# Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres

^{1}

^{2}

^{*}

## Abstract

**:**

**27**), allow for reproducing with high fidelity the main statistical properties of multiscale variability in a coarse-grained eddy-resolving ocean flow. This fully-data-driven approach relies on extraction of frequency-ranked time-dependent coefficients describing the evolution of spatio-temporal DAH modes (DAHMs) in the oceanic flow data. In turn, the time series of these coefficients are efficiently modeled by a family of low-order stochastic differential equations (SDEs) stacked per frequency, involving a fixed set of predictor functions and a small number of model coefficients. These SDEs take the form of stochastic oscillators, identified as multilayer Stuart–Landau models (MSLMs), and their use is justified by relying on the theory of Ruelle–Pollicott resonances. The good modeling skills shown by the resulting DAH-MSLM emulators demonstrates the feasibility of using a network of stochastic oscillators for the modeling of geophysical turbulence. In a certain sense, the original quasiperiodic Landau view of turbulence, with the amendment of the inclusion of stochasticity, may be well suited to describe turbulence.

## 1. Introduction

## 2. Results

#### 2.1. Oceanic Dataset

#### 2.2. DAHD, DAH Power Spectrum and DAHMs

#### 2.3. DAH-MSLM Oceanic Emulators

## 3. Discussion

## 4. Models and Methods

#### 4.1. Mid-Latitude Ocean Model

#### 4.2. Data-Adaptive Harmonic Decomposition

#### 4.2.1. DAH Eigenelements and Power Spectrum

#### 4.2.2. DAH Coefficients

#### 4.3. Multilayer Stuart–Landau Models

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

DAH | Data-adaptive harmonic |

DAHD | Data-adaptive harmonic decomposition |

DAHC | Data-adaptive harmonic coefficient |

DAHM | Data-adaptive harmonic mode |

EOF | Empirical orthogonal function |

HRC | Harmonic reconstructed component |

LFV | Low frequency variability |

MSLM | Multilayer Stuart–Landau model |

PCA | Principal component analysis |

PSD | Power spectral density |

RC | Reconstructed component |

RP | Ruelle–Pollicott |

SDE | Stochastic differential equation |

SL | Stuart–Landau |

## Appendix A. Time Variability of Stochastic Systems and Ruelle–Pollicott Resonances

**Figure A1.**(

**a**) The Ruelle–Pollicott (RP) resonances are the isolated eigenvalues of the Fokker–Planck operator, $\mathcal{A}$, defined in (A3); they are represented by red dots in (

**b**) and by black dots here. The rightmost vertical line represents the imaginary axis above which the power spectrum lies; see (

**a**) for another perspective. The rate of decay of correlations is controlled by the spectral gap $\tau $ (not to be confused with $\tau $ in (A6)); see [56,85]. (

**b**) The imaginary part of the RP resonances corresponds to the location of a peak in the PSD (black curve lying above the imaginary axis) and the real part to its width. In blue is represented a reconstruction of the PSD based on RPs; a discrepancy is shown here to emphasize that in practice, the RPs are very often only estimated/approximated; see [56,71] (courtesy of Maciej Zworski). (

**a**) Schematic of the spectrum of $\mathcal{A}$ given in (A3). (

**b**) Correspondence between the PSD and RP resonances according to (A5).

## Appendix B. Estimating Resonances from Time Series: The Reduced RP Resonances

**Figure A2.**Reduced RP resonances and their analytic approximation. Left panel: The pair of DAHCs analyzed. Right panel: Corresponding eigenvalues of P as estimated by using (A7), after application of the logarithm (in red). The blue vertical line corresponds to the imaginary axis. These eigenvalues correspond to approximations of the point spectrum of the averaged Fokker–Planck operator given in (A8). The analytic approximations provided by (A17) are shown as green dots.

