On the Foundations of Eddy Viscosity Models of Turbulence
Abstract
:1. Introduction
“Virtually all practical engineering computations are done with some variation of eddy viscosity ...”.
2. Ensemble Averages and the Boussinesq Conjecture
2.1. Preliminaries
2.2. Mathematical Formulation
2.3. Proof of Theorem 1
2.4. The Connection to
3. Extending Models to Non-Stationary Turbulence
“ ... the physics of turbulence is vastly different than the physics of the molecular processes that lead to the viscous stress law ...”, Pope [36] (p. 359),
“ ... significant defects when compared with experiment ... important effects are missed...”, Mathieu and Scott [37] (p. 81),
“ ... eddy viscosity is frequently negative and thus leads to instabilities.”, Frisch [38] (p. 233),
“ ... this makes the whole concept of an eddy viscosity more than a little strange ...”, Monin & Yaglom [33] (p. 373).
“ ... The results using numerical ... or experimental data are very consistent in pointing the non-validity of the Boussinesq hypothesis...”, Schmitt [39].
4. New Ideas for a Classical 1–Equation EV Model
“... the distance traversed by a mass of this type before it becomes blended in with neighboring masses...”.
5. Discussion
6. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NSE | Navier-Stokes Equations |
EV | Eddy Viscosity |
URANS | Unsteady Reynolds Averaged Navier Stokes |
LD | linear dichroism |
References
- Jiang, N.; Layton, W. Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 2014, 31, 630–651. [Google Scholar] [CrossRef]
- Jiang, N.; Kaya, S.; Layton, W. Analysis of Model Variance for Ensemble Based Turbulence Modeling. Comput. Methods Appl. Math. 2015, 15, 173–188. [Google Scholar] [CrossRef]
- Jiang, N.; Layton, W. Algorithms and models for turbulence not at statistical equilibrium. Comput. Math. Appl. 2016, 71, 2352–2372. [Google Scholar] [CrossRef] [Green Version]
- Layton, W. The 1877 Boussinesq Conjecture: Turbulent Fluctuations are Dissipative on the Mean Flow, TR 14-07. 2014. Available online: yearwww.mathematics.pitt.edu/research/technical-reports (accessed on 28 September 2020).
- Layton, W.; McLaughlin, M. On URANS Congruity with Time Averaging: Analytical laws suggest improved models. In Proceedings of the International conference in honor of the 90th Birthday of Constantin Corduneanu, Ekaterinburg, Russia, 26–31 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 85–108. [Google Scholar]
- Rong, Y.; Layton, W.; Zhao, H. Extension of a simplified Baldwin-Lomax model to non-equilibrium turbulence: Model, analysis and algorithms. Numer. Methods Partial Differ. Equ. 2019, 35, 1821–1846. [Google Scholar] [CrossRef]
- Boussinesq, J. Essai sur la théorie des eaux courantes. Mémoires Présentés Par Divers Savants à l’Académie Sci. 1877, 23, 1–680. [Google Scholar]
- Durbin, P.A.; Pettersson Reif, B.A. Statistical Theory and Modeling for Turbulent Flows, 2nd ed.; Wiley: Chichester, UK, 2011. [Google Scholar]
- Iliescu, T.; Layton, W. Approximating the larger eddies in fluid motion III: The Boussinesq model for turbulent fluctuations. Analele Stinfice ale Universitatii Al. I. Cuza Iasi 1998, XLIV, 245–261. [Google Scholar]
- Layton, W.; Lewandowski, R. Analysis of an Eddy Viscosity Model for Large Eddy Simulation of Turbulent Flows. J. Math. Fluid Mech. 2002, 4, 374–399. [Google Scholar] [CrossRef]
- Jiang, N. A Higher Order Ensemble Simulation Algorithm for Fluid Flows. J. Sci. Comput. 2014, 64, 264–288. [Google Scholar] [CrossRef]
- Layton, W.; Takhirov, A. Numerical analysis of wall adapted nonlinear filter models of turbulent flows. Contemp. Math. 2013, 586, 219–229. [Google Scholar]
- Layton, W.; Rebholz, L.G.; Trenchea, C. Modular Nonlinear Filter Stabilization of Methods for Higher Reynolds Numbers Flow. J. Math. Fluid Mech. 2011, 14, 325–354. [Google Scholar] [CrossRef]
- Layton, W.; Mays, N.; Neda, M.; Trenchea, C. Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations. ESAIM Math. Model. Numer. Anal. 2014, 48, 765–793. [Google Scholar] [CrossRef]
