Lightning Solvers for Potential Flows
Abstract
:1. Introduction
2. Method
2.1. The Lightning Method
Algorithm 1: Laplace lightning solver (Gopal and Trefethen, 2019 [6]). |
2.2. Compression of Solutions
3. Results and Discussion
3.1. Potential Flows
3.2. Periodic Domains
3.3. The Kutta Condition
3.4. Vortex Dynamics
3.5. Free-Streamline Flows
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehman, R. Developments at an analytic corner of solutions of elliptic partial differential equations. Indiana Univ. Math. J. 1959, 8, 727–760. [Google Scholar] [CrossRef]
- Arndt, D.; Bangerth, W.; Blais, B.; Clevenger, T.C.; Fehling, M.; Grayver, A.V.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; et al. The deal.II library, Version 9.2. J. Numer. Math. 2020, 28, 131–146. [Google Scholar] [CrossRef]
- Logg, A.; Mardal, K.A.; Wells, G.N. Automated Solution of Differential Equations by the Finite Element Method; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 84 LNCSE, pp. 1–736. [Google Scholar] [CrossRef]
- Aliabadi, M.H.; Wen, P.H. Boundary element methods in engineering course. Eng. Anal. 1984, 1, 61–62. [Google Scholar] [CrossRef]
- Serkh, K.; Rokhlin, V. On the solution of elliptic partial differential equations on regions with corners. J. Comput. Phys. 2016, 305, 150–171. [Google Scholar] [CrossRef] [Green Version]
- Gopal, A.; Trefethen, L.N. Solving Laplace problems with corner singularities via rational functions. SIAM J. Numer. Anal. 2019, 57, 2074–2094. [Google Scholar] [CrossRef]
- Gopal, A.; Trefethen, L.N. New Laplace and Helmholtz solvers. Proc. Natl. Acad. Sci. USA 2019, 116, 10223–10225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joukowski, N. Über die Konturen der Tragflächen der Drachenflieger. Z. Flugtech. Mot. 1910, 1, 281–284. [Google Scholar]
- Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter; National Aeronautics and Space Administration: Washington, DC, USA, 1979; pp. 291–311.
- Sears, W.R. Some Aspects of Non-Stationary Airfoil Theory and Its Practical Application. J. Aeronaut. Sci. 1941, 8, 104–108. [Google Scholar] [CrossRef]
- Wu, T.Y.T. Swimming of a waving plate. J. Fluid Mech. 1961, 10, 321–344. [Google Scholar] [CrossRef]
- Cordes, U.; Kampers, G.; Meiner, T.; Tropea, C.; Peinke, J.; Hölling, M. Note on the limitations of the Theodorsen and Sears functions. J. Fluid Mech. 2017, 811, R11–R111. [Google Scholar] [CrossRef]
- Wei, N.J.; Kissing, J.; Wester, T.T.; Wegt, S.; Schiffmann, K.; Jakirlic, S.; Hölling, M.; Peinke, J.; Tropea, C. Insights into the periodic gust responseA ofA airfoils. J. Fluid Mech. 2019, 876, 237–263. [Google Scholar] [CrossRef] [Green Version]
- Van Dyke, M. Perturbation Methods in Fluid Mechanics; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Brown, C.E.; Michael, W.H. Effect of leading-edge separation on the lift of a delta wing. J. Aeronaut. Sci. 1954, 21, 690–694. [Google Scholar] [CrossRef]
- Michelin, S.; Llewellyn Smith, S.G. An unsteady point vortex method for coupled fluid-solid problems. Theor. Comput. Fluid Dyn. 2009, 23, 127–153. [Google Scholar] [CrossRef] [Green Version]
- Southwick, O.R.; Johnson, E.R.; McDonald, N.R. A point vortex model for the formation of ocean eddies by flow separation. Phys. Fluids 2015, 27, 16604. [Google Scholar] [CrossRef] [Green Version]