## Appendix C. RP Resonances of Stuart–Landau Models: Analytic Approximations

## Appendix D. Multilayer Stuart–Landau Modeling of DAHCs

**Figure A3.**Reduced RP resonances and their analytic approximation. Same as in Figure A2, but for the frequency $f=0.061$ cycle/${y}^{-1}$.

**Figure A4.**Reduced RP resonances and their analytic approximation. Same as in Figure A2, but for the frequency $f=5.27$ cycle/${y}^{-1}$.

## Appendix E. Modeling Skills in the EOF Space

**Figure A5.**Same format as in Figure A7, but the comparison of harmonic reconstruction (red) and DAH-MSLM stochastic simulation (blue) in a full frequency band $f<9.1$ ${y}^{-1}$.

**Figure A6.**Same format as in Figure A8, but the comparison of harmonic reconstruction (red) and DAH-MSLM stochastic simulation (blue) in a full frequency band $f<9.1$ ${y}^{-1}$.

**Figure A7.**Probability density function (PDF) of the twelve leading PCs of upper-layer stream function anomalies, DAH-filtered in a frequency band $f<5.27$ ${y}^{-1}$: Red, harmonic reconstruction of QG data (HRC; cf. (23)); blue, DAH-MSLM stochastic simulation.

**Figure A8.**Autocorrelation function (ACF) of the twelve leading PCs of upper-layer stream function anomalies, DAH-filtered in a frequency band $f<5.27$ ${y}^{-1}$: Red, harmonic reconstruction of QG data (HRC; cf. (23)); blue, DAH-MSLM stochastic simulation.

