Carbon Nanoparticles as Sources for a Cost-Effective Water Purification Method: A Comprehensive Review
Abstract
:1. Introduction
- In the initial stage, the bibliographies were searched according to the article title and abstract. Moreover, relevant patents were identified based on the title and claim. Articles were filtered to meet the following three basic topic criteria: (a) water purification; (b) use of carbon nanoparticles; (c) subject related to cost-effective and eco-friendly technology. Additional papers were also searched from articles’ reference lists. After review and exclusion of the database sources, 230 studies remained.
- In the second stage, the studies were read in full to identify the most relevant studies. Patents were also examined to identify the most appropriate ones. This process led to a final number of 151 potential studies.
2. Carbon Nanomaterial Fabrication
3. Recent Patents for Water Treatment Using Carbon Material
4. Recent Research Papers on Water Purification Using Carbon Material
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Virender, K.S.; McDonald, T.J.; Kim, H.; Garg, V.K. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv. Colloid Interface Sci. 2015, 225, 229–240. [Google Scholar]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2009, 110, 132–145. [Google Scholar] [CrossRef]
- Kar, S.; Bindal, R.C.; Tewari, P.K. Carbon nanotube membranes for desalination and water purification: Challenges and opportunities. Nano Today 2012, 7, 385–389. [Google Scholar] [CrossRef]
- Nasrabadi, A.T.; Foroutan, M. Ion-separation and water-purification using single-walled carbon nanotube electrodes. Desalination 2011, 277, 236–243. [Google Scholar] [CrossRef]
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural inorganic nanoparticles—Formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-F.; Truong, Q.D.; Chen, J.-R. Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl. Surf. Sci. 2013, 264, 329–334. [Google Scholar] [CrossRef]
- Sreeprasad, T.; Maliyekkal, S.M.; Lisha, K.; Pradeep, T. Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification. J. Hazard. Mater. 2011, 186, 921–931. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F.; Ng, B.C. Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination 2013, 308, 2–14. [Google Scholar] [CrossRef]
- Hu, J.-S.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008, 20, 29772008. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Yan, X.-P. Preparation, characterization, and application of L.-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv. Funct. Mater. 2008, 18, 1536–1543. [Google Scholar] [CrossRef]
- Chengfeng, R.; Rongrong, R. Get Rid of Chlorine Residue Active Carbon Water Purification Filter Core. U.S. Patent CN08791367U, 26 April 2019. [Google Scholar]
- Song, B.; Jian, L.; Honghu, P.; Shunpeng, Z.; Zhonghua, Z.; Jianqi, Z.; Guocheng, Z. Corncob Active Carbon Water Purification Filter Core. U.S. Patent CN204918207U, 2 October 2015. [Google Scholar]
- Du, H. Active Carbon Water Purification Device with Automatic Flushing and Pollutant Discharge Functions. U.S. Patent CN201678532U, 26 March 2010. [Google Scholar]
- Jie, L.; Min, L.; Jing, X. Active Carbon Water Purification Unit. U.S. Patent CN207478059U, 12 June 2018. [Google Scholar]
- Triestam, A. Hot Water Heater Has Water Container with Electrical Heating Body, Replaceable Active Carbon Water Filter(s) and/or UV Radiation Source(s); Water Flows Through Filter and/or Past UV Source. U.S. Patent DE19946064A1, 16 December 1999. [Google Scholar]
