et al. Scales and dynamics of Submesoscale Coherent Vortices formed by deep convection in the northwestern Mediterranean Sea. J. Geophys. Res. Ocean. 2016, 121, 7716–7742. [Google Scholar] [CrossRef]
- Bosse, A.; Testor, P.; Mayot, N.; Prieur, L.; D’Ortenzio, F.; Mortier, L.; Le Goff, H.; Gourcuff, C.; Coppola, L.; Lavigne, H.; et al. A submesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to biological implications. J. Geophys. Res. Ocean. 2017, 122, 6196–6217. [Google Scholar] [CrossRef]
- Damien, P.; Bosse, A.; Testor, P.; Marsaleix, P.; Estournel, C. Modeling Postconvective Submesoscale Coherent Vortices in the Northwestern Mediterranean Sea. J. Geophys. Res. Ocean. 2017, 122, 9937–9961. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, Z.; Zhao, W.; Tian, J. A statistical study on the subthermocline submesoscale eddies in the northwestern P acific O cean based on A rgo data. J. Geophys. Res. Ocean. 2017, 122, 3586–3598. [Google Scholar] [CrossRef]
- Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 1999, 20, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Prieur, L.; d’ortenzio, F.; Taillandier, V.; Testor, P. Physical Oceanography of the Ligurian Sea. In The Mediterranean Sea in the Era of Global Change 1: 30 Years of Multidisciplinary Study of the Ligurian Sea; ISTE Ltd: London, UK, 2020; pp. 49–78. [Google Scholar] [CrossRef]
- Waldman, R.; Somot, S.; Herrmann, M.; Sevault, F.; Isachsen, P.E. On the chaotic variability of deep convection in the Mediterranean Sea. Geophys. Res. Lett. 2018, 45, 2433–2443. [Google Scholar] [CrossRef] [Green Version]
- Crépon, M.; Wald, L.; Monget, J.M. Low-Frequency Waves in the Ligurian Sea During December 1977. J. Geophys. Res. 1982, 87, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Piterbarg, L.; Taillandier, V.; Griffa, A. Investigating frontal variability from repeated glider transects in the Ligurian Current (North West Mediterranean Sea). J. Mar. Syst. 2013. [Google Scholar] [CrossRef]
- Capet, X.J.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes. J. Phys. Oceanogr. 2008, 38, 44–64. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, J.C. Submesoscale currents in the ocean. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 2016, 472, 20160117. [Google Scholar] [CrossRef] [PubMed]
- Pollard, R.T.; Regier, L.A. Vorticity and Vertical Circulation at an Ocean Front. J. Phys. Oceanogr. 1992, 22, 609–625. [Google Scholar] [CrossRef] [Green Version]
- Spall, M.A. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res. 1995, 100, 2543. [Google Scholar] [CrossRef]
- Sanz, E.P.; Viúdez, A. Diagnosing Mesoscale Vertical Motion from Horizontal Velocity and Density Data. J. Phys. Oceanogr. 2005, 35, 1744–1762. [Google Scholar] [CrossRef]
- Ruiz, S.; Pascual, A.; Garau, B.; Pujol, I.; Tintoré, J. Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, X.; Qiu, B.; Zhao, W.; Zhou, C.; Huang, X.; Tian, J. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. J. Phys. Oceanogr. 2021, 51, 187–206. [Google Scholar] [CrossRef]
- D’Asaro, E.; Lee, C.M.; Rainville, L.; Harcourt, R.R.; Thomas, L.N. Enhanced Turbulence and Energy Dissipation at Ocean Front. Science 2010, 332, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Johnston, T.M.S.; Rudnick, D.L.; Pallàs-Sanz, E. Elevated mixing at a front. J. Geophys. Res. 2011, 116, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 2018, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Wenegrat, J.O.; Thomas, L.N.; Sundermeyer, M.A.; Taylor, J.R.; D’Asaro, E.A.; Klymak, J.M.; Shearman, R.K.; Lee, C.M. Enhanced mixing across the gyre boundary at the Gulf Stream front. Proc. Natl. Acad. Sci. USA 2020, 117, 17607–17614. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Ferrari, R. Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Lévy, M.; Ferrari, R.; Franks, P.J.S.; Martin, A.P.; Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 2012, 39, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lévy, M.; Franks, P.J.S.; Smith, K.S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 2018, 9, 4758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, S.; Claret, M.; Pascual, A.; Olita, A.; Troupin, C.; Capet, A.; Tovar-Sánchez, A.; Allen, J.; Poulain, P.M.; Tintoré, J.; et al. Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton. J. Geophys. Res. Ocean. 2019, 124, 5999–6014. [Google Scholar] [CrossRef] [Green Version]
- Luyten, J. The ventilated thermocline. J. Phys. Oceanogr. 1983, 13, 292–309. [Google Scholar] [CrossRef] [Green Version]
- Maze, G.; Deshayes, J.; Marshall, J.C.; Tréguier, A.M.; Chronis, A.; Vollmer, L. Surface vertical PV fluxes and subtropical mode water formation in an eddy-resolving numerical simulation. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2013, 91, 128–138. [Google Scholar] [CrossRef]
- McCartney, M.S. The subtropical recirculation of mode waters. J. Mar. Res. 1982, 40, 427–464. [Google Scholar]
- Giordani, H.; Lebeaupin-Brossier, C.; Léger, F.; Caniaux, G. A PV-approach for dense water formation along fronts: Application to the Northwestern Mediterranean. J. Geophys. Res. Ocean. 2017, 122, 995–1015. [Google Scholar] [CrossRef]
- Tagklis, F.; Bracco, A.; Ito, T.; Castelao, R. Submesoscale modulation of deep water formation in the Labrador Sea. Sci. Rep. 2020, 10, 1–13. [Google Scholar]
- Bopp, L.; Lévy, M.; Resplandy, L.; Sallée, J.B. Pathways of anthropogenic carbon subduction in the global ocean. Geophys. Res. Lett. 2015, 42, 6416–6423. [Google Scholar] [CrossRef] [Green Version]
- Ertel, H. Ein neuer hydrodynamischer Wirbelsatz. Meteorol. Z. 1942, 59, 277–281. [Google Scholar]
- Haynes, P.H.; McIntyre, M.E. On the Evolution of Vorticity and Potential Vorticity in the Presence of Diabatic Heating and Frictional or Other Forces. J. Atmos. Sci. 1987, 44, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, Y.; Akitomo, K.; Awaji, T. Formation process of intermediate water in baroclinic current under cooling. J. Geophys. Res. 2001, 106, 1033. [Google Scholar] [CrossRef]
- Thomas, L.N. Intensification of Ocean Fronts by Down-Front Winds. J. Phys. Oceanogr. 2005, 35, 1086–1102. [Google Scholar] [CrossRef]
- Thomas, L.N. Destruction of Potential Vorticity by Winds. J. Phys. Oceanogr. 2005, 35, 2457–2466. [Google Scholar] [CrossRef]
- du Plessis, M.; Swart, S.; Ansorge, I.J.; Mahadevan, A. Submesoscale processes promote seasonal restratification in the Subantarctic Ocean. J. Geophys. Res. Ocean. 2017, 122, 2960–2975. [Google Scholar] [CrossRef]
- Viglione, G.A.; Thompson, A.F.; Flexas, M.M.; Sprintall, J.; Swart, S. Abrupt Transitions in Submesoscale Structure in Southern Drake Passage: Glider Observations and Model Results. J. Phys. Oceanogr. 2018, 48, 2011–2027. [Google Scholar] [CrossRef]
- Seyfried, L.; Estournel, C.; Marsaleix, P.; Richard, E. Dynamics of the North Balearic Front during an autumn tramontane and mistral storm: Air–sea coupling processes and stratification budget diagnostic. Ocean. Sci. 2019, 15, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 1974, 100, 480–482. [Google Scholar] [CrossRef]
- Thomas, L.N.; Taylor, J.R.; Ferrari, R.; Joyce, T.M. Deep-Sea Research II Symmetric instability in the Gulf Stream. Deep. Sea Res. Part II 2013, 1–15. [Google Scholar] [CrossRef]
- Bachman, S.D.; Fox-Kemper, B.; Taylor, J.R.; Thomas, L.N. Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean. Model. 2017, 109, 72–95. [Google Scholar] [CrossRef]