## References

- Gent, P.; McWilliams, J. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr.
**1990**, 20, 150–155. [Google Scholar] [CrossRef] - Eden, C. A closure for meso-scale eddy fluxes based on linear instability theory. Ocean Model.
**2011**, 39, 362–369. [Google Scholar] [CrossRef] - Leith, C.E. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys. Fluids A Fluid Dyn.
**1990**, 2, 297–299. [Google Scholar] [CrossRef] - Berloff, P.S.; McWilliams, J.C. Material transport in oceanic gyres. Part III: Randomized stochastic models. J. Phys. Oceanogr.
**2003**, 33, 1416–1445. [Google Scholar] [CrossRef] - Berloff, P.S. Random-forcing model of the mesoscale oceanic eddies. J. Fluid Mech.
**2005**, 529, 71–95. [Google Scholar] [CrossRef] - Porta Mana, P.; Zanna, L. Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Model.
**2014**, 79, 1–20. [Google Scholar] [CrossRef] - Jansen, M.; Held, I. Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model.
**2014**, 80, 36–48. [Google Scholar] [CrossRef] - Berloff, P. Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model. Ocean Model.
**2015**, 87, 1–19. [Google Scholar] [CrossRef] - Chorin, A.J.; Hald, O.H.; Kupferman, R. Optimal prediction with memory. Physica D
**2002**, 166, 239–257. [Google Scholar] [CrossRef] - Givon, D.; Kupferman, R.; Stuart, A. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity
**2004**, 17, R55–R127. [Google Scholar] [CrossRef] - Chorin, A.J.; Hald, O.H.; Kupferman, R. Prediction from partial data, renormalization, and averaging. J. Sci. Comput.
**2006**, 28, 245–261. [Google Scholar] [CrossRef] - Hald, O.H.; Stinis, P. Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions. Proc. Natl. Acad. Sci. USA
**2007**, 104, 6527–6532. [Google Scholar] [CrossRef] [PubMed] - Wouters, J.; Lucarini, V. Multi-level dynamical systems: Connecting the Ruelle response theory and the Mori-Zwanzig approach. J. Stat. Phys.
**2013**, 151, 850–860. [Google Scholar] [CrossRef] - Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed.; Springer: New York, NY, USA, 1997; p. 648. [Google Scholar]
- Ma, T.; Wang, S. Bifurcation Theory and Applications; World Scientific: Singapore, 2005; Volume 53. [Google Scholar]
- Ma, T.; Wang, S. Phase Transition Dynamics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Chekroun, M.; Liu, H.; McWilliams, J. The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories. Comput. Fluids
**2017**, 151, 3–22. [Google Scholar] [CrossRef] - Chekroun, M.D.; Liu, H.; Wang, S. Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I; Springer Briefs in Mathematics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Chekroun, M.D.; Liu, H.; Wang, S. Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II; Springer Briefs in Mathematics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Jolliffe, I. Principal Component Analysis; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Preisendorfer, R.W. Principal Component Analysis in Meteorology and Oceanography; Elsevier: New York, NY, USA, 1988; p. 425. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. B
**1999**, 61, 611–622. [Google Scholar] [CrossRef] - Schölkopf, B.; Smola, A.; Müller, K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput.
**1998**, 10, 1299–1319. [Google Scholar] [CrossRef] - Mukhin, D.; Gavrilov, A.; Feigin, A.; Loskutov, E.; Kurths, J. Principal nonlinear dynamical modes of climate variability. Sci. Rep.
**2015**, 5, 15510. [Google Scholar] [CrossRef] [PubMed] - Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys.
**2002**, 40. [Google Scholar] [CrossRef] - Coifman, R.R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal.
