Performance Analysis of a Novel 3D-Printed Three-Blade Savonius Wind Turbine Rotor with Pointed Deflectors
Abstract
1. Introduction
2. Materials and Methods
2.1. Rotor Design and Fabrication
2.2. Wind Tunnel Experimental Set-Up
2.3. Performance Evaluation and Data Visualization
3. Results
3.1. Experimental Conditions
3.1.1. Prototype Characteristics
3.1.2. Observed Blockage Ratio
3.2. Wind Flow Visualization Analysis
3.3. Performance Analysis
3.3.1. Torque Coefficient and Tip-Speed Ratio
3.3.2. Power Coefficient and Tip-Speed Ratio
3.3.3. Maximum Power Output
3.3.4. RPM and Tip-Speed Ratio
3.3.5. Torque and Tip-Speed Ratio
4. Discussion
4.1. Wind Tunnel Testing Conditions
4.1.1. Experimental Wind Speed Conditions
4.1.2. Adjusted Blockage Ratio
4.2. Prototype Performance
4.2.1. Prototype Quality
4.2.2. Visual Flow Pattern Performance
4.2.3. Aerodynamic Efficiency
4.2.4. Maximum Power Output and Potential Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- La Viña, A.G.; Tan, J.M.; Guanzon, T.I.M.; Caleda, M.J.; Ang, L. Navigating a Trilemma: Energy Security, Equity, and Sustainability in the Philippines’ Low-Carbon Transition. Energy Res. Soc. Sci. 2018, 35, 37–47. [Google Scholar] [CrossRef]
- Manych, N.; Jakob, M. Why Coal?—The Political Economy of the Electricity Sector in the Philippines. Energy Sustain. Dev. 2021, 62, 113–125. [Google Scholar] [CrossRef]
- Philippine Department of Energy 2024 Power Statistics. 2025. Available online: https://legacy.doe.gov.ph/energy-statistics/philippine-power-statistics (accessed on 27 November 2025).
- Zubiri, J.M. Renewable Energy Act of 2008; Fourteenth Congress of The Philippines. 2008. Available online: https://ppp.worldbank.org/sites/default/files/2021-10/Philippines%20Renewable%20Energy%20Act%20of%202008.pdf (accessed on 27 November 2025).
- Dasalla, R.; Dunn, E.; Sahin, T.; Gellatly, B.; Lewis, G. Philippines Offshore Wind Supply Chain Study. 2024. Available online: https://cdn.climatepolicyradar.org/navigator/PHL/2024/the-philippines-offshore-wind-supply-chain-study_1bf27374284f98174bf568e9d309d257.pdf (accessed on 25 March 2025).
- Fritze, T.; Weigel, J.; Bertheau, P.; Dunks, C. Feasibility Study: Green Hydrogen Technology in off-Grid Areas in the Philippines; Makati City. 2024. Available online: https://reiner-lemoine-institut.de/wp-content/uploads/2024/07/Feasibility-Study_-Green-Hydrogen-Technology-in-off-grid-areas-in-the-Philippines.pdf (accessed on 6 May 2025).
- Bertheau, P.; Dionisio, J.; Jütte, C.; Aquino, C. Challenges for Implementing Renewable Energy in a Cooperative-Driven off-Grid System in the Philippines. Env. Innov. Soc. Transit. 2020, 35, 333–345. [Google Scholar] [CrossRef]
- Gacu, J.G.; Garcia, J.D.; Fetalvero, E.G.; Catajay-Mani, M.P.; Monjardin, C.E.F.; Power, C. A Comprehensive Resource Assessment for Wind Power Generation on the Rural Island of Sibuyan, Philippines. Energies 2024, 17, 2055. [Google Scholar] [CrossRef]
- Castro, M.; Ocon, J. Can Off-Grid Islands Powered by Renewable Energy Microgrids Be Operated Sustainably without Subsidies? A Techno-Economic Case Study in the Philippines. Chem. Eng. Trans. 2021, 88, 427–432. Available online: https://www.cetjournal.it/cet/21/88/071.pdf (accessed on 27 November 2025).