- Archer, V.L. Activated Carbon Water Filter. U.S. Patent CN209397001U, 17 September 2019. [Google Scholar]
- Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 2015, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Júnior, O.O.S.; Visentainer, J.V.; Almeida, V.C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2015, 288, 778–788. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of phenolic compounds by activated carbon—A critical review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef]
- Cheng, W.; Dastgheib, S.A.; Karanfil, T. Adsorption of dissolved natural organic matter by modified activated carbons. Water Res. 2005, 39, 2281–2290. [Google Scholar] [CrossRef]
- Brady-Estévez, A.S.; Kang, S.; Elimelech, M. A Single-Walled-Carbon-Nanotube Filter for Removal of Viral and Bacterial Pathogens. Small 2008, 4, 481–484. [Google Scholar] [CrossRef]
- Baek, Y.; Kim, C.; Seo, D.K.; Kim, T.; Lee, J.S.; Kim, Y.H.; Ahn, K.H.; Bae, S.S.; Lee, S.C.; Lim, J.; et al. High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci. 2014, 460, 171–177. [Google Scholar] [CrossRef]
- Dong, X.; Yang, L. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation. J. Biol. Eng. 2015, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ain, Q.-U.-; Farooq, M.U.; Jalees, M.I. Application of magnetic graphene oxide for water purification: Heavy metals removal and disinfection. J. Water Process. Eng. 2019, 33, 101044. [Google Scholar] [CrossRef]
- Lujanienė, G.; Šemčuk, S.; Lečinskytė, A.; Kulakauskaitė, I.; Mažeika, K.; Valiulis, D.; Pakštas, V.; Skapas, M.; Tumėnas, S. Magnetic graphene oxide based nano-composites for removal of radionuclides and metals from contaminated solutions. J. Environ. Radioact. 2016, 166, 166–174. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015, 281, 379–388. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Xu, W.; Guo, X.; Cui, L.; Gao, L.; Wei, Q.; Du, B. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J. Mol. Liq. 2013, 191, 177–182. [Google Scholar] [CrossRef]
- Do, M.H.; Phan, N.H.; Nguyen, T.K.P.; Pham, T.T.S.; Nguyen, V.K.; Vu, T.T.T. Activated carbon/Fe3O4 nanoparticle composite: Fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 2011, 85, 1269–1276. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Co-ord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Alemany, L.B.; Tour, J.M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 2013, 7, 576–588. [Google Scholar] [CrossRef]
- Sun, L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 2019, 27, 2251–2260. [Google Scholar] [CrossRef]
- Han, S.; Yang, J.; Li, X.; Li, W.; Zhang, X.; Koratkar, N.; Yu, Z. Flame synthesis of superhydrophilic carbon nanotubes/ni foam decorated with fe2onanoparticles for water purification via solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 13229–13238. [Google Scholar] [CrossRef]
- Li, M.; Liang, S.; Wu, Y.; Yang, M.; Huang, X. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration. Front. Environ. Sci. Eng. 2020, 14, 107. [Google Scholar] [CrossRef]
- Libing, Q.; Yabei, T.; Yanqing, X.; Ning, L. Modified Basalt Fibre Applied to Water Quality Purification. CN107262042A, 20 October 2017. [Google Scholar]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process. Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Yadav, S.; Saleem, H.; Ibrar, I.; Naji, O.; Hawari, A.A.; AlAnezi, A.A.; Zaidi, S.J.; Altaee, A.; Zhou, J. Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination 2020, 482, 114375. [Google Scholar] [CrossRef]