**2006**, 21, 5–30. [Google Scholar] [CrossRef] - Coifman, R.R.; Kevrekidis, I.G.; Lafon, S.; Maggioni, M.; Nadler, B. Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul.
**2008**, 7, 842–864. [Google Scholar] [CrossRef] - Giannakis, D.; Majda, A.J. Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. USA
**2012**, 109, 2222–2227. [Google Scholar] [CrossRef] [PubMed] - Froyland, G.; Gottwald, G.A.; Hammerlindl, A. A computational method to extract macroscopic variables and their dynamics in multiscale systems. SIAM J. Appl. Dyn. Syst.
**2014**, 13, 1816–1846. [Google Scholar] [CrossRef] - Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
**2010**, 656, 5–28. [Google Scholar] [CrossRef] [Green Version] - Budišić, M.; Mohr, R.; Mezić, I. Applied Koopmanism. Chaos
**2012**, 22, 047510. [Google Scholar] [CrossRef] [PubMed] - Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn.
**2014**, 1, 391–421. [Google Scholar] - Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition. J. Nonlinear Sci.
**2015**, 25, 1307–1346. [Google Scholar] [CrossRef] - Klus, S.; Koltai, P.; Schütte, C. On the numerical approximation of the Perron-Frobenius and Koopman operator. J. Comput. Dyn.
**2016**, 3, 51–79. [Google Scholar] - Klus, S.; Nüske, F.; Koltai, P.; Wu, H.; Kevrekidis, I.; Schütte, C.; Noé, F. Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci.
**2017**, 1–26. [Google Scholar] [CrossRef] - Chorin, A.J.; Lu, F. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. Proc. Natl. Acad. Sci. USA
**2015**, 112, 9804–9809. [Google Scholar] [CrossRef] [PubMed] - Lu, F.; Lin, K.; Chorin, A. Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. Commun. Appl. Math. Comput. Sci.
**2016**, 11, 187–216. [Google Scholar] [CrossRef] - Lu, F.; Lin, K.; Chorin, A. Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation. Phys. D Nonlinear Phenom.
**2017**, 340, 46–57. [Google Scholar] [CrossRef] - Khashei, M.; Bijari, M. An artificial neural network (p,d,q)-model for time series forecasting. Expert Syst. Appl.
**2010**, 37, 479–489. [Google Scholar] [CrossRef] - Hsu, K.L.; Gupta, H.V.; Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res.
**1995**, 31, 2517–2530. [Google Scholar] [CrossRef] - Mukhin, D.; Kondrashov, D.; Loskutov, E.; Gavrilov, A.; Feigin, A.; Ghil, M. Predicting critical transitions in ENSO models. Part II: Spatially dependent models. J. Clim.
**2015**, 28, 1962–1976. [Google Scholar] [CrossRef] - Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T. Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Methods Appl. Mech. Eng.
**2012**, 237, 10–26. [Google Scholar] [CrossRef] - Iliescu, T.; Wang, Z. Variational multiscale proper orthogonal decomposition: Navier-stokes equations. Numer. Methods Partial Differ. Equ.
**2014**, 30, 641–663. [Google Scholar] [CrossRef] - Kwasniok, F. Empirical low-order models of barotropic flow. J. Atmos. Sci.
**2004**, 61, 235–245. [Google Scholar] [CrossRef] - Sapsis, T.P.; Dijkstra, H.A. Interaction of additive noise and nonlinear dynamics in the double-gyre wind-driven ocean circulation. J. Phys. Oceanogr.
**2013**, 43, 366–381. [Google Scholar] [CrossRef] - Penland, C. Random forcing and forecasting using principal oscillation pattern analysis. Month. Wea. Rev.
**1989**, 117, 2165–2185. [Google Scholar] [CrossRef] - Penland, C.; Sardeshmukh, P.D. The optimal growth of tropical sea-surface temperature anomalies. J. Clim.
**1995**, 8, 1999–2024. [Google Scholar] [CrossRef] - Kravtsov, S.; Kondrashov, D.; Ghil, M. Multilevel regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Clim.
**2005**, 18, 4404–4424. [Google Scholar] [CrossRef] - Kravtsov, S.; Kondrashov, D.; Ghil, M. Empirical model reduction and the modeling hierarchy in climate dynamics. In Stochastic Physics and Climate Modeling; Palmer, T.N., Williams, P., Eds.; Cambridge Univ. Press: Cambridge, UK, 2009; pp. 35–72. [Google Scholar]
- Kondrashov, D.; Kravtsov, S.; Robertson, A.W.; Ghil, M. A hierarchy of data-based ENSO models. J. Clim.