- Questo, L.I.; Rotor, M.A. Numerical Hydrodynamic Model of Awasan Bay, Surigao Del Norte, Philippines for Tidal Energy Resource Characterization. Discov. Ocean. 2025, 2, 55. [Google Scholar] [CrossRef]
- Eleanor, M.; Catanyag, A.; Edward, L.; Michael, T.; Abundo, L.S. Financial Analysis of a Hybrid Tidal Stream Energy System for Sustainable Island Electrification in the Philippines. Asian J. Converg. Technol. 2022, 8, 28. [Google Scholar] [CrossRef]
- Lucas, K.R.E.; Sato, T.; Ohba, M. Hourly Variation of Wind Speeds in the Philippines and Its Potential Impact on the Stability of the Power System. Energies 2021, 14, 2310. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Lu, J.; Zhang, X.; Wang, K.; Gan, Z.; Liu, X.; Jing, Z.; Cui, X.; Wang, H. Advances in Urban Wind Resource Development and Wind Energy Harvesters. Renew. Sustain. Energy Rev. 2025, 207, 114943. [Google Scholar] [CrossRef]
- Filipowicz, M.; Papis-Frączek, K.; Podlasek, S. Building-Integrated Wind Turbines in Urban Environments: A Case Study From Agh’S Center of Energy. E3S Web Conf. 2025, 654, 02008. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Veljić, N.; Hradovi, I. Perspectives of Building-Integrated Wind Turbines (BIWTs). Smart Cities 2025, 8, 55. [Google Scholar] [CrossRef]
- Vallejo Díaz, A.; Herrera Moya, I. Urban Wind Energy with Resilience Approach for Sustainable Cities in Tropical Regions: A Review. Renew. Sustain. Energy Rev. 2024, 199, 114525. [Google Scholar] [CrossRef]
- Chitura, A.G.; Mukumba, P.; Lethole, N. Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters. Energies 2024, 17, 3708. [Google Scholar] [CrossRef]
- Zhao, D.; Han, N. Optimizing Overall Energy Harvesting Performances of Miniature Savonius-like Wind Harvesters. Energy Convers. Manag. 2018, 178, 311–321. [Google Scholar] [CrossRef]
- Kumar, R.; Raahemifar, K.; Fung, A.S. A Critical Review of Vertical Axis Wind Turbines for Urban Applications. Renew. Sustain. Energy Rev. 2018, 89, 281–291. [Google Scholar] [CrossRef]
- Mao, Z.; Yang, G.; Zhang, T.; Tian, W. Aerodynamic Performance Analysis of a Building-Integrated Savonius Turbine. Energies 2020, 13, 2636. [Google Scholar] [CrossRef]
- Al Noman, A.; Tasneem, Z.; Sahed, M.F.; Muyeen, S.M.; Das, S.K.; Alam, F. Towards next Generation Savonius Wind Turbine: Artificial Intelligence in Blade Design Trends and Framework. Renew. Sustain. Energy Rev. 2022, 168, 112531. [Google Scholar] [CrossRef]
- Maldar, N.R.; Ng, C.Y.; Oguz, E. A Review of the Optimization Studies for Savonius Turbine Considering Hydrokinetic Applications. Energy Convers. Manag. 2020, 226, 113495. [Google Scholar] [CrossRef]
- Dewan, A.; Tomar, S.S.; Bishnoi, A.K.; Singh, T.P. Computational Fluid Dynamics and Turbulence Modelling in Various Blades of Savonius Turbines for Wind and Hydro Energy: Progress and Perspectives. Ocean Eng. 2023, 283, 115168. [Google Scholar] [CrossRef]
- Chaichana, T.; Thongdee, S. Effect of Blade Number and Angle on the Characteristics of the Savonius Type Wind Turbine. J. Phys. Conf. Ser. 2019, 1380, 012110. [Google Scholar] [CrossRef]
- Wenehenubun, F.; Saputra, A.; Sutanto, H. An Experimental Study on the Performance of Savonius Wind Turbines Related with the Number of Blades. Energy Procedia 2015, 68, 297–304. [Google Scholar] [CrossRef]
