Aerodynamic Investigation of a Morphing Wing for Micro Air Vehicle by Means of PIV
Abstract
:1. Introduction
2. Description of the Experimental Setup
2.1. The Morphing Model
2.2. The Wind Tunnel
2.3. PIV Measurements
3. Results and Discussion
- Test section distance to the wall: 40 (S3), 60 (S2), 85 (S1), and 95 mm (S0). Each test section corresponds to planes parallel to the wall placed in the symmetric plane of the morphing model (See Figure 6)
- The angle of attack of the model: 0°, 5°, 10°, 15°, 20°, and 25°
- Airfoil model: original model (Eppler 61) and modified version (Mod 4)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barbarino, S.; Bilgen, O.; Ajac, R.M.; Friswell, M.; Inman, D. A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Cao, W.; Cudney, H.H.; Waser, R. Smart materials and structures. Proc. Natl. Acad. Sci. USA 1999, 96, 8330–8331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavsar, R.; Vaidya, N.Y.; Ganguly, P.; Humphreys, A.; Robisson, A.; Tu, H.; Wicks, N.; Mckinley, G.H.; Pauchet, F. Intelligence in novel materials. Oilfield Rev. 2008, 20, 32–41. [Google Scholar]
- Colorado, J.; Barrientos, A.; Rossi, C.; Breuer, K.S. Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators. Bioinspir. Biomim. 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prajapati, M.; Dasharathi, K.; Kumar, A.; Mahapatra, D.R. Shape memory composite cellular plan-forms for shape and area morphing. J. Micro Smart Syst. ISSS 2017, 6, 161–171. [Google Scholar]
- Kojima, T.; Ikeda, T.; Senba, A.; Tamayama, M.; Arizono, H. Wind Tunnel Test of Morphing Flap Driven by Shape Memory Alloy Wires. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2017, 15, a75–a82. [Google Scholar] [CrossRef]
- Jodin, G.; Scheller, J.; Duhayon, E.; Rouchon, J.F.; Triantafyllou, M.; Braza, M. An Experimental Platform for Surface Embedded SMAs in Morphing Applications. Solid State Phenom. 2017, 260, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Barbarino, S.; Pecora, R.; Lecce, L.; Ameduri, S.; Calvi, E. A novel SMA-based concept for airfoil structural morphing. J. Mater. Eng. Perform. 2009, 18, 696–705. [Google Scholar] [CrossRef]
- Bilgen, O.; Kochersberger, K.; Diggs, E.C.; Kurdila, A.J.; Inman, D.J. Morphing wing micro-air-vehicles via macro-fiber-composite actuators. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007. [Google Scholar]
- Ohanian, O., III; David, B.; Taylor, S.; Kochersberger, K.; Probst, T.; Gelhausen, P.; Climer, J. Piezoelectric morphing versus servo-actuated MAV control surfaces, part II: Flight testing. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Ohanian, O.J., III; Karnia, E.D.; Oliena, C.C.; Gustafsonb, E.A.; Kochersbergerb, K.B.; Gelhausenc, P.A.; Brownd, C.B.L. 2011 Piezoelectric composite morphing control surfaces for unmanned aerial vehicles. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2011. [Google Scholar]
- Kimaru, J.; Bouferrouk, A. Design, manufacture and test of a camber morphing wing using MFC actuated mart rib. In Proceedings of the 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, 22–25 July 2017; pp. 791–796. [Google Scholar]
- Kochersberger, K.B.; Ohanian, O.J., III; Probst, T.; Gelhausen, P.A. Design and flight test of the generic micro-aerial vehicle (GenMAV) utilizing piezoelectric conformal flight control actuation. J. Intell. Mater. Syst. Struct. 2017. [Google Scholar] [CrossRef]
- Keihl, M.M.; Bortolin, R.S.; Sanders, B.; Joshi, S.; Tidwell, Z. Mechanical properties of shape memory polymers for morphing aircraft applications. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 5 May 2005; pp. 143–151. [Google Scholar]
- Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape memory polymers and their composites in aerospace applications: A review. Smart Mater. Struct. 2014, 23. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 2009, 69, 2064–2068. [Google Scholar] [CrossRef]
- Sun, J.; Guan, Q.; Liu, Y.; Leng, J. Morphing aircraft based on smart materials and structures: A state-of-the-art review. J. Intell. Mater. Syst. Struct. 2016, 27, 2289–2312. [Google Scholar] [CrossRef]
- Barcala-Montejano, M.A.; Rodríguez-Sevillano, A.A.; Crespo-Moreno, J.; Bardera-Mora, R.; Silva-González, A.J. Optimized performance of a morphing micro air vehicle. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 794–800. [Google Scholar]
Eppler 61 | 6.4 | 51 | 5.67 | 25.29 |
Mod 4 | 10.0 | 45 | 5.67 | 25.29 |
α (°) | Eppler 61 | Mod 4 | ||
---|---|---|---|---|
CL | CD | CL | CD | |
0 | 0.19 | 0.102 | 0.31 | 0.075 |
5 | 0.42 | 0.102 | 0.67 | 0.114 |
10 | 0.62 | 0.143 | 0.94 | 0.187 |
15 | 0.90 | 0.204 | 1.19 | 0.285 |
20 | 1.11 | 0.407 | 1.41 | 0.404 |
25 | 1.03 | 0.550 | 1.54 | 0.527 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardera, R.; Rodríguez-Sevillano, Á.; García-Magariño, A. Aerodynamic Investigation of a Morphing Wing for Micro Air Vehicle by Means of PIV. Fluids 2020, 5, 191. https://doi.org/10.3390/fluids5040191
Bardera R, Rodríguez-Sevillano Á, García-Magariño A. Aerodynamic Investigation of a Morphing Wing for Micro Air Vehicle by Means of PIV. Fluids. 2020; 5(4):191. https://doi.org/10.3390/fluids5040191
Chicago/Turabian StyleBardera, Rafael, Ángel Rodríguez-Sevillano, and Adelaida García-Magariño. 2020. "Aerodynamic Investigation of a Morphing Wing for Micro Air Vehicle by Means of PIV" Fluids 5, no. 4: 191. https://doi.org/10.3390/fluids5040191
APA StyleBardera, R., Rodríguez-Sevillano, Á., & García-Magariño, A. (2020). Aerodynamic Investigation of a Morphing Wing for Micro Air Vehicle by Means of PIV. Fluids, 5(4), 191. https://doi.org/10.3390/fluids5040191