- Sweetman, M.J.; May, S.; Mebberson, N.; Pendleton, P.; Vasilev, K.; Plush, A.S.E.; Hayball, J.D. Activated carbon, carbon nanotubes and graphene: Materials and composites for advanced water purification. J. Carbon Res. 2017, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, M. Mechanical properties of activated carbon fibers. In Activated Carbon Fiber and Textiles; Woodhead Publishing: Sawston, UK, 2017; pp. 167–180. [Google Scholar]
- Dresselhaus, M.S.; Lin, Y.; Rabin, O.; Jorio, A.; Filho, A.S.; Pimenta, M.; Saito, R.; Samsonidze, G.; Dresselhaus, G. Nanowires and nanotubes. Mater. Sci. Eng. C 2003, 23, 129–140. [Google Scholar] [CrossRef]
- Ahn, C.H.; Baek, Y.; Lee, C.; Kim, S.O.; Kim, S.; Lee, S.; Kim, S.-H.; Bae, S.S.; Park, J.; Yoon, J. Carbon nanotube-based membranes: Fabrication and application to desalination. J. Ind. Eng. Chem. 2012, 18, 1551–1559. [Google Scholar] [CrossRef]
- Hinds, B.J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L.G. Aligned Multiwalled Carbon Nanotube Membranes. Science 2004, 303, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.C.; Shin, Y.M.; Lee, Y.H.; Lee, B.S.; Park, G.-S.; Choi, W.B.; Lee, N.S.; Kim, J.M. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2000, 76, 2367–2369. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.K.; Noy, A.; Huser, T.; Eaglesham, A.D.; Bakajin, O. Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 2004, 4, 2245–2250. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, U.; Holst, R. Über die säurenatur und die methylierung von graphitoxyd. Ber. Dtsch. Chem. Ges. 2006, 72, 754. [Google Scholar] [CrossRef]
- Ruess, G. Über das graphitoxyhydroxyd (graphitoxyd). Chem. Mon. 1947, 76, 381–417. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, M.J.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.; Hebard, A.F.; et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–62004. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 2015, 27, 249–254. [Google Scholar] [CrossRef]
- Qianfeng, L. Graphene Water Purifier. U.S. Patent CN109502896A, 22 March 2019. [Google Scholar]
- Longjingling, H.; Information Tech Co. Ltd. A Kind of Multiple-Effect Water Treatment Agent and Preparation Method thereof and Method for Treating Water. U.S. Patent CN107265530A, 20 October 2017. [Google Scholar]
- Liangti, Q.; Cheng, H.; Zhang, P.P. Graphene Solar Energy Water Cleaning Foam as Well as Preparation Method and Application. U.S. Patent CN108002366A, 8 May 2018. [Google Scholar]
- Hostetter, W.E. Carbon Water Filter. U.S. Patent US3612279A, 12 October 1971. [Google Scholar]
- Tarifi, M.H. PCO/UVC/Carbon Water Filter. U.S. Patent US2014166591A1, 19 June 2014. [Google Scholar]
- Frank, A.; Brigano, J.; Schroeder, H.; Popovic, V. Activated Carbon Water Filter with Reduced Leachable Arsenic and Method for Making the Same. U.S. Patent WO2010144175A1, 16 December 2010. [Google Scholar]
- Chen, T. Active Carbon Water Treatment Agent. U.S. Patent CN107555518A, 9 January 2018. [Google Scholar]
- Yan, Z.; Li, M. Aqua Pure Extract System and Method Are Used in Health Preserving Wine Production. U.S. Patent CN106830474A, 13 June 2017. [Google Scholar]
- Zhao, W.; Jiang, Y.; Lin, X.; Wang, L.; Guo, S.; Shen, J.; Peng, P.; Wang, D. A Kind of Rural Area Sub-Prime of Energy-Saving and Emission-Reduction is for Water Purification Integral System. U.S. Patent CN109081477A, 25 December 2018. [Google Scholar]
- Iang, Y. Energy-Saving and Water-Saving Type Water Purifier. U.S. Patent CN103043836A, 17 April 2013. [Google Scholar]
- Wang, Y.; Wang, P.; Lin, Y.; Zhang, X.; Zhang, K.; Chen, T. A Kind of Active Carbon Filter Core that Household Water Filter is Conveniently Replaceable. U.S. Patent CN209361991U, 10 September 2019. [Google Scholar]