- Taylor, J.R.; Ferrari, R. On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 2009, 622, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Molemaker, M.J.; McWilliams, J.C.; Dewar, W.K. Submesoscale Instability and Generation of Mesoscale Anticyclones near a Separation of the California Undercurrent. J. Phys. Oceanogr. 2015, 45, 613–629. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Todd, R.E.; Owens, W.B.; Rudnick, D.L. Potential Vorticity Structure in the North Atlantic Western Boundary Current from Underwater Glider Observations. J. Phys. Oceanogr. 2016, 46, 327–348. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Lee, C.M.; Thomas, L.N. The Subpolar Front of the Japan/East Sea. Part III: Competing Roles of Frontal Dynamics and Atmospheric Forcing in Driving Ageostrophic Vertical Circulation and Subduction. J. Phys. Oceanogr. 2012, 42, 991–1011. [Google Scholar] [CrossRef]
- Testor, P.; de Young, B.; Rudnick, D.; Glenn, S.; Hayes, D.; Lee, C.M.; Pattiaratchi, C.; Hill, K.; Heslop, E.; Turpin, V.; et al. OceanGliders: A component of the integrated GOOS. Front. Mar. Sci. 2019, 6, 422. [Google Scholar] [CrossRef] [Green Version]
- Pietri, A.; Testor, P.; Echevin, V.; Chaigneau, A.; Mortier, L.; Eldin, G.; Grados, C. Finescale Vertical Structure of the Upwelling System off Southern Peru as Observed from Glider Data. J. Phys. Oceanogr. 2013, 43, 631–646. [Google Scholar] [CrossRef]
- Thompson, A.F.; Lazar, A.; Buckingham, C.; Naveira Garabato, A.C.; Damerell, G.M.; Heywood, K.J. Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr. 2016, 46, 1285–1307. [Google Scholar] [CrossRef] [Green Version]
- Ruan, X.; Thompson, A.F.; Flexas, M.M.; Sprintall, J. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nat. Geosci. 2017, 10, 840–845. [Google Scholar] [CrossRef]
- Yu, X.; Naveira Garabato, A.C.; Martin, A.P.; Gwyn Evans, D.; Su, Z. Wind-forced symmetric instability at a transient mid-ocean front. Geophys. Res. Lett. 2019, 46, 11281–11291. [Google Scholar] [CrossRef] [Green Version]
- Bosse, A.; Fer, I. Mean Structure and Seasonality of the Norwegian Atlantic Front Current Along the Mohn Ridge From Repeated Glider Transects. Geophys. Res. Lett. 2019, 46, 13170–13179. [Google Scholar] [CrossRef] [Green Version]
- Coppola, L.; Raimbault, P.; Mortier, L.; Testor, P. Monitoring the environment in the northwestern Mediterranean Sea. Eos Trans. Am. Geophys. Union 2019, 100. [Google Scholar] [CrossRef]
- Testor, P.; Durrieu de Madron, X.; Mortier, L.; d’Ortenzio, F.; Legoff, H.; Dausse, D.; Labaste, M.; Houpert, L. LION Observatory Data; Technical Report; SEANOE (SEA scieNtific Open Data Edition), IFREMER: Issy-les-Moulineaux, France, 2020. [Google Scholar] [CrossRef]
- Coppola, L.; Diamond Riquier, E.; Carval, T. Dyfamed Observatory Data; Technical Report; SEANOE (SEA scieNtific Open Data Edition), IFREMER: Issy-les-Moulineaux, France, 2020. [Google Scholar] [CrossRef]
- Garau, B.; Ruiz, S.; Zhang, W.G.; Pascual, A.; Heslop, E.; Kerfoot, J.; Tintoré, J. Thermal lag correction on Slocum CTD glider data. J. Atmos. Ocean. Technol. 2011, 28, 1065–1071. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, D.L.; Sherman, J.T.; Wu, A.P. Depth-Average Velocity from Spray Underwater Gliders. J. Atmos. Ocean. Technol. 2018, 35, 1665–1673. [Google Scholar] [CrossRef]
- Xing, X.; Claustre, H.; Blain, S.; d’Ortenzio, F.; Antoine, D.; Ras, J.; Guinet, C. For chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean. Limnol. Oceanogr. 2012, 10, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, H.; D’Ortenzio, F.; Claustre, H.; Poteau, A. Towards a merged satellite and in situ fluorescence ocean chlorophyll product. Biogeosciences 2012, 9, 2111–2125. [Google Scholar] [CrossRef] [Green Version]
- Marsaleix, P.; Auclair, F.; Floor, J.W.; Herrmann, M.J.; Estournel, C.; Pairaud, I.; Ulses, C. Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean. Model. 2008, 20, 61–89. [Google Scholar] [CrossRef]
