Next Article in Journal
Stable Vortices in a Continuously Stratified Ocean with Thin Active Layer
Next Article in Special Issue
Thermal Convection in a Rotating Anisotropic Fluid Saturated Darcy Porous Medium
Previous Article in Journal
Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
Previous Article in Special Issue
Interaction of the Longwave and Finite-Wavelength Instability Modes of Convection in a Horizontal Fluid Layer Confined between Two Fluid-Saturated Porous Layers
Open AccessArticle

Onset of Primary and Secondary Instabilities of Viscoelastic Fluids Saturating a Porous Layer Heated from below by a Constant Flux

Laboratoire des Technologies Innovantes, Université de Picardie Jules Verne, 80000 Amiens, France
Laboratoire de Mécanique de Lille, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France
Author to whom correspondence should be addressed.
Fluids 2017, 2(3), 42;
Received: 3 April 2017 / Revised: 4 July 2017 / Accepted: 19 July 2017 / Published: 22 July 2017
(This article belongs to the Special Issue Convective Instability in Porous Media)
We analyze the thermal convection thresholds and linear characteristics of the primary and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from below by a constant flux. The Galerkin method is used to solve the eigenvalue problem by taking into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total viscosity of the fluid and the lateral confinement of the medium. For the primary instability, we found out that depending on the rheological parameters, two types of convective structures may appear when the basic conductive solution loses its stability: stationary long wavelength instability as for Newtonian fluids and oscillatory convection. The effect of the lateral confinement of the porous medium by adiabatic walls is to stabilize the oblique and longitudinal rolls and therefore selects transverse rolls at the onset of convection. In the range of the rheological parameters where stationary long wave instability develops first, we use a parallel flow approximation to determine analytically the velocity and temperature fields associated with the monocellular convective flow. The linear stability analysis of the monocellular flow is performed, and the critical conditions above which the flow becomes unstable are determined. The combined influence of the viscoelastic parameters and the lateral confinement on the characteristics of the secondary instability is quantified. The major new findings concerning the secondary instabilities may be summarized as follows: (i) For concentrated viscoelastic fluids, computations showed that the most amplified mode of convection corresponds to oscillatory transverse rolls, which appears via a Hopf bifurcation. This pattern selection is independent of both the fluid elasticity and the lateral confinement of the porous medium. (ii) For diluted viscoelastic fluids, the preferred mode of convection is found to be oscillatory transverse rolls for a very laterally-confined medium. Otherwise, stationary or oscillatory longitudinal rolls may develop depending on the fluid elasticity. Results also showed the destabilizing effect of the relaxation fluid elasticity and the stabilizing effect of the viscosity ratio for the onset of both primary and secondary instabilities. View Full-Text
Keywords: viscoelastic fluids; porous media; convection, instability viscoelastic fluids; porous media; convection, instability
Show Figures

Figure 1

MDPI and ACS Style

Gueye, A.; Ouarzazi, M.N.; Hirata, S.C.; Hamed, H.B. Onset of Primary and Secondary Instabilities of Viscoelastic Fluids Saturating a Porous Layer Heated from below by a Constant Flux. Fluids 2017, 2, 42.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop