Nutrient Patchiness, Phytoplankton Surge-Uptake, and Turbulent History: A Theoretical Approach and Its Experimental Validation
Abstract
:1. Introduction
2. Assessing Nutrient Patchiness in the Ocean
2.1. High-Frequency Nutrient Sampling
2.2. Potential Sources of Aliasing and Validation
2.2.1. The Motion of the Ship
2.2.2. The Characteristics of the Sample Processing Chain Including Features of the Electronics Involved
2.2.3. The Turbulent and/or Molecular Diffusion Occurring in the Plastic Tubing of the Pumping Apparatus
2.2.4. The Mixing Induced by the Boundary Layer Occurring around the Hull of the Vessel
2.3. Stochastic Quantification of Intermittent Nutrient Distribution
2.3.1. Theoretical Analysis
2.3.2. Intermittent Ammonium Distribution vs. Turbulence Intensity
3. Nutrient Patches and Phytoplankton Uptake
3.1. Phytoplankton Nutrient Uptake in a Steady-State Environment
3.2. A Simplified Model of Nutrient Surge Uptake in an Intermittent Environment
3.2.1. Theoretical Formulation of the Stochastic Properties of Intermittent Nutrient Distribution
3.2.2. A Simplified Model for Nutrient Surge Uptake under Intermittent Conditions
3.2.3. Surge Uptake under Homogenous and Intermittent Nutrient Distribution: The Turbulent History Hypothesis
- For the same concentrations, the distribution of ammonium is controlled by turbulence, switching from a more homogeneous to a more heterogeneous distribution respectively under high and low turbulence intensities. This is consistent with previous observations conducted on nitrite and phytoplankton concentrations [11,28].
- The turbulent regime experienced by phytoplankton cells, here referred to as their ‘turbulent history’ will condition their affinity to ammonium and its transport rate.
- As a consequence, any uptake experiments conducted on natural phytoplankton communities would be intrinsically influenced, if not biased, by their turbulent history. In order to validate our mechanistic hypotheses, we specifically designed a field experiment devoted to assess the surge uptake rates of natural phytoplankton communities under ammonium limitations when exposed to ammonium pulses of low and high concentrations.
4. Empirical Validation: A Case Study from a Turbulent Coastal Sea, the Eastern English Channel
4.1. Field Site and Sampling Strategy
4.2. Chemical and Biological Environment
4.3. Quantifying Surge Uptake Rates
4.4. Quantifying the Turbulent History of Phytoplankton Cells
4.5. Turbulent History, Nutrient Patchiness and Phytoplankton Uptake Rates
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitchell, J.G.; Okubo, A.; Fuhrman, J.A. Microzones surrounding phytoplankton forms the basis for a stratified microbial ecosystem. Nature 1985, 316, 58–59. [Google Scholar] [CrossRef]
- Bjørnsen, P.K.; Nielsen, T.G. Decimeter scale heterogeneity in the plankton during a pycnocline bloom of Gyrodinium aureolum. Mar. Ecol. Prog. Ser. 1991, 73, 263–267. [Google Scholar] [CrossRef]
- Pascual, M.; Ascioti, A.; Caswell, H. Intermittency in the plankton: A multifractal analysis of zooplankton biomass variability. J. Plankton Res. 1995, 17, 1209–1232. [Google Scholar] [CrossRef] [Green Version]
- Seuront, L.; Schmitt, F.; Shertzer, D.; Lagadeuc, Y.; Lovejoy, S. Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: Example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res. 1999, 21, 877–922. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.R.; Mitchell, J.G.; Seuront, L. Microscale heterogeneity in the activity of coastal bacterioplankton communities. Aquat. Microb. Ecol. 2004, 35, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wolk, F.; Yamazaki, H.; Seuront, L. A new free fall profiler for measuring biophysical microstructure. J. Atmos. Ocean. Technol. 2002, 19, 780–793. [Google Scholar] [CrossRef]
- Franks, P.J.S.; Jaffe, J.S. Microscale distributions of phytoplankton: Initial results from a two-dimensional imaging fluorometer. Mar. Ecol. Prog. Ser. 2001, 220, 59–72. [Google Scholar] [CrossRef]
