Default versus Configured-Geostatistical Modeling of Suspended Particulate Matter in Potter Cove, West Antarctic Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow Geostatistical Modeling
2.3. Data Exploration and Pre-Processing
2.3.1. Normality and Autocorrelation Analysis for a Valid Data Set to Model
2.3.2. Spatial Variability
2.4. Modeling Strategy
2.5. Model Evaluation and Performances Indices
3. Results
3.1. Pre-Process: Voronoi and Neighborhood Analysis
3.2. Geostatistical Modeling Differences
3.3. Evaluation and Performance of the Model
4. Discussion
4.1. Evaluation of Geostatistical Modeling Approaches of SPM Run-Off Plume in Potter Cove
4.2. Geostatistical Modeling Strategies
4.3. Limits on Methodology Evaluation
5. Conclusions
- Data exploration: Explore data via Semivariogram for a homogeneous data set and Voronoi plot to identify measurement errors or extreme values, consider as ‘outliers’, and to evaluate their inclusion. To also evaluate spatial variances of the target variable in a short distance among stations.
- Model parameters configuration: Run natural neighborhood analysis and calculate the Euclidean distances’ sum and mean of furthest away and closest neighbor to determine the radius and neighborhood configuration.
- Model strategy definition: Build either Ordinary Kriging by default or Empirical Bayesian Kriging with a maximum neighborhood configuration as the value of the mean of the furthest away neighbors’ distances and a minimum as the half of it; a configuration of a radius that is the sum of all furthest away distances. Compare models’ performances with and without data transformation.
- Model evaluation and selection: Calculate performance index -Equation (3)- for each geostatistical model to decide and select best spatial interpolation based on mean standardized (MS), root mean squared standardized (RMSS), and previous knowledge of the system and parameter to interpolate.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barrand, N.E.; Vaughan, D.G.; Steiner, N.; Tedesco, M.; Kuipers Munneke, P.; Van Den Broeke, M.R.; Hosking, J.S. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. Earth Surf. 2013, 118, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stammerjohn, S.E.; Martinson, D.G.; Smith, R.C.; Iannuzzi, R.A. Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 2041–2058. [Google Scholar] [CrossRef]
- Sziło, J.; Bialik, R. Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica). Geosciences 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Holland, P.R.; Meredith, M.P.; Murray, T.; Luckman, A.; Vaughan, D.G. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 2016, 353, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Falk, U.; Gieseke, H.; Kotzur, F.; Braun, M. Monitoring snow and ice surfaces on King George Island, Antarctic Peninsula, with high-resolution TerraSAR-X time series. Antarct. Sci. 2015, 28, 135–149. [Google Scholar] [CrossRef]
- Falk, U.; López, D.A.; Silva-Busso, A. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula. Cryosphere 2018, 12, 1211–1232. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.P.; Falk, U.; Valeria, A.; Mackensen, A.; Schloss, I.R.; Barlett, E.R.; Jerosch, K.; Silva, A.; Abele, D. Anatomy of a glacial meltwater discharge event in an Antarctic cove. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170163. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Smith, R.C.; Vernet, M. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl. Acad. Sci. USA 2002, 99, 1790–1795. [Google Scholar] [CrossRef] [Green Version]
- Etherington, L.L.; Hooge, P.N.; Hooge, E.R.; Hill, D.F. Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary. Estuaries Coasts 2007, 30, 927–944. [Google Scholar] [CrossRef]