**2005**, 18, 4425–4444. [Google Scholar] [CrossRef] - Kondrashov, D.; Chekroun, M.D.; Robertson, A.W.; Ghil, M. Low-order stochastic model and “past-noise forecasting” of the Madden-Julian oscillation. Geophys. Res. Lett.
**2013**, 40, 5305–5310. [Google Scholar] [CrossRef] - Majda, A.J.; Harlim, J. Physics constrained nonlinear regression models for time series. Nonlinearity
**2012**, 26, 201. [Google Scholar] [CrossRef] - Strounine, K.; Kravtsov, S.; Kondrashov, D.; Ghil, M. Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance. Physica D
**2010**, 239, 145–166. [Google Scholar] [CrossRef] - Kondrashov, D.; Chekroun, M.D.; Ghil, M. Data-driven non-Markovian closure models. Physica D
**2015**, 297, 33–55. [Google Scholar] [CrossRef] - Chekroun, M.D.; Kondrashov, D. Data-adaptive harmonic spectra and multilayer Stuart-Landau models. Chaos
**2017**, 27. [Google Scholar] [CrossRef] [PubMed] - Chekroun, M.D.; Neelin, J.D.; Kondrashov, D.; McWilliams, J.C.; Ghil, M. Rough parameter dependence in climate models: The role of Ruelle-Pollicott resonances. Proc. Natl. Acad. Sci USA
**2014**, 111, 1684–1690. [Google Scholar] [CrossRef] [PubMed] - Kondrashov, D.; Chekroun, M.D.; Yuan, X.; Ghil, M. Data-adaptive harmonic decomposition and stochastic modeling of Arctic sea ice. In Advances in Nonlinear Geosciences; Tsonis, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kondrashov, D.; Chekroun, M.D.; Ghil, M. Data-adaptive harmonic decomposition and prediction of Arctic sea ice extent. Dyn. Stat. Clim. Syst. Interdiscip. J.
**2018**, in press. [Google Scholar] - Kondrashov, D.; Chekroun, M.D. Data-adaptive harmonic analysis and modeling of solar wind-magnetosphere coupling. J. Atmos. Solar Terr. Phys.
**2018**, in press. [Google Scholar] [CrossRef] - Berloff, P.; Hogg, A.M.C.; Dewar, W. The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr.
**2007**, 37, 2363–2386. [Google Scholar] [CrossRef] - Shevchenko, I.V.; Berloff, P.; Guerrero-Lopez, D.; Roman, J.E. On low-frequency variability of the midlatitude ocean gyres. J. Fluid Mech.
**2016**, 795, 423–442. [Google Scholar] [CrossRef] - Jiang, S.; Jin, F.F.; Ghil, M. Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr.
**1995**, 25, 764–786. [Google Scholar] [CrossRef] - Nadiga, B.T.; Luce, B.P. Global bifurcation of Shilnikov type in a double-gyre ocean model. J. Phys. Oceanogr.
**2001**, 31, 2669–2690. [Google Scholar] [CrossRef] - Simonnet, E.; Dijkstra, H.A. Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr.
**2002**, 32, 1747–1762. [Google Scholar] [CrossRef] - Simonnet, E.; Ghil, M.; Ide, K.; Temam, R.; Wang, S. Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions. J. Phys. Oceanogr.
**2003**, 33, 729–752. [Google Scholar] [CrossRef] - Dijkstra, H.A.; Ghil, M. Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys.
**2005**, 43. [Google Scholar] [CrossRef] - Dijkstra, H. A normal mode perspective of intrinsic ocean-climate variability. Ann. Rev. Fluid Mech.
**2016**, 48, 341–363. [Google Scholar] [CrossRef] - Ghil, M. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discret. Contin. Dyn. Syst. A
**2017**, 37, 189–228. [Google Scholar] [CrossRef] - Kondrashov, D.; Berloff, P. Stochastic modeling of decadal variability in ocean gyres. Geophys. Res. Lett.
**2015**, 42, 1543–1553. [Google Scholar] [CrossRef] - Gaspard, P. Trace formula for noisy flows. J. Stat. Phys.
**2002**, 106, 57–96. [Google Scholar] [CrossRef] - Chekroun, M.; Tantet, A.; Dijkstra, H.; Neelin, J.D. Mixing spectrum in reduced phase spaces of stochastic differential equations. Part I: Theory. arXiv, 2017; arXiv:1705.07573. [Google Scholar]
- Landau, L.D.; Lifshits, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Ruelle, D.; Takens, F. On the nature of turbulence. Commun. Math. Phys.