- Gao, X. Possesses the Activated Carbon Filter of Stirring Mixed Function. U.S. Patent CN107298506A, 27 October 2017. [Google Scholar]
- Pan, L. A Kind of Preparation Method of Sintering Activity Charcoal Water Purification Catridge. U.S. Patent CN109250781A, 22 January 2018. [Google Scholar]
- Tu, Y. Silver Loaded Activated Carbon Water Purification Filter Element. U.S. Patent CN203002379U, 19 June 2013. [Google Scholar]
- Zhu, X.; Liu, Y. Ozone-Biological Activated Carbon Water Purification Method and Device. U.S. Patent CN102126809B, 30 May 2012. [Google Scholar]
- Huang, Y. Negative-Ion Sintered Activated Carbon Water Purification Filter Element and Preparation Method Thereof. U.S. Patent CN105481045A, 13 April 2016. [Google Scholar]
- Chen, C. Active Carbon Water Purification Device is Used in a Kind of Production of Drinking Mineral Water. U.S. Patent CN209537118U, 25 October 2019. [Google Scholar]
- Wang, L. Activated Carbon Water Purification Device and Preparation Method. U.S. Patent CN103055808A, 24 April 2013. [Google Scholar]
- Lee, S.-H. Large-Capacity Water Treatment Apparatus Having Improved Activated Carbon Water-Purification and Regeneration Function. U.S. Patent WO2016190525A1, 1 December 2016. [Google Scholar]
- Gappa, G.; Juentgen, H.; Klein, J.; Reichenberger, J. Activated-Carbon Water Purification Controlled by Analysis of Carbon Content in Water. U.S. Patent CA1048940A, 20 February 1979. [Google Scholar]
- Shifeng, B.H.; Nuannuan, J.; Liang, M.; Mingjuan, S.; Yuanyuan, W. Method for Preparing Graphene Oxide Water Purifying Filter Core. U.S. Patent CN103785223A, 14 May 2014. [Google Scholar]
- Feng, J.; Liang, S. Self-Cleaning Active Carbon Filter Cartridge Device. U.S. Patent CN203803176U, 3 September 2014. [Google Scholar]
- Zhao, J. Activated-Carbon Filter Cored Structure Water Purification Machine. U.S. Patent CN204058096U, 31 December 2014. [Google Scholar]
- Zhang, Y. A Kind of Household Active Charcoal Filter Core. U.S. Patent CN204342473U, 20 May 2015. [Google Scholar]
- Hou, Y. Front Activated Carbon Filter Cartridge-Free Drinking Fountain. U.S. Patent CN101935114A, 5 January 2011. [Google Scholar]
- Li, T.; Qiu, J. Making Method of Negative Ion-Sintered Active Carbon Water Purification Filter Core. U.S. Patent CN103588257A, 19 February 2013. [Google Scholar]
- Hyu, I. Carbon Nanoparticle for Photocatalyst. KR101495124B1, 24 February 2015. [Google Scholar]
- Magnusson, J.H. Iodine Resin/Carbon Water Purification System. U.S. Patent CA2052200A1, 28 March 1992. [Google Scholar]
- Claus, F.; Hailong, D.; Ana, K.; Dorothee, G. Carbon Dots (c Dots) Method for Their Preparation and Their Use. EP2913300A1, 2 September 2015. [Google Scholar]
- Zhang, H.; Qiu, M.; Zhang, J. Water Purification Composite Material and Preparation Method and Application Thereof. U.S. Patent CN107352627A, 17 November 2017. [Google Scholar]
- Nobuyuki, S.; Hideo, U. Holder for Activated-Carbon Filter Cartridge. U.S. Patent JPS6295499A, 1 May 1987. [Google Scholar]
- Magnusson, J.; Magnusson, K.J. System Made of Iodine-Containing Resin and Carbon for Water Purification. U.S. Patent DE69103366T, 16 December 1990. [Google Scholar]
- ELS Business Group International LLC. Carbon Water Filter. U.S. Patent TH53392B, 7 October 2002.
- CHE, C. Preparation Method of Graphene Water Purifier Filter Core. U.S. Patent CN108190994A, 22 June 2018. [Google Scholar]
- Xiuan, A. Ecological Agriculture Co LTD. Compound for Purifying Water. U.S. Patent CN107720976A, 22 June 2018. [Google Scholar]