- Howe, J.A.; Austin, W.E.N.; Forwick, M.; Paetzel, M.; Harland, R.; Cage, A.G. Fjord systems and archives: A review. Geol. Soc. Lond. Spec. Publ. 2010, 344, 5–15. [Google Scholar] [CrossRef]
- Koppes, M.; Hallet, B.; Rignot, E.; Mouginot, J.; Wellner, J.S.; Boldt, K. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 2015, 526, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Quartino, M.L.; Deregibus, D.; Campana, G.L.; Latorre, G.E.J.; Momo, F.R. Evidence of Macroalgal Colonization on Newly Ice-Free Areas following Glacial Retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS ONE 2013, 8, e58223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahade, R.; Lagger, C.; Momo, F.R.; Torre, L.; Abele, D.; Barnes, D.K.A.; Tarantelli, S. Climate change, glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 2015, 1, e1500050. [Google Scholar] [CrossRef] [Green Version]
- Valdivia, N.; Díaz, M.J.; Garrido, I.; Gómez, I. Consistent richness-biomass relationship across environmental gradients in a marine macroalgal-dominated subtidal community on the western antarctic peninsula. PLoS ONE 2015, 10, e0138582. [Google Scholar] [CrossRef] [Green Version]
- Deregibus, D.; Quartino, M.L.; Campana, G.L.; Momo, F.R.; Wiencke, C.; Zacher, K. Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol. 2016, 39, 153–166. [Google Scholar] [CrossRef]
- Lagger, C.; Nime, M.; Torre, L.; Servetto, N.; Tatián, M.; Sahade, R. Climate Change, Glacier Retreat and a New Ice-Free Island Offer New Insights on Antarctic Benthic Responses. Ecography 2017, 40, 1–12. [Google Scholar] [CrossRef]
- Torre, L.; Tabares, P.C.C.; Momo, F.; Meyer, J.F.C.A.; Sahade, R. Climate change effects on Antarctic benthos: A spatially explicit model approach. Clim. Chang. 2017, 141, 733–746. [Google Scholar] [CrossRef]
- Campana, G.L.; Zacher, K.; Deregibus, D.; Momo, F.R.; Wiencke, C.; Quartino, M.L. Succession of Antarctic benthic algae (Potter Cove, South Shetland Islands): Structural patterns and glacial impact over a four-year period. Polar Biol. 2018, 41, 377–396. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.H.; Lim, J.H.; Jeong, J.H.; Heo, J.M.; Kim, I.N. Distribution and control of bacterial community composition in marian cove surface waters, king george island, antarctica during the summer of 2018. Microorganisms 2020, 8, 1115. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Goodell, W.; Salinas-de-leo, P.; Ballesteros, E.; Berkenpas, E.; Capurro, A.P.; Cárdenas, C.A.; Hüne, M.; Lagger, C.; Landaeta, M.F.; et al. Spatial patterns of continental shelf faunal community structure along the Western Antarctic Peninsula. PLoS ONE 2020, 15, e0239895. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.S.; Husmann, G.; Thorne, M.A.S.; Burns, G.; Truebano, M.; Peck, L.S.; Abele, D.; Philipp, E.E.R. Hypoxia impacts large adults first: Consequences in a warming world. Glob. Chang. Biol. 2013, 19, 2251–2263. [Google Scholar] [CrossRef] [PubMed]
- Husmann, G.; Abele, D.; Rosenstiel, P.; Clark, M.S.; Kraemer, L.; Philipp, E.E.R. Age-dependent expression of stress and antimicrobial genes in the hemocytes and siphon tissue of the Antarctic bivalve, Laternula elliptica, exposed to injury and starvation. Cell Stress Chaperones 2013, 19, 15–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abele, D.; Vasquez, S.; Buma, A.G.J.; Hernandez, E. Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications. Mar. Genom. 2017, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schloss, I.R.; Ferreyra, G.A.; Mercuri, G.; Kowalke, J. Particle flux in an Antarctic shallow coastal environment: A sediment trap study. Sci. Mar. 1999, 63, 99–111. [Google Scholar] [CrossRef]