- Abdelaziz, K.R.; Nawar, M.A.A.; Ramadan, A.; Attai, Y.A.; Mohamed, M.H. Performance Investigation of a Savonius Rotor by Varying the Blade Arc Angles. Ocean Eng. 2022, 260, 112054. [Google Scholar] [CrossRef]
- Loganathan, B.; Mustary, I.; Chowdhury, H.; Alam, F. Effect of Sizing of a Savonius Type Vertical Axis Micro Wind Turbine. Energy Procedia 2017, 110, 555–560. [Google Scholar] [CrossRef]
- Akwa, J.V.; Vielmo, H.A.; Petry, A.P. A Review on the Performance of Savonius Wind Turbines. Renew. Sustain. Energy Rev. 2012, 16, 3054–3064. [Google Scholar] [CrossRef]
- Kassab, S.Z.; Chemengich, S.J.; Lotfy, E.R. The Effect of Endplate Addition on the Performance of the Savonius Wind Turbine: A 3-D Study. Proc. Inst. Mech. Eng. Part. A J. Power Energy 2022, 236, 1582–1592. [Google Scholar] [CrossRef]
- Wong, K.H.; Foo, J.S.Y.; Chong, W.T.; Mat, S.; Ng, J.H. Experimental Investigation into the Effects of Endplate Designs for a Savonius Turbine. IOP Conf. Ser. Earth Env. Sci. 2024, 1372, 012010. [Google Scholar] [CrossRef]
- Wang, X.-H.; Foo, J.S.-Y.; Fazlizan, A.; Chong, W.-T.; Wong, K.-H. Effects of Endplate Designs on the Performance of Savonius Vertical Axis Wind Turbine. Energy 2024, 310, 133205. [Google Scholar] [CrossRef]
- Farajyar, S.; Ghafoorian, F.; Mehrpooya, M.; Asadbeigi, M. CFD Investigation and Optimization on the Aerodynamic Performance of a Savonius Vertical Axis Wind Turbine and Its Installation in a Hybrid Power Supply System: A Case Study in Iran. Sustainability 2023, 15, 5318. [Google Scholar] [CrossRef]
- Saikot, M.M.H.; Rahman, M.; Hosen, M.A.; Ajwad, W.; Jamil, M.F.; Islam, M.Q. Savonius Wind Turbine Performance Comparison with One and Two Porous Deflectors: A CFD Study. Flow. Turbul. Combust. 2023, 111, 1227–1251. [Google Scholar] [CrossRef]
- Kumar, S.; Mitra, S.; Mishra, N.; Vaikuntanathan, V. Computational Fluid Dynamical Analysis of a Savonius Vertical Axis Wind Rotor Array. Phys. Fluids 2025, 37, 017163. [Google Scholar] [CrossRef]
- Tian, W.; Bian, J.; Yang, G.; Ni, X.; Mao, Z. Influence of a Passive Upstream Deflector on the Performance of the Savonius Wind Turbine. Energy Rep. 2022, 8, 7488–7499. [Google Scholar] [CrossRef]
- Ridwan; Setyawan, I.; Setiyono. Performance of Vertical Axis Savonius Wind Turbines Related to the Fin Number on the Blade. IOP Conf. Ser. Mater. Sci. Eng. 2019, 539, 012032. [Google Scholar] [CrossRef]
- Mat Yazik, M.H.; Ishak, M.H.H.; Chang, W.S.; Ismail, F.; Zawawi, M.H.; Ahmed, A.N.; Mohd Sidek, L.; Basri, H. Optimizing Structural Performance of Savonius Turbine Blades through Comparative Analysis of Mechanical Properties. Phys. Fluids 2024, 36, 087154. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, H.; Yang, H.; Wu, H.; Liu, W.; Chen, Z. Review of Artificial Intelligence-Based Design Optimization of Wind Power Systems. Wind 2025, 5, 18. [Google Scholar] [CrossRef]
- Al-Shammari, S.A.; Karamallah, A.H.; Aljabair, S. Blade Shape Optimization of Savonius Wind Turbine at Low Wind Energy by Artificial Neural Network. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012154. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, S.; Jia, R.; Qiu, H.; Xu, S. Blade Shape Optimization of Savonius Wind Turbine Using Radial Based Function Model and Marine Predator Algorithm. Energy Rep. 2022, 8, 12366–12378. [Google Scholar] [CrossRef]