**1971**, 20, 167–192. [Google Scholar] [CrossRef] - Berloff, P.; Dewar, W.; Kravtsov, S.; McWilliams, J. Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr.
**2007**, 37, 1103–1121. [Google Scholar] [CrossRef] - Berloff, P. Dynamically Consistent Parameterization of Mesoscale Eddies. Part II: Eddy Fluxes and and diffusivity from transient impulses. Fluids
**2016**, 1, 22. [Google Scholar] [CrossRef] - Engel, K.J.; Nagel, R. A Short Course on Operator Semigroups; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zakharova, A.; Loos, S.; Siebert, J.; Gjurchinovski, A.; Claussen, J.C.; Schöll, E. Controlling chimera patterns in networks: interplay of structure, noise, and delay in Control of Self-Organizing Nonlinear Systems. In Control of Self-Organizing Nonlinear Systems; Schöll, E., Klapp, S.H.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–72. [Google Scholar]
- Selivanov, A.A.; Lehnert, J.; Dahms, T.; Hövel, P.; Fradkov, A.L.; Schöll, E. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E
**2012**, 85, 016201. [Google Scholar] [CrossRef] [PubMed] - Cerrai, S. Second-Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 1762. [Google Scholar]
- Flandoli, F.; Gubinelli, M.; Priola, E. Flow of diffeomorphisms for SDEs with unbounded Holder continuous drift. Bull. Sci. Math.
**2010**, 134, 405–422. [Google Scholar] [CrossRef] - Ruelle, D. Locating resonances for Axiom A dynamical systems. J. Stat. Phys.
**1986**, 44, 281–292. [Google Scholar] [CrossRef] - Pollicott, M. Meromorphic extensions of generalised zeta functions. Invent. Math.
**1986**, 85, 147–164. [Google Scholar] [CrossRef] - Butterley, O.; Liverani, C. Smooth Anosov flows: Correlation spectra and stability. J. Mod. Dyn.
**2007**, 1, 301–322. [Google Scholar] [CrossRef] - Dyatlov, S.; Zworski, M. Stochastic stability of Pollicott–Ruelle resonances. Nonlinearity
**2015**, 28, 3511. [Google Scholar] [CrossRef] - Froyland, G. Computer-assisted bounds for the rate of decay of correlations. Commun. Math. Phys.
**1997**, 189, 237–257. [Google Scholar] [CrossRef] - Crommelin, D.; Vanden-Eijnden, E. Reconstruction of diffusions using spectral data from time series. Commun. Math. Sci.
**2006**, 4, 651–668. [Google Scholar] [CrossRef] - Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys.
**1999**, 151, 146–168. [Google Scholar] [CrossRef] - Crommelin, D.; Vanden-Eijnden, E. Fitting time series by continuous-time Markov chains: A quadratic programming approach. J. Comput. Phys.
**2006**, 217, 782–805. [Google Scholar] [CrossRef] - Tantet, A.; Chekroun, M.; Dijkstra, H.; Neelin, J.D. Mixing Spectrum in Reduced Phase Spaces of Stochastic Differential Equations. Part II: Stochastic Hopf Bifurcation. arXiv, 2017; arXiv:1705.07573. [Google Scholar]
- Chekroun, M.D.; Simonnet, E.; Ghil, M. Stochastic climate dynamics: Random attractors and time-dependent invariant measures. Physica D
**2011**, 240, 1685–1700. [Google Scholar] [CrossRef] - Bagheri, S. Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum. Phys. Fluids
**2014**, 26, 094104. [Google Scholar] [CrossRef] - Gaspard, P.; Nicolis, G.; Provata, A.; Tasaki, S. Spectral signature of the pitchfork bifurcation: Liouville equation approach. Phys. Rev. E
**1995**, 51, 74. [Google Scholar] [CrossRef]