- Schloss, I.R.; Abele, D.; Moreau, S.; Demers, S.; Bers, A.V.; González, O.; Ferreyra, G.A. Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J. Mar. Syst. 2012, 92, 53–66. [Google Scholar] [CrossRef]
- Philipp, E.E.R.; Husmann, G.; Abele, D. The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island, Antarctica. Antarct. Sci. 2011, 23, 127–138. [Google Scholar] [CrossRef]
- Torre, L.; Servetto, N.; Eöry, M.L.; Momo, F.; Tatián, M.; Abele, D.; Sahade, R. Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations. Polar Biol. 2012, 35, 1743–1748. [Google Scholar] [CrossRef]
- Torre, L.; Abele, D.; Lagger, C.; Momo, F.; Sahade, R. When shape matters: Strategies of different Antarctic ascidians morphotypes to deal with sedimentation. Mar. Environ. Res. 2014, 99, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Pasotti, F.; Manini, E.; Giovannelli, D.; Wölfl, A.; Monien, D.; Verleyen, E.; Braeckman, U.; Abele, D.; Vanreusel, A. Antarctic shallow water benthos in an area of recent rapid glacier retreat. Mar. Ecol. 2015, 36, 716–733. [Google Scholar] [CrossRef] [Green Version]
- Jerosch, K.; Pehlke, H.; Scharf, F.; Weber, L.; Braun, M.H.; Abele, D. Benthic meltwater fjord habitats formed by rapid glacier recession on King Subject Areas. Philos. Trans. R. Soc. A 2018, 376, 20170. [Google Scholar]
- McLaughlin, R.L.; Carl, L.M.; Middel, T.; Ross, M.; Noakes, D.L.G.; Hayes, D.B.; Baylis, J.R. Potentials and Pitfalls of Integrating Data From Diverse Sources: Lessons from a Historical Database for Great Lakes Stream Fishes. Fisheries 2001, 26, 14–23. [Google Scholar] [CrossRef]
- Plouffe, C.C.F.; Robertson, C.; Chandrapala, L. Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: A case study of Sri Lanka. Environ. Model. Softw. 2015, 67, 57–71. [Google Scholar] [CrossRef]
- Javari, M. Geostatistical and Spatial Statistical Modelling of Precipitation Variations in Iran. J. Civ. Environ. Eng. 2016, 6, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Toomanian, N.; Reuter, H.I.; Malakouti, M.J. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 2007, 140, 417–427. [Google Scholar] [CrossRef]
- Do Amaral, L.R.; Della Justina, D.D. Spatial dependence degree and sampling neighborhood influence on interpolation process for fertilizer prescription maps. Eng. Agric. 2019, 39, 85–95. [Google Scholar] [CrossRef]
- Eljebri, S.; Mounir, M.; Faroukh, A.T.; Zouahri, A.; Tellal, R. Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Modeling Earth Syst. Environ. 2019, 5, 669–687. [Google Scholar] [CrossRef]
- Büttner, O.; Becker, A.; Kellner, S.; Kuehn, B.; Wendt-Potthoff, K.; Zachmann, D.W.; Friese, K. Geostatistical Analysis of surface sediment in an acid mining lake. Water Air Soil Pollut. 1998, 108, 297–316. [Google Scholar] [CrossRef]
- Jerosch, K.; Schlüter, M.; Pesch, R. Spatial analysis of marine categorical information using indicator kriging applied to georeferenced video mosaics of the deep-sea Håkon Mosby Mud Volcano. Ecol. Inform. 2006, 1, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Jerosch, K. Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. J. Mar. Syst. 2013, 127, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Zananiri, I.; Vakalas, I. Geostatistical mapping of marine surficial sediment types in the Northern Aegean Sea using indicator kriging. Geo-Mar. Lett. 2019, 39, 363–376. [Google Scholar] [CrossRef]
- Kumar, A.; Maroju, S.; Bhat, A. Application of ArcGIS geostatistical analyst for interpolating environmental data from observations. Environ. Prog. 2007, 26, 220–225. [Google Scholar] [CrossRef]
- Krivoruchko, K. Introduction to Modeling Spatial Processes Using Geostatistcal Analyst. Esri 2004, 1–27. Available online: https://www.esri.com/library/whitepapers/pdfs/intro-modeling.pdf (accessed on 1 December 2020).