- Yang, J.-L. An Improved Reverse Osmosis/Activated Carbon Water Filter with Automatic Forced Self-Cleaning Function. U.S. Patent TW311477U, 21 June 1997. [Google Scholar]
- Li, N.; Qian, L.; Tan, Y.; Xu, Y. A Kind of Treated Basalt Fiber Applied to Purification of Water Quality. U.S. Patent CN107262042A, 20 October 2017. [Google Scholar]
- Wang, Y. Dynamic-Static Combined Multistage Filter Bed Cyclone Magnetization Water Purifier. U.S. Patent CN104058542A, 24 September 2014. [Google Scholar]
- Wang, G. Rotational Flow Magnetizing Water Purifier with Dynamic and Static Combination Multistage Filter Bed. U.S. Patent CN203269713U, 6 November 2013. [Google Scholar]
- Xue, J. Water Saving Water Purifier. U.S. Patent CN201962142U, 7 September 2011. [Google Scholar]
- Fan, J. A Kind of Novel High Efficiency Water Purifier Equipment for Modern Plant. U.S. Patent CN204619525U, 9 September 2015. [Google Scholar]
- Gao, X. The Activated Carbon Filter of Multi-Filtering. U.S. Patent CN107311378A, 3 November 2017. [Google Scholar]
- Wang, M.; Wu, X. A Kind of Low Waste Water Purifier of Energy-Conserving and Environment-Protective. U.S. Patent CN207016571U, 16 February 2018. [Google Scholar]
- Fu, S.; He, L.; Peng, H.; Sun, P.; Xie, M. A Kind of Composition Type Clear Water Machine. U.S. Patent CN203938535U, 12 November 2014. [Google Scholar]
- Yabing, S.; Dong, H.; Shunbin, L.; Lin, B.; Yan, Z.; Sujie, L.; Zehua, Z.; Shaopeng, R. Multi-Functional Water Purifier Integrated with Activated Carbon and Low-Temperature Plasma. U.S. Patent CN103145284B, 5 November 2014. [Google Scholar]
- Gong, C. A Kind of Novel Anti-Freezing Water Purifier. U.S. Patent CN207108646U, 16 March 2018. [Google Scholar]
- Deng, S. A Kind of Tap Water Purifier with Active Carbon Backwash Function. U.S. Patent CN109850977A, 7 June 2019. [Google Scholar]
- Huang, H.; Huang, L.; Huang, R. A Kind of RO Water Purifier. U.S. Patent CN208747829U, 16 April 2019. [Google Scholar]
- Zheng, L. A Kind of Energy-Saving Water Purifier with Multistage Filtering Function. U.S. Patent CN107473475A, 15 December 2017. [Google Scholar]
- Lee, C.G. A Domestic Water Purifier Equipped Outdoor. U.S. Patent KR20030070267A, 30 August 2003. [Google Scholar]
- Wu, X. Ultrafiltration Water Purification Machine with Water Intake Pressure Adjustment and Display Functions. U.S. Patent CN203728654U, 23 July 2014. [Google Scholar]
- Wang, W. A Kind of Novel Intelligent Water Purifier for Family’s Water Purification. U.S. Patent CN204644006U, 16 September 2015. [Google Scholar]
- Tong, X. Rear-Mounted Water Purifier of Four–Core. U.S. Patent CN205346992U, 29 June 2016. [Google Scholar]
- Pan, W. Water-Saving Water Purifier. U.S. Patent CN105800813A, 27 July 2016. [Google Scholar]
- Wang, J. Pressure Charged Heating Water Purifier. U.S. Patent CN204111513U, 21 January 2015. [Google Scholar]
- Cheng, Z. A Outdoor Water Purifier for Water Treatment. U.S. Patent CN205473053U, 17 August 2016. [Google Scholar]
- Zhu, L. High-Precision Ultrafiltration Water Purifier and Water Purification Method Thereof. U.S. Patent CN103979695A, 13 August 2014. [Google Scholar]
- Liu, C. Wastewater-Free Water Purifier. U.S. Patent CN107867764A, 3 April 2018. [Google Scholar]
- Ma, Z. The Outdoor Water Purifier of Ceramic Element. U.S. Patent CN204454785U, 8 July 2015. [Google Scholar]
- He, D. Ultra-Low-Pressure Reverse Osmosis Water Purifier. U.S. Patent CN206368080U, 1 August 2017. [Google Scholar]
- Hui, D.; Yong, W.; Yongshu, Z. A Kind of Wall-Hanging Water Purifier that RO Membrane Cartridge Is Set. U.S. Patent CN204224339U, 25 March 2015. [Google Scholar]
