Time-Periodic Cooling of Rayleigh–Bénard Convection
Abstract
:1. Introduction
2. Mathematical Formulation
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
C | Lattice speed |
cs | Sound speed (cs = 1/) |
ci | Micro-discrete velocities |
f | Frequence |
f | Distribution function of momentum equation |
feq | Distribution function for equilibrium momentum equations |
G | Gravitational acceleration (m/s2) |
Thermal distribution function | |
H | Convective exchange coefficient |
Correction term | |
J | Components of momentum |
L | Cavity length (m) |
Moments | |
Equilibrium moments | |
M | Transformation matrix |
N | Thermal transformation matrix |
Nu | Average Nusselt number |
Nux | Local Nusselt number |
Pr | Prandtl number |
rj | Position node |
Ra | Rayleigh number |
S | Matrix with Sj diagonal relaxation rates elements |
t | Lattice time |
tk | Time at a step k |
T | Dimensional temperature |
U | Dimensionless horizontal velocity component |
V | Dimensionless vertical velocity component |
x | Dimensional longitudinal coordinate |
y | Dimensional vertical coordinate |
X | Dimensionless longitudinal coordinate |
Y | Dimensionless vertical coordinate |
Subscript | |
c | Cold |
h | Hot |
t | Time derivative |
Greek symbols | |
α | Thermal diffusivity coefficient (m2/s) |
Coefficient of thermal expansion (K-1) | |
The second order energy | |
Dynamic viscosity (kg/m/s) | |
Kinematic viscosity (m2/s) | |
δt | Time step |
Ψ | Dimensionless stream function |
τ | Relaxation time |
ρ | Density (Kg/m3) |
θ | Dimensionless temperature |
Diagonal relaxation matrix of | |
Thermal source term vector | |
Energy flux |
References
- Fiaschi, D.; Bandinelli, R.; Conti, S. A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables. Appl. Energy 2012, 97, 101–114. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Ameziani, D.; Bennacer, R.; Bouhadef, K.; Azzi, A. Effect of the days scrolling on the natural convection in an open ended storage silo. Int. J. Therm. Sci. 2009, 48, 2255–2263. [Google Scholar] [CrossRef] [Green Version]
- Himrane, N.; Ameziani, D.E.; Bouhadef, K.; Bennacer, R. Storage Silos Self Ventilation: Interlinked Heat and Mass Transfer Phenomenon. Numer. Heat Transf. Part A Appl. 2014, 66, 379–401. [Google Scholar] [CrossRef]
- Yang, R.; Wang, L. Multi-objective optimization for decision-making of energy and comfort management in building automation and control. Sustain. Cities Soc. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Enescu, D. A review of thermal comfort models and indicators for indoor environments. Renew. Sustain. Energy Rev. 2017, 79, 1353–1379. [Google Scholar] [CrossRef]
- Manz, H.; Schaelin, A.; Simmler, H. Airflow patterns and thermal behavior of mechanically ventilated glass double façades. Build. Environ. 2004, 39, 1023–1033. [Google Scholar] [CrossRef]
- Dimoudi, A.; Androutsopoulos, A.; Lykoudis, S. Experimental work on a linked, dynamic and ventilated, wall component. Energy Build. 2004, 36, 443–453. [Google Scholar] [CrossRef]
- De Dear, R.J.; Akimoto, T.; Arens, E.A.; Brager, G.; Candido, C.; Cheong, K.W.D.; Li, B.; Nishihara, N.; Sekhar, S.C.; Tanabe, S.; et al. Progress in thermal comfort research over the last twenty years. Indoor Air 2013, 23, 442–461. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Oxford University Press: London, UK, 1961. [Google Scholar]
- Drazin, P.; Reid, W.; Busse, F.H. Hydrodynamic Stability. J. Appl. Mech. 1982, 49, 467–468. [Google Scholar] [CrossRef] [Green Version]