- Mabit, L.; Bernard, C.; Makhlouf, M.; Laverdière, M.R. Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma 2008, 145, 245–251. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Senn, S., Scott, M., Barnett, V., Eds.; Jonh Wiley & SoNS. Ltd: Chichester, UK, 2007; Volume 2, ISBN 9780470028582. [Google Scholar]
- Monien, D.; Monien, P.; Brünjes, R.; Widmer, T.; Kappenberg, A.; Silva Busso, A.A.; Schnetger, B.; Brumsack, H.-J. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct. Sci. 2017, 29, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Neder, C.; Fofonova, V.; Androsov, A.; Kuznetsov, I.; Abele, D.; Jerosch, K. A new hydrodynamic model for terrestrial run-off in West Antarctic glaciated coves. In Proceedings of the 5th Young Earth Scientist YES Network Congress, Berlin, Germany, 9–13 September 2019. [Google Scholar]
- Klöser, H.; Ferreyra, G.A.; Schloss, I.R.; Mercuri, G.; Laturnus, F.; Curtosi, A. Hydrography of Potter Cove, a Small Fjord-like Inlet on King George Island (South Shetlands). Estuar. Coast. Shelf Sci. 1994, 38, 523–537. [Google Scholar] [CrossRef]
- Rückamp, M.; Braun, M.; Suckro, S.; Blindow, N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob. Planet. Chang. 2011, 79, 99–109. [Google Scholar] [CrossRef]
- Falk, U.; Silva-Busso, A.; Pölcher, P. A simplified method to estimate the run-off in Periglacial Creeks: A case study of King George Islands, Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170166. [Google Scholar] [CrossRef]
- Wölfl, A.-C.; Wittenberg, N.; Feldens, P.; Hass, H.C.; Betzler, C.; Kuhn, G. Submarine landforms related to glacier retreat in a shallow Antarctic fjord. Antarct. Sci. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Lim, C.H.; Lettmann, K.; Wolff, J.-O. Numerical study on wave dynamics and wave-induced bed erosion characteristics in Potter Cove, Antarctica. Ocean Dyn. 2013, 63, 1151–1174. [Google Scholar] [CrossRef]
- ESRI. Inc Environmental Systems Research Institute, Inc. Desktop 10.4.1, United States. Available online: https://support.esri.com/es/Products/Desktop/arcgis-desktop/arcmap/10-4-1 (accessed on 1 December 2020).
- Monien, D.; Monien, P.; Schnetger, B.; Brumsack, H.-J. Suspended particulate matter in melt water streams on Potter Peninsula, King George Island, maritime Antartica; Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of Oldenburg: Oldenburg, Germany, 2013. [Google Scholar]
- Philipp, E.E.R.; Husmann, G.; Abele, D. Suspended paticulate matter and respiration experiments of Laternula elliptica in Potter Cove, King George Island, Western Antarctic Peninsula. Publ. Earth Environ. Sci. 2011. [Google Scholar] [CrossRef]
- Schloss, I.R. Suspended Particulate Matter Measured on Water Samples of Station PotterCove_3, King George Island, Western Antarctic Peninsula (2002–2010). Publ. Earth Environ. Sci. 2010. [Google Scholar] [CrossRef]
- Schloss, I.R. Suspended Particulate Matter Measured on Water Samples of Two Stations at Potter Cove, King George Island, Western Antarctic Peninsula (1992–2010). Publ. Earth Environ. Sci. 2010. [Google Scholar] [CrossRef]
- Neder, C.; Jerosch, K.; Monien, D.; Philipp, E.E.R.; Schloss, I.R. Suspended particulate matter (SPM) and meteorological data in Potter Cove (74 stations), Carlini Station, King George Island (Isla 25 de Mayo) of 21 years German-Argentinian cooperation (1992–2013) compiled within IMCONet. Publ. Earth Environ. Sci. 2016. [Google Scholar] [CrossRef]