- Bin, Y. A Kind of Filter Element of Water Purifier Convenient for Recycling Waste Water. U.S. Patent CN207891156U, 21 September 2018. [Google Scholar]
- Chen, J.; Dong, C.; Lu, Q.; Si, D.; Zhang, D.; Zhang, Y. Water Purifier without Wastewater Discharge. U.S. Patent CN105384274A, 9 March 2016. [Google Scholar]
- Haitao, Y. Electrostatic Activated Carbon Filter Element of Water Purifier. U.S. Patent CN108217804A, 29 June 2018. [Google Scholar]
- Qiang, Y. Hydroelectric Separation Water Purifier. U.S. Patent CN208843834U, 10 May 2019. [Google Scholar]
- Xiaofei, L. Water Purifier. CN202415284U, 5 September 2012. [Google Scholar]
- Chen, Y. RO (Reverse Osmosis) Water Purifier of Pressure-Free Barrel. U.S. Patent CN202808504U, 20 March 2013. [Google Scholar]
- Wang, H.; Wang, P. A Kind of Novel Water Purifier. U.S. Patent CN204550255U, 12 August 2015. [Google Scholar]
- Feng, W. Constant-Pressure Water Purifier Using Water Purifying Agent. U.S. Patent CN104671528A, 3 June 2015. [Google Scholar]
- Zeng, R. Vertical Water Purifier. U.S. Patent CN207192981U, 6 April 2018. [Google Scholar]
- Ntim, S.A.; Mitra, S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J. Colloid Interface Sci. 2012, 375, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Beobide, A.S.; Anastasopoulos, J.; Voyiatzis, G.A.; Lainioti, G.C.; Kallitsis, J.; Kouravelou, K. Embedment of functionalized carbon nanotubes into water purification membrance. Procedia Eng. 2012, 44, 1918–1919. [Google Scholar] [CrossRef] [Green Version]
- Bakajin, O.; Noy, A.; Fornasiero, F.; Grigoropoulos, C.P.; Holt, J.K.; Bin Kim, S.; Park, H.G. Nanofluidic carbon nanotube membranes: Applications for water purification and desalination. In Nanotechnology Applications for Clean Water, 2nd ed.; Elsevier Inc.: Oxford, UK; Waltham, MA, USA, 2009. [Google Scholar] [CrossRef]
- Das, R.; Ali, E.; Bee, S.; Hamid, A.; Ramakrishna, S.; Zaman, Z. Carbon nanotube membranes for water puri fi cation: A bright future in water desalination. DES 2014, 336, 97–109. [Google Scholar] [CrossRef]
- Masinga, S.P.; Nxumalo, E.N.; Mamba, B.B.; Mhlanga, S.D. Microwave-induced synthesis of b-cyclodextrin/N-doped carbon nanotube polyurethane nanocomposites for water purification. J. Phys. Chem. Ear 2013. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Z.; Jin, S.; Zheng, Y.; Ye, T.; Yang, D.; Li, Y.; Zhu, L.; Zhu, L. TiO2 nanotube-carbon macroscopic monoliths with multimodal porosity as efficient recyclable photocatalytic adsorbents for water purification. Math. Chem. Phys. 2016, 1–8. [Google Scholar] [CrossRef]
- Nguyen-phan, T.; Hung, V.; Jung, E.; Oh, E.; Hyun, S.; Suk, J.; Lee, B.; Woo, E. Applied surface science reduced graphene oxide–titanate hybrids: Morphologic evolution by alkali-solvothermal treatment and applications in water purification. Appl. Surf. Sci. 2012, 258, 4551–4557. [Google Scholar] [CrossRef]
- Peng, F.; Luo, T.; Qiu, L.; Yuan, Y. An easy method to synthesize graphene oxide–FeOOH composites and their potential application in water purification. Mater. Res. Bull. 2013, 48, 2180–2185. [Google Scholar] [CrossRef]
- Sun, X.; Qin, J.; Xia, P.; Guo, B.; Yang, C.; Sun, X.; Qin, J.; Xia, P.; Guo, B.; Yang, C.; et al. Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 2015. [Google Scholar] [CrossRef]
- Manafi, M.; Manafi, P.; Agarwal, S.; Bharti, A.K.; Asif, M.; Gupta, V.K. Synthesis of Nanocomposites from Polyacrylamide and Graphene Oxide: Application as flocculants for water purification. J. Colloid Interface Sci. 2016. [Google Scholar] [CrossRef]