- Manela, A.; Halachmi, M. Mechanisms of sound amplification and sound reduction in the flapping flight of side-by-side airfoils. J. Sound. Vib. 2015, 346, 216–228. [Google Scholar] [CrossRef]
- Pullin, D. Contour Dynamics Methods. Annu. Rev. Fluid Mech. 1992, 24, 89–115. [Google Scholar] [CrossRef]
- Krasny, R. Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 1986, 65, 292–313. [Google Scholar] [CrossRef]
- Wu, T.Y.T. A wake model for free-streamline flow theory: Part 1. Fully and partially developed wake flows past an oblique flat plate. J. Fluid Mech. 1962, 13, 161–181. [Google Scholar] [CrossRef]
- Hassenpflug, W.C. Free-streamlines. Comput. Math. Appl. 1998, 36, 69–129. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, T.A.; Trefethen, L.N. Schwarz-Christoffel Mapping; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Crowdy, D.G.; Marshall, J. Conformal mappings between canonical multiply connected domains. Comput. Methods Funct. Theory 2006, 6, 59–76. [Google Scholar] [CrossRef]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Crowdy, D.G. Solving problems in multiply connected domains. In SIAM CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 2020. [Google Scholar]
- Crowdy, D.G. A new calculus for two-dimensional vortex dynamics. Theor. Comput. Fluid Dyn. 2010, 24, 9–24. [Google Scholar] [CrossRef]
- Baddoo, P.J.; Ayton, L.J. A calculus for flows in periodic domains. Theor. Comput. Fluid Dyn. 2020, arXiv:2001.00859. [Google Scholar] [CrossRef]
- Crowdy, D.G.; Kropf, E.H.; Green, C.C.; Nasser, M.M.S. The Schottky-Klein prime function: A theoretical and computational tool for applications. IMA J. Appl. Math. 2016, 81, 589–628. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C. On the motion of vortices in two dimensions: I. Existence of the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. USA 1941, 27, 575–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowdy, D.G.; Marshall, J. Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2477–2501. [Google Scholar] [CrossRef]
- Baddoo, P.J.; Ayton, L.J. Potential flow through a cascade of aerofoils: Direct and inverse problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180065. [Google Scholar] [CrossRef] [Green Version]
- Hajian, R.; Jaworski, J.W. The steady aerodynamics of aerofoils with porosity gradients. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170266. [Google Scholar] [CrossRef]
- Moore, M.N.J. Riemann–Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows. Commun. Pure Appl. Math. 2017, 70, 1810–1831. [Google Scholar] [CrossRef]
- Crighton, D.G. The Kutta condition in unsteady flow. Annu. Rev. Fluid Mech. 1985, 17, 411–445. [Google Scholar] [CrossRef]
- Eldredge, J.D. Mathematical Modeling of Unsteady Inviscid Flows; Interdisciplinary Applied Mathematics; Springer International Publishing: New York, NY, USA, 2019; Volume 50, p. 461. [Google Scholar] [CrossRef]
- Ramesh, K.; Gopalarathnam, A.; Granlund, K.; Ol, M.V.; Edwards, J.R. Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 2014, 751, 500–538. [Google Scholar] [CrossRef]
- Darakananda, D.; da Silva, A.F.d.C.; Colonius, T.; Eldredge, J.D. Data-assimilated low-order vortex modeling of separated flows. Phys. Rev. Fluids 2018, 3, 124701. [Google Scholar] [CrossRef]
- Trefethen, L.N. Lightning Laplace Software. 2020. Available online: https://people.maths.ox.ac.uk/trefethen/lightning (accessed on 21 November 2020).