- Lévy, M.; Resplandy, L.; Klein, P.; Capet, X.; Iovino, D.; Éthé, C. Grid degradation of submesoscale resolving ocean models: Benefits for offline passive tracer transport. Ocean. Model. 2012, 48, 1–9. [Google Scholar] [CrossRef]
- Kessouri, F.; Ulses, C.; Estournel, C.; Marsaleix, P.; Séverin, T.; Pujo-Pay, M.; Caparros, J.; Raimbault, P.; de Fommervault, O.P.; d’Ortenzio, F.; et al. Nitrogen and phosphorus budgets in the northwestern Mediterranean deep convection region. J. Geophys. Res. Ocean. 2017, 122, 9429–9454. [Google Scholar] [CrossRef]
- Kessouri, F.; Ulses, C.; Estournel, C.; Marsaleix, P.; d’Ortenzio, F.; Severin, T.; Taillandier, V.; Conan, P. Vertical mixing effects on phytoplankton dynamics and organic carbon export in the western Mediterranean Sea. J. Geophys. Res. Ocean. 2018, 123, 1647–1669. [Google Scholar] [CrossRef]
- Margirier, F.; Bosse, A.; Testor, P.; L’Hévéder, B.; Mortier, L.; Smeed, D. Characterization of Convective Plumes Associated With Oceanic Deep Convection in the Northwestern Mediterranean From High-Resolution In Situ Data Collected by Gliders. J. Geophys. Res. Ocean. 2017, 122, 9814–9826. [Google Scholar] [CrossRef] [Green Version]
- Estournel, C.; Testor, P.; Damien, P.; D’Ortenzio, F.; Marsaleix, P.; Conan, P.; Kessouri, F.; Durrieu de Madron, X.; Coppola, L.; Lellouche, J.M.; et al. High resolution modeling of dense water formation in the north-western Mediterranean during winter 2012–2013: Processes and budget. J. Geophys. Res. Ocean. 2016, 121, 5367–5392. [Google Scholar] [CrossRef]
- Gaspar, P.; Grégoris, Y.; Lefevre, J.M. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study site. J. Geophys. Res. Ocean. 1990, 95, 16179–16193. [Google Scholar] [CrossRef]
- Herrmann, M.J.; Estournel, C.; Déqué, M.; Marsaleix, P.; Sevault, F.; Somot, S. Dense water formation in the Gulf of Lions shelf: Impact of atmospheric interannual variability and climate change. Cont. Shelf Res. 2008, 28, 2092–2112. [Google Scholar] [CrossRef]
- Lellouche, J.M.; Le Galloudec, O.; Drévillon, M.; Régnier, C.; Greiner, E.; Garric, G.; Ferry, N.; Desportes, C.; Testut, C.E.; Bricaud, C.; et al. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean. Sci. 2013, 9, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.N.; Lee, C.M. Intensification of ocean fronts. J. Phys. Oceanogr. 2005, 86, 783. [Google Scholar] [CrossRef]
- Stern, M.E. Interaction of a uniform wind stress with a geostrophic vortex. Deep. Sea Res. 1965, 12, 355–367. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Thomsen, S.; Kanzow, T.; Krahmann, G.; Greatbatch, R.J.; Dengler, M.; Lavik, G. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. Ocean. 2016, 121, 476–501. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, D.L.; Cole, S.T. On sampling the ocean using underwater gliders. J. Geophys. Res. 2011, 116, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bosse, A.; Testor, P.; Mortier, L.; Prieur, L.; Taillandier, V.; D’Ortenzio, F.; Coppola, L. Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders. J. Geophys. Res. Ocean. 2015, 120, 1599–1622. [Google Scholar] [CrossRef] [Green Version]
- Giordani, H.; Bourdallé-Badie, R.; Madec, G. An Eddy-Diffusivity Mass-Flux Parameterization for Modeling Oceanic Convection. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002078. [Google Scholar] [CrossRef]
- Brannigan, L.; Marshall, D.P.; Naveira-Garabato, A.; Nurser, A.G. The seasonal cycle of submesoscale flows. Ocean. Model. 2015, 92, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Béthoux, J.; Prieur, L. Hydrologie et circulation en Méditerranée nord-occidentale. Pétroles Tech. 1983, 299, 25–34. [Google Scholar]