- Lompe, K.M.; Menard, D.; Barbeau, B. Performance of biological magnetic powdered activated carbon for drinking water purification. Water Res. 2016. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Ibsen, S.; Ko, S.; Heller, M.J. Controlled degrees of oxidation of nanoporous graphene filters for water purification using an aqueous arc discharge. Carbon 2016, 109, 624–631. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, G.; Deng, B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2015, 379, 93–101. [Google Scholar] [CrossRef]
- Gondal, M.A.; Ilyas, A.M.; Baig, U. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification. Appl. Surf. Sci. 2016. [Google Scholar] [CrossRef]
- Pawar, R.C.; Choi, D.; Lee, C.S. Reduced graphene oxide composites with MWCNTs and single crystalline hematite nanorhombohedra for applications in water purification. Int. J. Hydrogen Energy 2014, 1–12. [Google Scholar] [CrossRef]
- Tuan, T.N.; Chung, S.; Lee, J.K.; Lee, J. Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide. Curr. Appl. Phys. 2015. [Google Scholar] [CrossRef]
- Pudza, M.Y.; Abidin, Z.Z.; Rashid, S.A.; Yasin, F.M.; Noor, A.S.M.; Issa, M.I. Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment. Nanomaterials 2020, 10, 315. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Cui, A.; Xu, Y.; Fu, X. Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 2013, 62, 465–471. [Google Scholar] [CrossRef]
- Hegab, H.M.; Zou, L. Graphene oxide-assisted membranes: Fabrication and potential applications. J. Membr. Sci. 2015. [Google Scholar] [CrossRef]
- Gamage, S.M.; Sathasivan, A. Chemosphere A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water puri fi cation process. Chemosphere 2017, 167, 120–138. [Google Scholar] [CrossRef]
- Raghu, M.S.; Kumar, K.Y.; Prashanth, M.K.; Prasanna, B.P.; Vinuth, R.; Kumar, C.B.P. Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. J. Water Process Eng. 2017, 17, 22–31. [Google Scholar] [CrossRef]
- Rizzuto, C.; Pugliese, G.; Bahattab, M.A.; Aljlil, S.A.; Drioli, E.; Tocci, E. Multiwalled carbon nanotube membranes for water purification. separation and purification technology. Sep. Purif. Technol. 2017. [Google Scholar] [CrossRef]
- Sarasidis, C.V.; Plakas, V.K.; Karabela, J.A. Novel water-purification hybrid processes involving in-situ regenerated activated carbon, membrane separation and advanced oxidation. Chem. Eng. J. 2017. [Google Scholar] [CrossRef]
- Nair, A.; Ponnan, E.; Jagadeesh, B.B. TiO2 nanosheet-graphene oxide based photocatalytic hierarchical membrane for water purification. Surf. Coat. Technol. 2017, 320. [Google Scholar] [CrossRef]
- Maji, S.; Ghosh, A.; Gupta, K.; Ghosh, A.; Ghorai, U.; Santra, A.; Sasikumar, P.; Ghosh, U.C. Efficiency evaluation of arsenic(III) adsorption of novel graphene oxide@iron-aluminium oxide composite for the contaminated water purification. Sep. Purif. Technol. 2018. [Google Scholar] [CrossRef]
- Rathore, P.; Kotia, A. Gravity water purifier using activated carbon form coconut shell for rural application. Plant Arch. 2020, 20, 2626–2640. [Google Scholar]
Sr. No | Patent |
---|---|
1 | CN109250781A [61] |
| |
2 | CN203002379U [62] |
| |
3 | CN102126809B [63] |
| |
4 | CN105481045A [64] |
| |
5 | CN209537118U [65] |
| |
6 | CN103055808A [66] |
| |
7 | WO2016190525A1 [67] |
| |
8 | CA1048940A [68] |
| |
9 | CN103785223 [69] |
| |
10 | CN203803176U [70] |
| |
11 | CN204058096U [71] |
| |
12 | CN204342473U [72] |
| |
13 | CN101935114A [73] |
| |
14 | CN103588257A [74] |
| |
15 | KR101495124B1 [75] |
| |
16 | CN204918207U [12] |
| |
17 | CN201678532U [13] |
| |
18 | CA2052200A1 [76] |
| |