**Figure 1.**Upper-level stream function anomalies. (Left) Top: standard deviation; bottom: snapshot of instantaneous flow. (Right) Same, but in the truncated subspace of 30 leading spatial empirical orthogonal functions (EOFs). The nondimensional units are arbitrary, but are the same for all panels.

**Figure 2.**DAH power spectrum ${\mathcal{P}}_{\ell}$ of 30 leading PCs of the upper layer stream function anomalies. Left panel: Each discrete set ${\mathcal{P}}_{\ell}$ consists of 30 eigenelements (equal to number of input dataset’s channels), corresponding to the pairs of DAH eigenvalues $|{\lambda}_{j}|$ and eigenvectors ${\mathbf{W}}_{j}$ at a given temporal frequency ${f}_{\ell}$ (see Section 4.2.1 and (15)–(17)). Figure 3 and Figure 4 show DAHMs associated with four largest $|{\lambda}_{j}|$ at two selected frequencies: cyan, decadal LFV peak ${f}_{D}=0.061$ y${}^{-1}$ ($\approx 17$ y); green, interannual ${f}_{I}=0.674$ y${}^{-1}$ ($\approx 1.5$ y). The right panel shows a magnification of the low-frequency part of the spectrum.

**Figure 3.**Left and center panels: Space-time patterns of data-adaptive harmonic mode (DAHM) pairs corresponding to the four largest $|{\lambda}_{j}|$ (in descending order) at decadal frequency $f=0.061$ y${}^{-1}$ (cyan dots in the data-adaptive harmonic (DAH) power spectrum of Figure 2). Each of the modes in a pair is time-shifted by a quarter of a period, i.e., in exact phase quadrature; x-axis, time embedding dimension (in years); y-axis, spacial dimension (rank of principal component (PC)). Right panels: DAHCs obtained by projection of the input dataset of 30 PCs onto the DAHMs; see (20). A DAHC pair consists of narrowband time series at the same temporal frequency of the associated DAHMs, but modulated in amplitude.

**Figure 5.**Manifestation in the physical domain of the leading pair of DAHMs (see Figure 3) at the decadal variability $f=0.061$ y${}^{-1}$; i.e., corresponding to the largest $|{\lambda}_{j}|$ (top cyan dot) in Figure 2. The resulting pattern is periodic (with period $\approx 16.39$ y). Here, eight oscillation phases labeled by time are shown.

**Figure 7.**Decadal harmonic reconstruction component (HRC) and its reduced RP resonances for PC1: quasi-geostrophic (QG) model and multilayer Stuart-Landau model (MSLM). (

**a**,

**b**) show the sum of the first four HRCs on PC1 for the upper-layer stream function anomalies as simulated from the QG model (red curve) and its DAH-MSLM emulator (blue curve). In both panels, the PC1 is shown in black: in (

**b**), PC1 is obtained after simulation of the DAH-MSLM emulator, whereas in (

**a**), PC1 is obtained from simulation of the QG model. The HRCs are computed according to (23) in Section 4.2.2 below, from the corresponding simulated data. (

**c**) shows the corresponding reduced RP resonances (see Appendix B) as estimated from HRCs shown in (

**a**,

**b**); colors match across panels (

**a–c**).

**Figure 8.**Upper-level stream function anomalies and standard deviation: QG vs. MSLM. The QG’s standard deviation (SD) and its MSLM emulation are shown here in Panels (

**a**,

**b**), respectively, for the low-frequency range $0<f<{f}_{1}=0.18$ y${}^{-1}$. Panels (

**c**,

**d**) depict typical flow patterns underlying the SD patterns for the QG model and MSLM, respectively. Panels (

**e**,

**f**) (resp. (

**g**,

**h**)): same as for Panels (

**a**,

**b**) (resp. (

**c**,

**d**)), but for the intermediate frequency range ${f}_{1}=0.18$ y${}^{-1}<f<{f}_{2}=5.27$ y${}^{-1}$.

**Figure 9.**Upper-level stream function anomalies and standard deviation: QG vs. MSLM. The QG’s standard deviation (SD) and its MSLM emulation are shown here in Panels (

**a**,

**b**), respectively, for the high-frequency range ${f}_{2}=5.27$ y${}^{-1}<f<{f}_{3}=9.1$ y${}^{-1}$. Panels (

**c**,

**d**) depict typical flow patterns underlying the SD patterns for the QG model and MSLM, respectively. Panels (

**e**,

**f**) (resp. (

**g**,

**h**)): same as for Panels (

**a**,

**b**) (resp. (

**c**,

**d**)), but for the full range of frequencies $0<f<{f}_{3}=9.1$ y${}^{-1}$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kondrashov, D.; Chekroun, M.D.; Berloff, P.
Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres. *Fluids* **2018**, *3*, 21.
https://doi.org/10.3390/fluids3010021

**AMA Style**

Kondrashov D, Chekroun MD, Berloff P.
Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres. *Fluids*. 2018; 3(1):21.
https://doi.org/10.3390/fluids3010021

**Chicago/Turabian Style**

Kondrashov, Dmitri, Mickaël D. Chekroun, and Pavel Berloff.
2018. "Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres" *Fluids* 3, no. 1: 21.
https://doi.org/10.3390/fluids3010021