- Niewiadomska, K.; Claustre, H.; Prieur, L.; D’Ortenzio, F. Submesoscale Physical-Biogeochemical Coupling across the Ligurian Current (Northwestern Mediterranean) Using a Bio-Optical Glider. Limnol. Oceanogr. 2008, 53, 2210–2225. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Berthon, J.F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 1989, 34, 1545–1562. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, G.; Ferrari, R.; Fox-Kemper, B. Mixed Layer Instabilities and Restratification. J. Phys. Oceanogr. 2007, 37, 2228–2250. [Google Scholar] [CrossRef]
- Bachman, S.; Taylor, J. Modelling of partially-resolved oceanic symmetric instability. Ocean. Model. 2014, 82, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Fer, I.; Peterson, A.K.; Ullgren, J.E. Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel Overflow. J. Atmos. Ocean. Technol. 2014, 31, 1128–1150. [Google Scholar] [CrossRef] [Green Version]
- Testor, P.; Mortier, L.; Coppola, L.; Claustre, H.; D’Ortenzio, F.; Bourrin, F.; Durrieu De Madron, X.; Raimbault, P. Glider MOOSE Sections; Technical Report; SEANOE (SEA scieNtific Open Data Edition), IFREMER: Issy-les-Moulineaux, France, 2017. [Google Scholar] [CrossRef]
Regime | detec % | detec %, cor | ||||||
---|---|---|---|---|---|---|---|---|
stable | 0.99 ± 0.22 | 0.98 ± 0.21 | 0.42 ± 1.3 | 0.47 ± 2 | 1 ± 0.25 | 0.99 ± 0.32 | 92 | 92 |
SI | 1.1 ± 2.2 | 1.1 ± 1.7 | 0.72 ± 0.37 | 1.2 ± 0.53 | 0.61 ± 0.41 | 0.97 ± 0.53 | 79 | 83 |
Date | Location | q (m s) | L (km) | H (m) | (km) | Q (W m) min in 48 h | |
---|---|---|---|---|---|---|---|
1 | 13 December 2010 | NC, GoL west | −4.7 | 8.9 | 71 | 6.2 | −1810 |
2 | 22 January 2011 | NC, GoL west | −2.8 | 22.0 | 58 | 4.0 | −1620 |
3 | 25 January 2012 | NC, GoL east | −0.37 | 6.2 | 32 | 0.8 | −30 |
4 | 2 February 2012 | NC, GoL west | −0.46 | 5.8 | 36 | 1.0 | −560 |
5 | 6 February 2012 | NC, GoL west | −1.8 | 12.5 | 106 | 5.7 | −2930 |
6 | 13 December 2012 | Open-sea | −0.79 | 4.7 | 33 | 1.2 | −120 |
7 | 19 January 2013 | NC, GoL east | −1.6 | 12.1 | 75 | 3.8 | −110 |
8 | 19 January 2013 | NC, GoL east | −1.3 | 5.5 | 42 | 1.9 | −380 |
9 | 2 February 2013 | NC, GoL west | −0.66 | 4.8 | 45 | 1.5 | −1870 |
10 | 7 February 2013 | NC, GoL west | −0.92 | 5.0 | 37 | 1.5 | −3160 |
11 | 13 February 2013 | Open-sea | −5.7 | 5.0 | 45 | 4.7 | −640 |
12 | 14 February 2013 | NC, GoL west | −0.8 | 10.3 | 73 | 2.7 | −260 |
13 | 18 February 2013 | NC, Ligurian | −3.7 | 7.3 | 70 | 5.3 | −200 |
14 | 15 March 2013 | Open-sea | −19 | 5.5 | 36 | 6.6 | −3970 |
mean | −1.7 ± 1.1 | 8.3 ± 4.8 | 54 ± 22 | 3.3 ± 2.1 | −1260 ± 1310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosse, A.; Testor, P.; Damien, P.; Estournel, C.; Marsaleix, P.; Mortier, L.; Prieur, L.; Taillandier, V. Wind-Forced Submesoscale Symmetric Instability around Deep Convection in the Northwestern Mediterranean Sea. Fluids 2021, 6, 123. https://doi.org/10.3390/fluids6030123
Bosse A, Testor P, Damien P, Estournel C, Marsaleix P, Mortier L, Prieur L, Taillandier V. Wind-Forced Submesoscale Symmetric Instability around Deep Convection in the Northwestern Mediterranean Sea. Fluids. 2021; 6(3):123. https://doi.org/10.3390/fluids6030123
Chicago/Turabian StyleBosse, Anthony, Pierre Testor, Pierre Damien, Claude Estournel, Patrick Marsaleix, Laurent Mortier, Louis Prieur, and Vincent Taillandier. 2021. "Wind-Forced Submesoscale Symmetric Instability around Deep Convection in the Northwestern Mediterranean Sea" Fluids 6, no. 3: 123. https://doi.org/10.3390/fluids6030123
APA StyleBosse, A., Testor, P., Damien, P., Estournel, C., Marsaleix, P., Mortier, L., Prieur, L., & Taillandier, V. (2021). Wind-Forced Submesoscale Symmetric Instability around Deep Convection in the Northwestern Mediterranean Sea. Fluids, 6(3), 123. https://doi.org/10.3390/fluids6030123