- Schloss, I.R.; Neder, C.; Jerosch, K. Suspended particulate matter (SPM) stations of 3 georeferenced transects in Potter Cove 1996–1997. Publ. Earth Environ. Sci. 2016. [Google Scholar] [CrossRef]
- Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- Huisman, O.; de By, R.A. Principles of Geographic Information Systems, 4th ed.; Huisman, O., de By, R., Eds.; ITC International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2009; ISBN 978–90–6164–269–5 ITC. [Google Scholar]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; Esri: Redlands, CA, USA, 2003; Volume 300, ISBN 1589480066. [Google Scholar]
- Jerosch, K.; Scharf, F.K.; Deregibus, D.; Campana, G.L.; Zacher, K.; Pehlke, H.; Falk, U.; Hass, H.C.; Quartino, M.L.; Abele, D. Ensemble Modeling of Antarctic Macroalgal Habitats Exposed to Glacial Melt in a Polar Fjord. Front. Ecol. Evol. 2019, 7, 207. [Google Scholar] [CrossRef] [Green Version]
- Quartino, M.L.; Klöser, H.; Schloss, I.R.; Wiencke, C. Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biol. 2001, 24, 349–355. [Google Scholar] [CrossRef]
- Lagger, C.; Servetto, N.; Torre, L.; Sahade, R. Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord. PLoS ONE 2017, 12, e0186756. [Google Scholar] [CrossRef] [Green Version]
Data Set | Date of Sampling | n | Sample Conditions | Mean ± SD | Kurtosis | Skewness |
---|---|---|---|---|---|---|
Two decades PC-SPM data | 1992–2012 | 1352 | Original summer data, SPM profiles at 0–5 m, 5–15, >15 m depth.1,2,3 | 19.07 ± 64.97 | 271.9 | 13.9 |
Two decades shallow depth SPM data | 1992–2012 | 673 | Summer mean values per station, depth 0–5 m. 1,2,3 | 25.73 ± 86.72 | 167.8 | 11.2 |
One-decade SPM data | 2000–2012 | 606 | Summer values, SPM profiles at 0–5 m, 5–15, >15 m depth. 1,2,3 | 9.64 ± 15.88 | 47.9 | 5.9 |
One summer shallow depth SPM data | 2010–2011 | 99 | Summer values, depth 0–5 m. 1,3 | 46.13 ± 188.27 | 46.3 | 6.3 |
One-day SPM data + MWS (data B) | 09.02.2011 + MWS | 31 | Values of a mean weather conditions day, depth 0–5 m. Input meltwater streams discharges.1 | 4.94 ± 6.66 | 15.07 | 3.4 |
One-day SPM data (data A) | 09.02.2011 | 28 | Values of a mean weather conditions day, depth 0–5 m. 1 | 2.97 ± 1.69 | 2.3 | −0.02 |
Euclidean Distances among Samples | (A) One-Day SPM | (B) One Day SPM + MWS |
---|---|---|
MN | 2.09 | 5.08 |
∑CN | 5.07 | 28.8 |
MCN | 0.19 | 0.65 |
∑FAN | 144.15 | 1004.9 |
MFAN | 4.97 | 31.40 |
½ MFAN | 2.48 | 15.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neder, C.; Sahade, R.; Abele, D.; Pesch, R.; Jerosch, K. Default versus Configured-Geostatistical Modeling of Suspended Particulate Matter in Potter Cove, West Antarctic Peninsula. Fluids 2020, 5, 235. https://doi.org/10.3390/fluids5040235
Neder C, Sahade R, Abele D, Pesch R, Jerosch K. Default versus Configured-Geostatistical Modeling of Suspended Particulate Matter in Potter Cove, West Antarctic Peninsula. Fluids. 2020; 5(4):235. https://doi.org/10.3390/fluids5040235
Chicago/Turabian StyleNeder, Camila, Ricardo Sahade, Doris Abele, Roland Pesch, and Kerstin Jerosch. 2020. "Default versus Configured-Geostatistical Modeling of Suspended Particulate Matter in Potter Cove, West Antarctic Peninsula" Fluids 5, no. 4: 235. https://doi.org/10.3390/fluids5040235