- Ouertatani, N.; Cheikh, N.B.; Beya, B.B.; Lili, T. Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure. Comptes Rendus Mécanique 2008, 336, 464–470. [Google Scholar] [CrossRef]
- Turan, O.; Chakraborty, N.; Poole, R.J. Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure. J. Non-Newtonian Fluid Mech. 2012, 171, 83–96. [Google Scholar] [CrossRef]
- Park, H. Rayleigh–Bénard convection of nanofluids based on the pseudo-single-phase continuum model. Int. J. Therm. Sci. 2015, 90, 267–278. [Google Scholar] [CrossRef]
- Aghighi, M.S.; Ammar, A.; Metivier, C.; Gharagozlu, M. Rayleigh-Bénard convection of Casson fluids. Int. J. Therm. Sci. 2018, 127, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Kebiche, Z.; Castelain, C.; Burghelea, T. Experimental investigation of the Rayleigh–Bénard convection in a yield stress fluid. J. Non-Newton. Fluid Mech. 2014, 203, 9–23. [Google Scholar] [CrossRef]
- Chavanne, X.; Chilla, F.; Chabaud, B.; Castaing, B.; Hebral, B. Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 2001, 13, 1300–1320. [Google Scholar] [CrossRef]
- Chillà, F.; Schumacher, J. New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 2012, 35, 58. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Mathai, V.; Stevens, R.J.A.M.; Verzicco, R.; Lohse, D. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection. Phys. Rev. Lett. 2018, 120, 144502. [Google Scholar] [CrossRef] [Green Version]
- Bhadauria, B.S. Time-periodic heating of Rayleigh–Benard convection in a vertical magnetic field. Phys. Scr. 2006, 73, 296–302. [Google Scholar] [CrossRef]
- Kaviany, M. Onset of Thermal Convection in a Fluid Layer Subjected to Transient Heating From Below. J. Heat Transf. 1984, 106, 817–823. [Google Scholar] [CrossRef]
- Kaviany, M.; Vogel, M. Effect of Solute Concentration Gradients on the Onset of Convection: Uniform and Nonuniform Initial Gradients. J. Heat Transf. 1986, 108, 776–782. [Google Scholar] [CrossRef]
- Lage, J. Convective currents induced by periodic time-dependent vertical density gradient. Int. J. Heat Fluid Flow 1994, 15, 233–240. [Google Scholar] [CrossRef]
- Aniss, S.; Souhar, M.; Belhaq, M. Asymptotic study of the convective parametric instability in Hele-Shaw cell. Phys. Fluids 2000, 12, 262–268. [Google Scholar] [CrossRef]
- Bhadauria, B.S.; Bhatia, P.K. Time-periodic Heating of Rayleigh-Benard Convection. Phys. Scr. 2002, 66, 59–65. [Google Scholar] [CrossRef]
- Umavathi, J.C. Rayleigh–Benard convection subject to time dependent wall temperature in a porous medium layer saturated by a nanofluid. Meccanica 2015, 50, 981–994. [Google Scholar] [CrossRef]
- Himrane, N.; Ameziani, D.E.; Nasseri, L. Study of thermal comfort: Numerical simulation in a closed cavity using the lattice Boltzmann method. SN Appl. Sci. 2020, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Abourida, B.; Hasnaoui, M.; Douamna, S. Transient Natural Convection in a Square Enclosure with Horizontal Walls Submitted to Periodic Temperatures. Numer. Heat Transf. Part A Appl. 1999, 36, 737–750. [Google Scholar] [CrossRef]
- Raji, A.; Hasnaoui, M.; Firdaouss, M.; Ouardi, C. Natural Convection Heat Transfer Enhancement in a Square Cavity Periodically Cooled from Above. Numer. Heat Transf. Part A Appl. 2013, 63, 511–533. [Google Scholar] [CrossRef]
- Eidel’Man, E.D. Excitation of an electric instability by heating. Physics-Uspekhi 1995, 38, 1231–1246. [Google Scholar] [CrossRef]