- Seuront, L.; Lagadeuc, Y. Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. J. Plankton Res. 2001, 23, 1137–1145. [Google Scholar] [CrossRef] [Green Version]
- Waters, R.L.; Mitchell, J.G.; Seymour, J.R. Geostatistical characterization of centimeter-scale spatial structure of in vivo fluorescence. Mar. Ecol. Prog. Ser. 2003, 251, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.R.; Mitchell, J.G.; Seuront, L. Microscale and small scale temporal dynamics of a coastal microbial community. Mar. Ecol. Prog. Ser. 2005, 300, 21–37. [Google Scholar] [CrossRef]
- Seuront, L. Hydrodynamic and tidal controls of small-scale phytoplankton patchiness. Mar. Ecol. Prog. Ser. 2005, 302, 93–101. [Google Scholar] [CrossRef]
- Seymour, J.R.; Seuront, L.; Doubell, M.J.; Waters, R.L.; Mitchell, J.G. Microscale patchiness of virioplankton. J. Biol. Assoc. Ass. UK 2006, 86, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.R.; Seuront, L.; Mitchell, J.G. Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Est. Coast. Shelf Sci. 2007, 73, 651–666. [Google Scholar] [CrossRef]
- Seymour, J.R.; Seuront, L.; Doubell, M.J.; Mitchell, J.G. Mesoscale and microscale spatial variability of bacteria and viruses during a Phaeocystis globose bloom in the eastern English Channel. Est. Coast. Shelf Sci. 2008, 80, 589–597. [Google Scholar] [CrossRef]
- Doubell, M.J.; Seuront, L.; Seymour, J.R.; Patten, N.L.; Mitchell, J.G. High-resolution fluorometer for mapping microscale phytoplankton distribution. Appl. Environ. Microbiol. 2006, 72, 4475–4478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seuront, L.; Lacheze, C.; Doubell, M.J.; Seymour, J.R.; Dongen-Vogels, V.V.; Newton, K.; Alderkamp, A.C.; Mitchell, J.G. The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity. Biogeochemistry 2007, 83, 173–188. [Google Scholar] [CrossRef]
- Doubell, M.J.; Yamazaki, H.; Hua, L.; Kokubu, Y. An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems. J. Plankton Res. 2009, 31, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Doubell, M.J.; Prairie, J.C.; Yamazaki, H. Millimeter scale profiles of chlorophyll fluorescence: Deciphering the microscale spatial structure of phytoplankton. Deep-Sea Res. II 2014, 101, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Prairie, J.C.; Franks, P.J.S.; Jaffe, J.S. Cryptic peaks: Invisible vertical structure in fluorescent particles revealed using a planar laser imaging fluorometer. Limnol. Oceanogr. 2010, 55, 1943–1958. [Google Scholar] [CrossRef]
- Prairie, J.C.; Franks, P.J.S.; Jaffe, J.S.; Doubell, M.J.; Yamazaki, H. Physical and biological controls of vertical gradients in phytoplankton. Limnol. Oceanogr. Fluids Environ. 2011, 1, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Prairie, J.C.; Sutherland, K.R.; Nickols, K.J.; Kaltenberg, A.M. Biophysical interactions in the plankton: A cross-scale review. Limnol. Oceanogr. Fluids Environ. 2012, 2, 121–145. [Google Scholar] [CrossRef]
- Prairie, J.C.; Ziervogel, K.; Camassa, R.; McLaughlin, R.M.; White, B.L.; Johnson, Z.I.; Arnosti, C. Ephemeral aggregate layers in the water column leave lasting footprints in the carbon cycle. Limnol. Oceanogr. Lett. 2017, 2, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Reigada, R.; Hillary, R.M.; Bees, M.A.; Sancho, J.M.; Sagués, F. Plankton blooms induced by turbulent flows. Proc. R. Soc. Lond. B 2003, 270, 875–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, W.M.; Climent, E.; Barry, M.; De Lillo, F.; Boffetta, G.; Cencini, M.; Stocker, R. Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 2013, 4, 2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breier, R.E.; Lalescu, C.C.; Waas, D.; Wilczek, M.; Mazza, M.G. Emergence of phytoplankton patchiness at small scales in mild turbulence. Proc. Nat. Acad. Sci. USA 2018, 115, 12112–12117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, M.; Wagensberg, M. Spatial analysis of spatial series of oceanographic variables. J. Exp. Mar. Biol. Ecol. 1977, 30, 147–164. [Google Scholar] [CrossRef]
- Steele, J.H.; Henderson, E.W. Spatial patterns in North Sea plankton. Deep-Sea Res. 1979, 26, 955–963. [Google Scholar] [CrossRef]
- Seuront, L.; Gentilhomme, V.; Lagadeuc, Y. Small-scale nutrient patches in tidally mixed coastal waters. Mar. Ecol. Prog. Ser. 2002, 232, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, N.; Fenchel, T.; Mitchell, J.G. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 1998, 282, 2254–2256. [Google Scholar] [CrossRef] [Green Version]
- Stocker, R.; Seymour, J.R.; Samadani, A.; Hunt, D.; Polz, M. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Nat. Acad. Sci. USA 2008, 105, 4209–4214. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.R.; Ahmed, T.; Marcos, M.; Stocker, R. A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches Limnol. Oceanogr. Methods 2008, 6, 477–488. [Google Scholar] [CrossRef]
- Seymour, J.R.; Ahmed, T.; Stocker, R. Bacterial chemotaxis towards the extracellular products of the toxic phytoplankton Heterosigma akashiwo. J. Plankton Res. 2009, 31, 1557–1561. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.R.; Marcos, M.; Stocker, R. Resource Patch Formation and Exploitation throughout the Marine Microbial Food Web. Am. Nat. 2009, 173, E15–E29. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.G.; Seuront, L.; Doubell, M.J.; Losic, D.; Voelcker, N.H.; Seymour, J.R.; Lal, R. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS ONE 2013, 8, e59548. [Google Scholar] [CrossRef] [Green Version]
- Lambert, B.S.; Raina, J.B.; Fernandez, V.I.; Rinke, C.; Siboni, N.; Rubino, F.; Hugenholtz, P.; Tyson, G.W.; Stocker, R. A microfluidics-based in situ chemotaxis assay to study the behavior of aquatic microbial communities. Nat. Microbiol. 2017, 2, 1344–1349. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Goldman, J.C. Nitrogenous nutrition of Marine phytoplankton in nutrient-depleted waters. Science 1979, 203, 670–672. [Google Scholar] [CrossRef]
- Glibert, P.M.; Goldman, J.C. Rapid ammonium uptake by Marine phytoplankton. Mar. Biol. Lett. 1981, 2, 25–31. [Google Scholar]
- Goldman, J.C.; Glibert, P. Comparative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 1982, 27, 814–827. [Google Scholar] [CrossRef]
- Currie, D.J. Microscale nutrient patches: Do they matter to the phytoplankton? Limnol. Oceanogr. 1984, 29, 211–214. [Google Scholar] [CrossRef]
- Conway, H.L.; Harrison, P.J.; Davis, C.O. Marine diatoms grown in chemostats under silicate and ammonium limitation. II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient. Mar. Biol. 1976, 5, 187–199. [Google Scholar] [CrossRef]
- Collos, Y. Transient situations in nitrate assimilation by marine diatoms. IV. Non-linear phenomena and the estimation of the maximum uptake rate. J. Plankton Res. 1983, 5, 677–691. [Google Scholar] [CrossRef]
- Raimbault, P.; Gentilhomme, V.; Slawyk, G. Short-term responses of 24-hour N-starved cultures of Phaeodactylum tricornutum to pulsed additions of nitrate at nanomolar levels. Mar. Ecol. Prog. Ser. 1990, 63, 47–52. [Google Scholar] [CrossRef]
- Treguer, P.; Le Corre, P. Manuel D’analyse des sels Nutritifs dans L’eau de mer (Utilisation de L’autoanalyseur II Technicon); Université de Bretagne Occidentale: Brest, France, 1971. [Google Scholar]
- Jenkins, G.; Watts, D. Spectral Analysis and its Applications; Holden-Day: San Francisco, CA, USA, 1968. [Google Scholar]
- Mann, K.H.; Lazier, J.R.N. Dynamic of Marine Ecosystems. Biological-Physical Interactions in the Oceans; Blackwell: Boston, MA, USA, 1991. [Google Scholar]
- Seuront, L.; Schmitt, F.; Shertzer, D.; Lagadeuc, Y.; Lovejoy, S. Multifractal intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields. Nonlinear Process. Geophys. 1996, 3, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Seuront, L.; Schmitt, F.; Shertzer, D.; Lagadeuc, Y.; Lovejoy, S.; Frontier, S. Multifactal analysis of phytoplankton biomass and temperature in the ocean. Geophys. Res. Lett. 1996, 23, 3591–3594. [Google Scholar] [CrossRef]
- Seuront, L. Space-Time Heterogeneity and Biophysical Coupling in Pelagic Ecology: Implications on Carbon Fluxes. Ph.D. Thesis, Université des Sciences et Techniques de Lille, Villeneuve-d’Ascq, France, 1999. [Google Scholar]