- Trefethen, L.N. Approximation Theory and Approximation Practice, Extended Edition; SIAM: Philadelphia, PA, USA, 2019. [Google Scholar]
- Newman, D.J. Rational approximation to |x|. Mich. Math. J. 1964, 11, 11–14. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Nakatsukasa, Y.; Weideman, J.A.C. Exponential Node Clustering at Singularities for Rational Approximation, Quadrature, and PDEs. Numer. Math. 2020, in press. [Google Scholar]
- Brubeck, P.D.; Nakatsukasa, Y.; Trefethen, L.N. Vandermonde with Arnoldi. SIAM Rev. 2020, in press. [Google Scholar]
- Fairweather, G.; Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 1998, 9, 69–95. [Google Scholar] [CrossRef]
- Mathon, R.; Johnston, R.L. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 1977, 14, 638–650. [Google Scholar] [CrossRef]
- Kupradze, V.D.; Aleksidze, M.A. The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 1964, 4, 82–126. [Google Scholar] [CrossRef]
- Nakatsukasa, Y.; Sète, O.; Trefethen, L.N. The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 2018, 40, A1494–A1522. [Google Scholar] [CrossRef]
- Nakatsukasa, Y.; Trefethen, L.N. An algorithm for real and complex rational minimax approximation. SIAM J. Sci. Comput. 2020, 42, A3157–A3179. [Google Scholar] [CrossRef]
- Driscoll, T.A.; Hale, N.; Trefethen, L.N. Chebfun Guide; Pafnuty Publications: Oxford, UK, 2014. [Google Scholar]
- Baddoo, P.J. The AAAtrig algorithm for rational approximation of periodic functions. arXiv 2020, arXiv:2008.05446. [Google Scholar]
- Gopal, A.; Trefethen, L.N. Representation of conformal maps by rational functions. Numer. Math. 2019, 142, 359–382. [Google Scholar] [CrossRef] [Green Version]
- Howell, L.H. Numerical conformal mapping of circular arc polygons. J. Comput. Appl. Math. 1993, 46, 7–28. [Google Scholar] [CrossRef] [Green Version]
- Crowdy, D.G. Effective slip lengths for immobilized superhydrophobic surfaces. J. Fluid Mech. 2017, 825, R2. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, G.L. Multiple bubbles and fingers in a Hele-Shaw channel: Complete set of steady solutions. J. Fluid Mech. 2015, 780, 299–326. [Google Scholar] [CrossRef] [Green Version]
- Baddoo, P.J.; Crowdy, D.G. Periodic Schwarz–Christoffel mappings with multiple boundaries per period. Proc. R. Soc. A 2019, 475. [Google Scholar] [CrossRef] [Green Version]
- Llewellyn Smith, S.G. How do singularities move in potential flow? Phys. D Nonlinear Phenom. 2011, 240, 1644–1651. [Google Scholar] [CrossRef] [Green Version]
- Aref, H. Point vortex dynamics: A classical mathematics playground. J. Math. Phys. 2007, 48, 065401. [Google Scholar] [CrossRef] [Green Version]
- Saffman, P.G. Vortex Dynamics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Crowdy, D.G. The Schwarz–Christoffel mapping to bounded multiply connected polygonal domains. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2653–2678. [Google Scholar] [CrossRef]
- Trefethen, L.N. Numerical conformal mapping with rational functions. Comput. Methods Funct. Theory 2020, 20, 369–387. [Google Scholar] [CrossRef]
- Howe, M.S. Theory of Vortex Sound; Cambridge University Press: Cambridge, UK, 2003; p. 216. [Google Scholar]
- Lin, C.C. On the Motion of Vortices in Two Dimensions: II. Some Further Investigations on the Kirchhoff-Routh Function. Proc. Natl. Acad. Sci. USA 1941, 27, 575–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elcrat, A.R.; Trefethen, L.N. Classical free-streamline flow over a polygonal obstacle. J. Comput. Appl. Math. 1986, 14, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Hureau, J.; Brunon, E.; Legallais, P. Ideal free streamline flow over a curved obstacle. J. Comput. Appl. Math. 1996, 72, 193–214. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baddoo, P.J. Lightning Solvers for Potential Flows. Fluids 2020, 5, 227. https://doi.org/10.3390/fluids5040227
Baddoo PJ. Lightning Solvers for Potential Flows. Fluids. 2020; 5(4):227. https://doi.org/10.3390/fluids5040227
Chicago/Turabian StyleBaddoo, Peter J. 2020. "Lightning Solvers for Potential Flows" Fluids 5, no. 4: 227. https://doi.org/10.3390/fluids5040227