19 | EP2913300A1 [77] |
| |
20 | DE19946064A1 [15] |
| |
21 | CN209397001U [16] |
| |
22 | CN107352627A [78] |
| |
23 | JPS6295499A [79] |
| |
24 | DE69103366T [80] |
| |
25 | US2014166591A1 [53] |
| |
26 | US3612279A [52] |
| |
27 | WO2010144175A1 [54] |
| |
28 | TH53392B [81] |
| |
29 | CN108190994A [82] |
| |
30 | CN108002366A [51] |
| |
31 | CN107720976A [83] |
| |
32 | TW311477U [84] |
| |
33 | CN107262042A [85] |
| |
34 | CN106830474A [56] |
| |
35 | CN103043836A [58] |
| |
36 | CN104058542A [86] |
| |
37 | CN203269713U [87] |
| |
38 | CN201962142U [88] |
| |
39 | CN209361991U [59] |
| |
40 | CN204619525U [89] |
| |
41 | CN107311378A [90] |
| |
42 | CN207016571U [91] |
| |
43 | CN203938535U [92] |
| |
44 | CN103145284B [93] |
| |
45 | CN109502896A [49] |
| |
46 | CN207108646U [94] |
| |
47 | CN107298506A [60] |
| |
48 | CN109850977A [95] |
| |
49 | CN208747829U [96] |
| |
50 | CN107473475A [97] |
| |
51 | KR20030070267A [98] |
| |
52 | CN203728654U [99] |
| |
53 | CN204644006U [100] |
| |
54 | CN205346992U [101] |
| |
55 | CN105800813A [102] |
| |
56 | CN204111513U [103] |
| |
57 | CN205473053U [104] |
| |
58 | CN103979695A [105] |
| |
59 | CN107867764A [106] |
| |
60 | CN204454785U [107] |
| |
61 | CN206368080U [108] |
| |
62 | CN204224339U [109] |
| |
63 | CN207891156U [110] |
| |
64 | CN105384274A [111] |
| |
65 | CN108217804A [112] |
| |
66 | CN208843834U [113] |
| |
67 | CN202415284U [114] |
| |
68 | CN202808504U [115] |
| |
69 | CN204550255U [116] |
| |
70 | CN104671528A [117] |
| |
71 | CN207192981U [118] |
|
Sr. No | Author & Remarks |
---|---|
1 | Nasrabadi and Foroutan [4] |
| |
2 | Nguyen-Phan et al. [125] |
| |
3 | Sreeprasad et al. [7] |
| |
4 | Ntim and Mitra [119] |
| |
5 | Beobide et al. [120] |
| |
6 | Kar et al. [3] |
| |
7 | Pudza et al. [135] |
| |
8 | Xu et al. [136] |
| |
9 | Peng et al. [126] |
| |
10 | Bakajin et al. [121] |
| |
11 | Das et al. [122] |
| |
12 | Masinga et al. [123] |
| |
13 | Sun et al. [127] |
| |
14 | Zhang et al. [124] |
| |
15 | Manafi et al. [128] |
| |
16 | Lompe et al. [129] |
| |
17 | Kim et al. [12] |
| |
18 | Yin et al. [131] |
| |
19 | Tuan et al. [134] |
| |
20 | Gondal et al. [132] |
| |
21 | Pawar et al. [133] |
| |
22 | Hegab and Zou [137] |
| |
23 | Gamage and Sathasivan [138] |
| |
24 | Raghu et al. [139] |
| |
25 | Rizzuto et al. [140] |
| |
26 | Sarasidis et al. [141] |
| |
27 | Nair et al. [142] |
| |
28 | Maji et al. [143] |
| |
29 | Han et al. [32] |
| |
30 | Rathore and Kotia [144] |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotia, A.; Yadav, A.; Rohit Raj, T.; Gertrud Keischgens, M.; Rathore, H.; Sarris, I.E. Carbon Nanoparticles as Sources for a Cost-Effective Water Purification Method: A Comprehensive Review. Fluids 2020, 5, 230. https://doi.org/10.3390/fluids5040230
Kotia A, Yadav A, Rohit Raj T, Gertrud Keischgens M, Rathore H, Sarris IE. Carbon Nanoparticles as Sources for a Cost-Effective Water Purification Method: A Comprehensive Review. Fluids. 2020; 5(4):230. https://doi.org/10.3390/fluids5040230
Chicago/Turabian StyleKotia, Ankit, Aman Yadav, Tata Rohit Raj, Maria Gertrud Keischgens, Happy Rathore, and Ioannis E. Sarris. 2020. "Carbon Nanoparticles as Sources for a Cost-Effective Water Purification Method: A Comprehensive Review" Fluids 5, no. 4: 230. https://doi.org/10.3390/fluids5040230
APA StyleKotia, A., Yadav, A., Rohit Raj, T., Gertrud Keischgens, M., Rathore, H., & Sarris, I. E. (2020). Carbon Nanoparticles as Sources for a Cost-Effective Water Purification Method: A Comprehensive Review. Fluids, 5(4), 230. https://doi.org/10.3390/fluids5040230