Next Article in Journal
One Dimensional Model for Droplet Ejection Process in Inkjet Devices
Next Article in Special Issue
A Comparison of Energy Recovery by PATs against Direct Variable Speed Pumping in Water Distribution Networks
Previous Article in Journal
A Short Review on the Rheology of Twist Grain Boundary-A and Blue Phase Liquid Crystals
Previous Article in Special Issue
Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses
Article Menu

Export Article

Open AccessArticle
Fluids 2018, 3(2), 27; https://doi.org/10.3390/fluids3020027

Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias, Colombia

1
Facultad de Ingeniería, Departamento de Ingenieria Civil y Ambiental, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia
2
Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València, 46022 Valencia, Spain
3
Department of Civil Engineering, Architecture and Georesources, CERIS, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
*
Author to whom correspondence should be addressed.
Received: 7 January 2018 / Revised: 16 April 2018 / Accepted: 17 April 2018 / Published: 20 April 2018
(This article belongs to the Special Issue Advances in Hydrodynamics)
Full-Text   |   PDF [13923 KB, uploaded 3 May 2018]   |  

Abstract

The 24-h maximum rainfall (P24h-max) observations recorded at the synoptic weather station of Rafael Núñez airport (Cartagena de Indias, Colombia) were analyzed, and a linear increasing trend over time was identified. It was also noticed that the occurrence of the rainfall value (over the years of record) for a return period of 10 years under stationary conditions (148.1 mm) increased, which evidences a change in rainfall patterns. In these cases, the typical stationary frequency analysis is unable to capture such a change. So, in order to further evaluate rainfall observations, frequency analyses of P24h-max for stationary and non-stationary conditions were carried out (by using the generalized extreme value distribution). The goodness-of-fit test of Akaike Information Criterion (AIC), with values of 753.3721 and 747.5103 for stationary and non-stationary conditions respectively, showed that the latter best depicts the increasing rainfall pattern. Values of rainfall were later estimated for different return periods (2, 5, 10, 25, 50, and 100 years) to quantify the increase (non-stationary versus stationary condition), which ranged 6% to 12% for return periods from 5 years to 100 years, and 44% for a 2-year return period. The effect of these findings were tested in the Gordo creek watershed by first calculating the resulting direct surface runoff (DSR) for various return periods, and then modeling the hydraulic behavior of the downstream area (composed of a 178.5-m creek’s reach and an existing box-culvert located at the watershed outlet) that undergoes flooding events every year. The resulting DSR increase oscillated between 8% and 19% for return periods from 5 to 100 years, and 77% for a 2-year return period when the non-stationary and stationary scenarios were compared. The results of this study shed light upon to the precautions that designers should take when selecting a design, based upon rainfall observed, as it may result in an underestimation of both the direct surface runoff and the size of the hydraulic structures for runoff and flood management throughout the city. View Full-Text
Keywords: rainfall frequency analysis; non-stationary; climate change; runoff management rainfall frequency analysis; non-stationary; climate change; runoff management
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Gonzalez-Alvarez, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias, Colombia. Fluids 2018, 3, 27.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Fluids EISSN 2311-5521 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top