Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field
Abstract
:1. Introduction
2. Conducting Drop
3. Total Force on the Conducting Drop
4. Results
5. Dielectric Drop
6. Total Force on the Dielectric Drop
7. Results
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, H.; Tan, H. One dimensional Model for droplet ejection process in inkjet devices. Fluids 2018, 3, 28. [Google Scholar] [CrossRef]
- Bos, A.V.; Meulen, M.V.; Driessen, T.; Berg, M.; Reinten, H.; Wijshoff, H.; Versluis, M.; Lohse, D. Velocity profile inside piezoacoustic inkjet droplets in flight: Comparison between experiment and numerical simulation. Phys. Rev. Appl. 2014, 1, 014004. [Google Scholar]
- Eggers, J.; Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 2008, 71, 036601. [Google Scholar] [CrossRef]
- Gaskell, S.J. Electrospray: Principles and practice. J. Mass Spectrom. 1997, 32, 677–688. [Google Scholar] [CrossRef]
- Wilm, M.; Shevchenko, A.; Houthaeve, T.; Breit, S.; Schweigerer, L.; Fotsis, T.; Mann, M. Femtomole sequencing of proteins from polyacrylamide gels by nano electrospray mass spectrometry. Nature 1996, 379, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001, 90, 4836–4846. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Gierak, J. Focused ion beam technology and ultimate applications. Semicond. Sci. Tech. 2009, 24, 043001. [Google Scholar] [CrossRef]
- Matsui, S.; Ochiai, Y. Focused ion beam applications to solid state devices. Nanotechnology 1996, 7, 247–258. [Google Scholar] [CrossRef]
- Xie, J.; Lim, L.K.; Phua, Y.; Hua, J.; Wang, C. Electrohydrodynamic atomization for biodegradable polymeric particle production. J. Colloid Interface Sci. 2006, 302, 103–112. [Google Scholar] [CrossRef]
- Taylor, G.I. Disintegration of water drops in an electric field. Proc. R. Soc. A 1964, 280, 383–397. [Google Scholar]
- Wilson, C.T.R.; Taylor, G.I. The bursting of soap-bubbles in a uniform electric field. Math. Proc. Camb. Philos. Soc. 1925, 22, 728–730. [Google Scholar] [CrossRef]
- Cheng, K.J.; Chaddock, J.B. Deformation and stability of drops and bubbles in an electric field. Phys. Lett. A 1984, 106, 51–53. [Google Scholar] [CrossRef]
- Cheng, K.J.; Miksis, M.J. Shape and stability of a drop on a conducting plane in an electric Field. PhysicoChem. Hydrodynam. 1989, 11, 9–20. [Google Scholar]
- Miksis, M.J. Shape of a drop in an eletric field. Phys. Fluids 1981, 24, 1967–1972. [Google Scholar] [CrossRef]
- Taylor, G.I.; McEwan, A.D. The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 1965, 22, 1–15. [Google Scholar] [CrossRef]
- Corson, L.T.; Tsakonas, C.; Duffy, B.R.; Mottram, N.J.; Sage, I.C.; Brown, C.V.; Wilson, S.K. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment. Phys. Fluids 2014, 26, 122106. [Google Scholar] [CrossRef]
- Tsakonas, C.; Corson, L.T.; Sage, I.C.; Brown, C.V. Electric field induced deformation of hemispherical sessile droplets of ionic liquid. J. Electrostat. 2014, 72, 437–440. [Google Scholar] [CrossRef]
- Ganan-Calvo, A.M. On the theory of electrohydrodynamically driven capillary jets. J. Fluid Mech. 1997, 335, 165–188. [Google Scholar] [CrossRef]
- Lastow, O.; Balachandran, W. Numerical simulation of electrohydrodynamic (EHD) atomization. J. Electrostat. 2006, 64, 850–859. [Google Scholar] [CrossRef]
- Lauricella, M.; Melchionna, S.; Montessori, A.; Pisignano, D.; Pontrelli, G.; Succi, S. Entropic lattice boltzmann model for charged leaky dielectric multiphase fluids in electrified jets. Phys. Rev. E 2018, 97, 033308. [Google Scholar] [CrossRef]
- Elele, E.O.; Shen, Y.; Pettit, D.R.; Khusid, B. Detection of a dynamic cone-shaped meniscus on the surface of fluids in electric fields. Phys. Rev. Lett. 2015, 114, 054501. [Google Scholar] [CrossRef]
- Macky, W.A. Some investigations on the deformation and breaking of water drops in strong electric fields. Proc. R. Soc. A 1931, 133, 565–587. [Google Scholar] [CrossRef]
- Castellanos, A.; Gonzalez, A. Nonlinear electrohydrodynamics of free surfaces. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 334–343. [Google Scholar] [CrossRef]
- Hua, J.; Lim, L.K.; Wang, C.H. Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys. Fluids 2008, 20, 113302. [Google Scholar] [CrossRef]
- Wohlhuter, F.K.; Basaran, O.A. Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 1992, 235, 481–510. [Google Scholar] [CrossRef]
- Ramos, A.; Castellanos, A. Equilibrium shapes and bifurcation of captive dielectric drops subjected to electric fields. J. Electrostat. 1994, 33, 61–86. [Google Scholar] [CrossRef]
- Inculet, I.I.; Kromann, R. Breakup of large water droplets by electric fields. IEEE Trans. Ind. Appl. 1989, 25, 945–948. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaleski, P.; Afkhami, S. Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field. Fluids 2019, 4, 200. https://doi.org/10.3390/fluids4040200
Zaleski P, Afkhami S. Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field. Fluids. 2019; 4(4):200. https://doi.org/10.3390/fluids4040200
Chicago/Turabian StyleZaleski, Philip, and Shahriar Afkhami. 2019. "Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field" Fluids 4, no. 4: 200. https://doi.org/10.3390/fluids4040200
APA StyleZaleski, P., & Afkhami, S. (2019). Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field. Fluids, 4(4), 200. https://doi.org/10.3390/fluids4040200