- Saint-Venant (Barré), A.J.C. Note à joindre au Mémoire sur la dynamique des fluides. CRAS 1843, 17, 1240–1243. [Google Scholar]
- Darrigol, O. Worlds of Flow; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Eckert, M. The Dawn of Fluid Dynamics; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Layton, W.; Schneier, M. Diagnostics for eddy viscosity models of turbulence including data-driven/neural network based parameterizations. Results Appl. Math. 2020, 8, 100099. [Google Scholar] [CrossRef]
- Guermond, J.-L. Subgrid stabilization of Galerkin approximations of monotone operators. C. R. Acad. Sci. Paris Série I 1999, 328, 617–622. [Google Scholar] [CrossRef]
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 1991, 3, 1760–1765. [Google Scholar] [CrossRef] [Green Version]
- Berselli, L.C.; Iliescu, T.; Layton, W. Mathematics of Large Eddy Simulation of Turbulent Flows; Springer: Berlin, Germany, 2006. [Google Scholar]
- Hughes, T.J.; Mazzei, L.; Jansen, K.E. Large Eddy Simulation and the variational multiscale method. Comput. Vis. Sci. 2000, 3, 47–59. [Google Scholar] [CrossRef]
- Layton, W. A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comput. 2002, 133, 147–157. [Google Scholar] [CrossRef]
- Lund, T.S.; Novikov, E.A. Parametrization of subgrid-scale stress by the velocity gradient tensor. Annu. Res. Briefs 1992, CTR, 27–43. [Google Scholar]
- Mohammadi, B.; Pironneau, O. Analysis of the K-Epsilon Turbulence Model; Masson: Paris, France, 1994. [Google Scholar]
- Sagaut, P. Large Eddy Simulation for Incompressible Flows; Springer: Berlin, Germany, 2001. [Google Scholar]
- Takhirov, A.; Neda, M.; Waters, J. Time relaxation algorithm for flow ensembles. Numer. Methods Partial Differ. Equ. 2015, 32, 757–777. [Google Scholar] [CrossRef]
- Vreman, A.W. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 2004, 16, 3670. [Google Scholar] [CrossRef]
- Labovsky, A.; Layton, W. Magnetohydrodynamic flows: Boussinesq conjecture. J. Math. Anal. Appl. 2016, 434, 1665–1675. [Google Scholar] [CrossRef]
- Chow, Y.T.; Pakzad, A. On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations. arXiv 2020, arXiv:2004.08655. [Google Scholar]
- Pakzad, A. Damping Functions correct over-dissipation of the Smagorinsky Model. Math. Methods Appl. Sci. 2017, 40, 5933–5945. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E. Atmospheric Modelling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics, Mechanics of Turbulence; Dover publications: Mineola, NY, USA, 2007; Volume 1. [Google Scholar]
- Panchev, S. Random Functions and Turbulence; Pergammon Press: Oxford, UK, 1971. [Google Scholar]
- Starr, V.P. Physics of Negative Viscosity Phenomena; McGraw Hill: New York, NY, USA, 1968. [Google Scholar]
- Pope, S. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mathieu, J.; Scott, J. An Introduction to Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Frisch, U. Turbulence; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Schmitt, F.G. About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 2007, 335, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Frahnert, H.; Dallmann, U.C. Examination of the eddy viscosity concept regarding its physical justification. Notes Numer. Fluid Mech. 2002, 77, 255–262. [Google Scholar]
- Vergassola, M.; Gama, S.; Frisch, U. Proving the Existence of Negative, Isotropic Eddy Viscosity. In Solar and Planetary Dynamics; Proctor, M., Mattheus, D., Rucklidge, A., Eds.; Cambridge U. Press: Cambridge, UK, 1994; pp. 321–328. [Google Scholar]
- Berselli, L.C.; Breit, D. On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations. arXiv 2020, arXiv:2003.00691x. [Google Scholar]
- Berselli, L.C.; Lewandowski, R.; Nguyen, D. Rotational forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory. Technical Report. 2020. Available online: https://hal.archives-ouvertes.fr/hal-02569244/document (accessed on 28 September 2020).