- Dugdale, R.C. Nutrient limitation in the sea: Dynamics, identification and significance. Limnol. Oceanogr. 1967, 12, 685–695. [Google Scholar] [CrossRef]
- Pasciak, W.J.; Gavis, J. Transport limited nutrient uptake rates in Ditylium Brightwellii. Limnol. Oceanogr. 1975, 20, 604–617. [Google Scholar] [CrossRef]
- Karp-Boss, L.; Boss, E.; Jumars, P.A. Nutrients fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Ann. Rev. 1996, 34, 71–107. [Google Scholar]
- Droop, M.R. Vitamine B-12 and marine ecology IV. The kinetic of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK 1968, 48, 689–733. [Google Scholar] [CrossRef]
- Baird, M.E.; Emsley, S.M. Toward a mechanistic model of plankton population dynamics. J. Plankton Res. 1999, 21, 85–126. [Google Scholar] [CrossRef] [Green Version]
- Seuront, L.; Schmitt, F.; Lagadeuc, L. Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: Where do we go from here? Deep Sea Res. I 2001, 48, 1199–1215. [Google Scholar] [CrossRef]
- Pasciak, W.J.; Gavis, J. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 1974, 19, 881–888. [Google Scholar] [CrossRef]
- Wheeler, P.A.; Glibert, P.M.; McCarthy, J.J. Ammonium uptake incorporation by Chesapeake Bay phytoplankton: Short term uptake kinetics. Limnol. Oceanogr. 1982, 27, 1113–1128. [Google Scholar] [CrossRef]
- Zehr, J.P.; Falkowski, P.G.; Fowler, J.; Capone, D.G. Coulping between ammonium uptake and incorporation in a marine diatom: Experiments with the short-lived radioisotope 13N. Limnol. Oceanogr. 1988, 33, 518–527. [Google Scholar] [CrossRef]
- Antia, N.J.; Harrison, P.J.; Oliveira, L. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 1991, 30, 1–89. [Google Scholar] [CrossRef]
- Palenik, B.; Koke, J.A. Characterisation of a nitrogen-regulated protein identified by cell-surface biotinylation of a marine phytoplankton. Appl. Environ. Microbiol. 1995, 61, 3311–3315. [Google Scholar] [CrossRef] [Green Version]
- Healey, F.P. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 1980, 5, 281–286. [Google Scholar] [CrossRef]
- Schapira, M. Space and time dynamic of Phaeocystis globosa in the Eastern English Channel: Impact of Turbulence and Sporadic Nutrients Inputs. Ph.D. Thesis, Université des Sciences et Techniques de Lille, Villeneuve-d’Ascq, France, 2005. [Google Scholar]
- Koroleff, F. Direct determination of ammonia in natural waters as indophenol blue. Int. Cons. Explor. Sea 1969, 9, 1–6. [Google Scholar]
- UNESCO. Determination of photosynthetic pigments. In Seawater. -Rep. SCOR/UNESCO Working Group 17. Monographs on Oceanographic Methology; UNESCO: Paris, France, 1966; pp. 1–69. [Google Scholar]
- Raimbault, P.; Gentilhomme, V. Short- and long-term responses of marine diatom Phaeodactylum tricornutum to spike addition of nitrate at nanomolar levels. J. Exp. Mar. Biol. Ecol. 1990, 135, 161–176. [Google Scholar] [CrossRef]
- Brunet, C.; Brylinski, J.M.; Frontier, S. Productivity, photosynthetic pigments and hydrology in the coastal front of the Eastern English Channel. J. Plankton Res. 1992, 14, 1541–1552. [Google Scholar] [CrossRef]
- Gentilhomme, V.; Lizon, F. Seasonal cycle of nitrogen and phytoplankton biomass in a well-mixed coastal system (Eastern English Channel). Hydrobiologia 1998, 361, 191–199. [Google Scholar] [CrossRef]
- Menden-Deuer, S.E.; Lessard, E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000, 45, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Menden-Deuer, S.E.; Lessard, J.; Satterberg, J. Effect of preservation on dinoflagellates and diatom cell volume and consequences for carbon biomass predictions. Mar. Ecol. Prog. Ser. 2001, 222, 41–50. [Google Scholar] [CrossRef]
- MacKenzie, B.R.; Legget, W.C. Wind-based models for estimating the dissipation rates of turbulence energy in aquatic environments: Empirical comparisons. Mar. Ecol. Prog. Ser. 1993, 94, 207–216. [Google Scholar] [CrossRef]
- Bowers, D.G.; Simpsons, J.H. Mean position of tidal fronts in European-shelf seas. Cont. Shelf Res. 1987, 7, 35–44. [Google Scholar] [CrossRef]