- Meri Al Absi, S.; Hasan Jabbar, A.; Oudah Mezan, S.; Ahmed Al-Rawi, B.; Thajeel Al_Attabi, S. An Experimental Test of the Performance Enhancement of a Savonius Turbine by Modifying the Inner Surface of a Blade. Mater. Today Proc. 2021, 42, 2233–2240. [Google Scholar] [CrossRef]
- Zhao, D.; Han, N.; Goh, E.; Cater, J.; Reinecke, A. 3D-Printed Miniature Savonious Wind Harvester. Wind. Turbines Aerodyn. Energy Harvest. 2019, 21–165. [Google Scholar] [CrossRef]
- Velásquez, L.; Rengifo, J.; Saldarriaga, A.; Rubio-Clemente, A.; Chica, E. Geometric Optimization of Savonius Vertical-Axis Wind Turbines Using Full Factorial Design and Response Surface Methodology. Sci 2025, 7, 154. [Google Scholar] [CrossRef]
- Deda Altan, B.; Altan, G.; Kovan, V. Investigation of 3D Printed Savonius Rotor Performance. Renew. Energy 2016, 99, 584–591. [Google Scholar] [CrossRef]
- Aslan, K.; Cagan, C.; Buldum, B. Savonius Turbine Rotor Design Produced By 3d Printer. November 2017. Available online: https://www.researchgate.net/publication/325487183_Savonius_Turbine_Rotor_Design_Produced_By_3d_Printer (accessed on 23 December 2025).
- Ang, E.B.; Honra, J.P. Theoretical Aerodynamic Performance and FEA Analysis of a Novel Three-Blade Savonius Wind Turbine Blade with Pointed Deflectors. Dynamics 2025, 5, 8. [Google Scholar] [CrossRef]
- Samykano, M.; Selvamani, S.K.; Kadirgama, K.; Ngui, W.K.; Kanagaraj, G.; Sudhakar, K. Mechanical Property of FDM Printed ABS: Influence of Printing Parameters. Int. J. Adv. Manuf. Technol. 2019, 102, 2779–2796. [Google Scholar] [CrossRef]
- Sedlak, J.; Joska, Z.; Jansky, J.; Zouhar, J.; Kolomy, S.; Slany, M.; Svasta, A.; Jirousek, J. Analysis of the Mechanical Properties of 3D-Printed Plastic Samples Subjected to Selected Degradation Effects. Materials 2023, 16, 3268. [Google Scholar] [CrossRef]
- Shenzhen Esun Industrial Co., Ltd. ABS Filament Technical Data Sheet; Shenzhen Esun Industrial Co., Ltd.: Shenzhen, China, 2021. [Google Scholar]
- He, R.; Sun, H.; Gao, X.; Yang, H. Wind Tunnel Tests for Wind Turbines: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2022, 166, 112675. [Google Scholar] [CrossRef]
- Roy, S.; Saha, U.K. An Adapted Blockage Factor Correlation Approach in Wind Tunnel Experiments of a Savonius-Style Wind Turbine. Energy Convers. Manag. 2014, 86, 418–427. [Google Scholar] [CrossRef]
- PAGASA. CLIMATOLOGICAL NORMALS—SCIENCE GARDEN, QUEZON CITY. Available online: https://pubfiles.pagasa.dost.gov.ph/pagasaweb/files/cad/CLIMATOLOGICAL%20NORMALS%20(1991-2020)/SCIENCE%20GARDEN.pdf (accessed on 23 December 2025).
- PAGASA. CLIMATOLOGICAL NORMALS—NAIA (MIA), Pasay City. Available online: https://pubfiles.pagasa.dost.gov.ph/pagasaweb/files/cad/CLIMATOLOGICAL%20NORMALS%20(1991-2020)/NAIA.pdf (accessed on 23 December 2025).
- PAGASA. CLIMATOLOGICAL NORMALS—PORT AREA (MCO). Available online: https://pubfiles.pagasa.dost.gov.ph/pagasaweb/files/cad/CLIMATOLOGICAL%20NORMALS%20(1991-2020)/PORT%20AREA.pdf (accessed on 23 December 2025).