- Éidel’Man, E.D. Influence of the thickness of the liquid layer on the ratio of the dimensions of a convection cell. Tech. Phys. 1998, 43, 1275–1279. [Google Scholar] [CrossRef]
- Nevskii, S.; Sarychev, V.; Konovalov, S.; Granovskii, A.; Gromov, V. Formation Mechanism of Micro- and Nanocrystalline Surface Layers in Titanium and Aluminum Alloys in Electron Beam Irradiation. Metals 2020, 10, 1399. [Google Scholar] [CrossRef]
- Mohamad, A. Lattice Boltzmann Method; Springer: London, UK, 2011; Volume 70. [Google Scholar]
- Guo, Y.; Bennacer, R.; Shen, S.; Ameziani, D.; Bouzidi, M. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 2010, 20, 130–148. [Google Scholar] [CrossRef]
- Khali, S.; Nebbali, R.; Ameziani, D.E.; Bouhadef, K. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method. Phys. Rev. E 2013, 87, 053002. [Google Scholar] [CrossRef] [PubMed]
- D’Humieres, D. Generalized Lattice-Boltzmann Equations. In Proceedings of the 18th International Symposium, Rarefied Gas Dynamics, Vancouver, BC, Canada, 26–30 July 1994; pp. 450–458. [Google Scholar]
- Lallemand, P.; Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 2000, 61, 6546–6562. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Meng, X.; Zeng, M.; Ozoe, H.; Wang, Q.W. Natural Convection Heat Transfer of Copper–Water Nanofluid in a Square Cavity With Time-Periodic Boundary Temperature. Heat Transf. Eng. 2013, 35, 630–640. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Ghernaout, B.; Teggar, M.; Benchatti, A.; Benarab, F.-Z. Onset of Natural Convection and Transition Laminar-Oscillatory Convection Flow in Rayleigh-Bénard Configuration. Int. J. Heat Technol. 2016, 34, 151–157. [Google Scholar] [CrossRef]
- Kwak, H.S.; Hyun, J.M. Natural convection in an enclosure having a vertical sidewall with time-varying temperature. J. Fluid Mech. 1996, 329, 65–88. [Google Scholar] [CrossRef]
- Soong, C.; Tzeng, P.; Hsieh, C. Numerical study of bottom-wall temperature modulation effects on thermal instability and oscillatory cellular convection in a rectangular enclosure. Int. J. Heat Mass Transf. 2001, 44, 3855–3868. [Google Scholar] [CrossRef]
- Kazmierczak, M.; Chinoda, Z. Buoyancy-driven flow in an enclosure with time periodic boundary conditions. Int. J. Heat Mass Transf. 1992, 35, 1507–1518. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Wang, G.; Zeng, M.; Ozoe, H. Upward Heat Flux through the Horizontal Fluid Layer of Water with Sinusoidal Wall Temperature at the Top or Bottom Boundary. Numer. Heat Transf. Part A Appl. 2007, 52, 817–829. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasseri, L.; Himrane, N.; Ameziani, D.E.; Bourada, A.; Bennacer, R. Time-Periodic Cooling of Rayleigh–Bénard Convection. Fluids 2021, 6, 87. https://doi.org/10.3390/fluids6020087
Nasseri L, Himrane N, Ameziani DE, Bourada A, Bennacer R. Time-Periodic Cooling of Rayleigh–Bénard Convection. Fluids. 2021; 6(2):87. https://doi.org/10.3390/fluids6020087
Chicago/Turabian StyleNasseri, Lyes, Nabil Himrane, Djamel Eddine Ameziani, Abderrahmane Bourada, and Rachid Bennacer. 2021. "Time-Periodic Cooling of Rayleigh–Bénard Convection" Fluids 6, no. 2: 87. https://doi.org/10.3390/fluids6020087
APA StyleNasseri, L., Himrane, N., Ameziani, D. E., Bourada, A., & Bennacer, R. (2021). Time-Periodic Cooling of Rayleigh–Bénard Convection. Fluids, 6(2), 87. https://doi.org/10.3390/fluids6020087