- Brylinski, J.M.; Brunet, C.; Bentley, D.; Thoumelin, G.; Hilde, D. Hydrography and phytoplankton biomass in the Eastern English Channel in spring 1992. Est. Coast. Shelf Sci. 1996, 43, 507–519. [Google Scholar] [CrossRef]
- Breton, E.; Brunet, C.; Sautour, B.; Brylinski, J.M. Annual variations of phytoplankton biomass in the Eastern English Channel: Comparison by pigment signatures and microscopic counts. J. Plankton Res. 2000, 22, 1423–1440. [Google Scholar] [CrossRef] [Green Version]
- Seuront, L.; Vincent, D.; Mitchell, J.G. Biologically-induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J. Mar. Syst. 2006, 61, 118–133. [Google Scholar] [CrossRef]
- Mandal, S.; Locke, C.; Tanaka, M.; Yamazaki, H. Observations and models of highly intermittent phytoplankton distributions. PLoS ONE 2014, 9, e94797. [Google Scholar] [CrossRef]
- Mandal, S.; Homma, H.; Priyadarshi, A.; Burchard, H.; Smith, S.L.; Wiritz, K.W.; Yamazaki, H. A 1D physical-biological model of the impact of highly intermittent phytoplankton distributions. J. Plankton Res. 2016, 38, 964–976. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshi, A.; Mandal, S.; Smith, L.; Yamazaki, H. Micro-scale variability enhances trophic transfer and potentially sustains biodiversity in plankton ecosystems. J. Theor. Biol. 2017, 412, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Mandal, S.; Priyadarshi, A.; Chen, B.; Yamazaki, H. Modeling the Combined Effects of Physiological Flexibility and Micro-Scale Variability for Plankton Ecosystem Dynamics, Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, H.K., Bokuniewicz, H.J., Yager, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 5, pp. 527–535. [Google Scholar]
- Mandal, S.; Lan Smith, S.; Priyadarshi, A.; Yamazaki, H. Micro-scale variability impacts the outcome of competition between different modelled size classes of phytoplankton. Front. Mar. Sci. 2019, 6, 259. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshi, A.; Lan Smith, S.; Mandal, S.; Tanaka, M.; Yamazaki, H. Micro-scale patchiness enhances trophic transfer efficiency and potential plankton biodiversity. Sci. Rep. 2019, 9, 17243. [Google Scholar] [CrossRef] [Green Version]
- Rees, A.P.; Joint, I.; Donald, K.M. Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea Shelf Edge. Deep Sea Res. II 1999, 46, 483–510. [Google Scholar] [CrossRef]
Area | Date | Latitude | Longitude | Depth (m) | Tide | F/E | S(PSU) | T (°C) | Nitrite + Nitrate (mM) | Ammonium (mM) | Chlorophyll a (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
S | April 24 | 50°37′688 N | 1°25′963 E | 17.5 | NT | E | 33.9 (0.3) | 9.9 (0.2) | 0.54 | 0.2 | 7.22 |
N | May 11 | 50°41′052 N | 1°26′988 E | 33 | NT | E | 34.7 (0.0) | 11.1 (0.1) | <DL | 0.4 | 1.7 |
S | May 14 | 50°20′489 N | 1°24′633 E | 19.5 | ST | E | 34.1 (0.0) | 11.8 (0.0) | 0.11 | 0.78 | 6.11 |
N | July 7 | 50°50′240 N | 1°28′192 E | 52 | NT | E | 33.3 (0.2) | 18.7 (0.2) | <DL | 1 | 3.94 |
S | July 9 | 50°18′432 N | 1°22′336 E | 15.7 | NT | E | 34.2 (0.1) | 17.6 (0.1) | 0.1 | 0.72 | 5.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schapira, M.; Seuront, L. Nutrient Patchiness, Phytoplankton Surge-Uptake, and Turbulent History: A Theoretical Approach and Its Experimental Validation. Fluids 2020, 5, 80. https://doi.org/10.3390/fluids5020080
Schapira M, Seuront L. Nutrient Patchiness, Phytoplankton Surge-Uptake, and Turbulent History: A Theoretical Approach and Its Experimental Validation. Fluids. 2020; 5(2):80. https://doi.org/10.3390/fluids5020080
Chicago/Turabian StyleSchapira, Mathilde, and Laurent Seuront. 2020. "Nutrient Patchiness, Phytoplankton Surge-Uptake, and Turbulent History: A Theoretical Approach and Its Experimental Validation" Fluids 5, no. 2: 80. https://doi.org/10.3390/fluids5020080
APA StyleSchapira, M., & Seuront, L. (2020). Nutrient Patchiness, Phytoplankton Surge-Uptake, and Turbulent History: A Theoretical Approach and Its Experimental Validation. Fluids, 5(2), 80. https://doi.org/10.3390/fluids5020080