- Schlitchting, H.; Gersten, K. Boundary-Layer Theory, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Ōtomo, S.; Tasaka, Y.; Denissenko, P.; Murai, Y. On the Rotation of a Savonius Turbine at Low Reynolds Numbers Subject to Kolmogorov Cascade of Turbulence. Phys. Fluids 2024, 36, 027104. [Google Scholar] [CrossRef]
- Fatahian, E.; Ismail, F.; Ishak, M.H.H.; Chang, W.S. Aerodynamic Performance Improvement of Savonius Wind Turbine through a Passive Flow Control Method Using Grooved Surfaces on a Deflector. Ocean Eng. 2023, 284, 115282. [Google Scholar] [CrossRef]
- Rabiei, A.; Paraschivoiu, M. Performance of a Savonius Vertical Axis Wind Turbine Installed on a Forward Facing Step. Trans. Can. Soc. Mech. Eng. 2024, 48, 560–571. [Google Scholar] [CrossRef]
- Zemamou, M.; Aggour, M.; Toumi, A. Review of Savonius Wind Turbine Design and Performance. Energy Procedia 2017, 141, 383–388. [Google Scholar] [CrossRef]
- Tanveer, M.Q.; Mishra, G.; Mishra, S.; Sharma, R. Effect of Infill Pattern and Infill Density on Mechanical Behaviour of FDM 3D Printed Parts- a Current Review. Mater. Today Proc. 2022, 62, 100–108. [Google Scholar] [CrossRef]
- Dinh Le, A.; Minh, B.D.; Trinh, C.D. High Efficiency Energy Harvesting Using a Savonius Turbine with Multicurve and Auxiliary Blade. J. Fluids Eng. 2022, 144, 111207. [Google Scholar] [CrossRef]
- Hansen, M.O.L. Aerodynamics of Wind Turbines, 2nd ed.; Taylor & Francis Group: London, UK, 2008. [Google Scholar] [CrossRef]
- Anant Kishore, R.; Priya, S. Design and Experimental Verification of a High Efficiency Small Wind Energy Portable Turbine (SWEPT). J. Wind Eng. Ind. Aerodyn. 2013, 118, 12–19. [Google Scholar] [CrossRef]




















| Parameter | Value |
|---|---|
| Density | 1.04 g/cm3 |
| Tensile Strength | 43 MPa |
| Elongation at Break | 1% |
| Flexural Strength | 66 MPa |
| Flexural Modulus | 1177 MPa |
| iZOD Impact Strength | 29 kJ/m2 |
| Parameter | Value |
|---|---|
| Bed Temperature | 60 °C |
| Nozzle Temperature | 202 °C |
| Infill Density | 50% |
| Fan Speed | 100% |
| Layer Height | 0.2 mm |
| Nozzle Diameter | 0.4 mm |
| Wind Speed Condition (m/s) | Maximum Power Output (W) | |
|---|---|---|
| No BR | With BR | |
| 3 | 0.1473 | 0.1140 |
| 4 | 0.3564 | 0.2759 |
| 5 | 0.7007 | 0.5423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ang, E.; Honra, J. Performance Analysis of a Novel 3D-Printed Three-Blade Savonius Wind Turbine Rotor with Pointed Deflectors. Fluids 2026, 11, 9. https://doi.org/10.3390/fluids11010009
Ang E, Honra J. Performance Analysis of a Novel 3D-Printed Three-Blade Savonius Wind Turbine Rotor with Pointed Deflectors. Fluids. 2026; 11(1):9. https://doi.org/10.3390/fluids11010009
Chicago/Turabian StyleAng, Edward, and Jaime Honra. 2026. "Performance Analysis of a Novel 3D-Printed Three-Blade Savonius Wind Turbine Rotor with Pointed Deflectors" Fluids 11, no. 1: 9. https://doi.org/10.3390/fluids11010009
APA StyleAng, E., & Honra, J. (2026). Performance Analysis of a Novel 3D-Printed Three-Blade Savonius Wind Turbine Rotor with Pointed Deflectors. Fluids, 11(1), 9. https://doi.org/10.3390/fluids11010009