- Pakzad, A. A study of energy dissipation in a corrected eddy viscosity model. Prelim. Rep. 2020. in prep. [Google Scholar]
- Prandtl, L. Über ein nenes Formelsystem für die ausgebildete Turbulenz. Nacr. Akad. Wiss. Göttingen Math Phys. Kl. 1945, 6–16. [Google Scholar]
- Bulicek, M.; Malek, J. Large data analysis for Kolmogorov’s two-equation model of turbulence. Nonlinear Anal. 2019, 50, 104–143. [Google Scholar] [CrossRef] [Green Version]
- Spalding, D.B. Kolmogorov’s two-equation model of turbulence. Proc. R. Soc. Lond. Ser. A 1991, 434, 211–216. [Google Scholar]
- Kolmogorov, A.N. Equations of turbulent motion in an incompressible fluid. Izv. Akad. Nauk SSSR 1942, 6, 56–58. [Google Scholar]
- Davidson, P. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Chacon-Rebollo, T.; Lewandowski, R. Mathematical and Numerical Foundations of Turbulence Models and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Taylor, G.I. Eddy motion in the atmosphere. Philos. Trans. R. Soc. Ser. A 1915, 215, 1–26. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 2006. [Google Scholar]
- Spalart, P.R. Philosophies and fallacies in turbulence modeling. Prog. Aerosp. Sci. 2015, 74, 1–15. [Google Scholar] [CrossRef]
- Prandtl, L. On fully developed turbulence. In Proceedings of the 2nd International Congress of Applied Mechanics, Zürich, Switzerland, 12–17 September 1926; pp. 62–74. [Google Scholar]
- Lewandowski, R.; Mohammadi, B. Existence and positivity results for the ϕ-θ model and a modified k-ε model. Math. Model Methods Appl. Sci. 1993, 3, 195–215. [Google Scholar] [CrossRef]
- Wu, Z.-N.; Fu, S. Positivity of k-epsilon turbulence models for incompressible flow. Math. Model. Methods Appl. Sci. 2002, 12, 393–406. [Google Scholar] [CrossRef]
- Doering, C.R.; Foias, C. Energy dissipation in body-forced turbulence. J. Fluid Mech. 2002, 467, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Doering, C.R.; Constantin, P. Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 1992, 69, 1648. [Google Scholar] [CrossRef]
- Wang, X. Time averaged energy dissipation rate for shear driven flows in Rn. Phys. D Nonlinear Phenom. 1997, 99, 555–563. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Layton, W.; McLaughlin, M.; Rong, Y.; Zhao, H. On the Foundations of Eddy Viscosity Models of Turbulence. Fluids 2020, 5, 167. https://doi.org/10.3390/fluids5040167
Jiang N, Layton W, McLaughlin M, Rong Y, Zhao H. On the Foundations of Eddy Viscosity Models of Turbulence. Fluids. 2020; 5(4):167. https://doi.org/10.3390/fluids5040167
Chicago/Turabian StyleJiang, Nan, William Layton, Michael McLaughlin, Yao Rong, and Haiyun Zhao. 2020. "On the Foundations of Eddy Viscosity Models of Turbulence" Fluids 5, no. 4: 167. https://doi.org/10.3390/fluids5040167
APA StyleJiang, N., Layton, W., McLaughlin, M., Rong, Y., & Zhao, H. (2020). On the Foundations of Eddy Viscosity Models of Turbulence. Fluids, 5(4), 167. https://doi.org/10.3390/fluids5040167