Special Issue: Pipe Flow: Research and Applications, First Edition
Conflicts of Interest
References
- Dawidowicz, J. Evaluation of a Pressure Head and Pressure Zones in Water Distribution Systems by Artificial Neural Networks. Neural Comput. Appl. 2018, 30, 2531–2538. [Google Scholar] [CrossRef] [PubMed]
- Taiwo, R.; Yussif, A.-M.; Zayed, T. Making Waves: Generative Artificial Intelligence in Water Distribution Networks: Opportunities and Challenges. Water Res. X 2025, 28, 100316. [Google Scholar] [CrossRef]
- Han, F.; Lan, Q.; Liu, Y.; Yin, G.; Ong, M.C.; Li, W.; Wang, Z. Unveiling Turbulent Flow Dynamics in Blind-Tee Pipelines Enhancing Fluid Mixing in Subsea Pipeline Systems. J. Mar. Sci. Eng. 2024, 12, 1199. [Google Scholar] [CrossRef]
- Manzano-Ruiz, J.J.; Garballo, J.G. Multiphase Transport of Hydrocarbons in Pipes; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Wang, H.; Zhu, Z.; Zhang, M.; Han, J. Numerical Investigation of the Large Over-Reading of Venturi Flow Rate in ARE of Nuclear Power Plant. Nucl. Eng. Technol. 2021, 53, 69–78. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, T.; Xie, A. CFD Study of Two-Phase Cross Flow and Heat Transfer in Subchannels of Pressurized Water Reactor Fuel Assemblies. IOP Conf. Ser. Earth Environ. Sci. 2023, 1171, 012012. [Google Scholar] [CrossRef]
- Kalpakli Vester, A.; Örlü, R.; Alfredsson, P.H. Turbulent Flows in Curved Pipes: Recent Advances in Experiments and Simulations. Appl. Mech. 2016, 68, 050802. [Google Scholar] [CrossRef]
- Kassim, M.S.; Sarow, S.A. Flows of Viscous Fluids in Food Processing Industries: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012032. [Google Scholar] [CrossRef]
- Kavokine, N.; Netz, R.R.; Bocquet, L. Fluids at the Nanoscale: From Continuum to Subcontinuum Transport. Annu. Rev. Fluid Mech. 2021, 53, 377–410. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, Z.; Fu, C. A Review of the Complex Flow and Heat Transfer Characteristics in Microchannels. Micromachines 2023, 14, 1451. [Google Scholar] [CrossRef]
- Benmbarek, M.M.; Moujaes, S.F. CFD Analysis of Heat Transfer Enhancement for Twisted Tape Inserted in Spirally Corrugated Tubes and Proposal of a New Vane-Inserted Geometry. Fluids 2025, 10, 73. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Mo, X.; Sun, Z.; Tian, G.; Xin, Y.; Zhu, D. Investigation on Convection Heat Transfer Augment in Spirally Corrugated Pipe. Energies 2023, 16, 1063. [Google Scholar] [CrossRef]
- Yu, C.; Shao, M.; Zhang, W.; Huang, M.; Wang, G. Enhancing Heat Transfer Efficiency in Corrugated Tube Heat Exchangers: A Comprehensive Approach Through Structural Optimization and Field Synergy Analysis. Heliyon 2024, 10, e30113. [Google Scholar] [CrossRef] [PubMed]
- Valero, D.; Felder, S.; Kramer, M.; Wang, H.; Carrillo, J.M.; Pfister, M. Air-Water Flows. J. Hydraul. Res. 2024, 62, 319–339. [Google Scholar] [CrossRef]
- Zuo, J.; Qian, Y.; Zhu, D.Z.; Zhang, Z. Air-Water Interaction in a Partially Filled Circular Pipe. Phys. Fluids 2025, 37, 013315. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Fei, Z.; Wang, R.; Zhang, H.; Zhu, D.Z.; Qian, S. Air-Water Interactions During Rapid Filling of a Closed Horizontal Pipe. Phys. Fluids 2025, 37, 043326. [Google Scholar] [CrossRef]
- Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Arrieta-Pastrana, A.; Ramos, H.M. Two-Dimensional Analysis of Air-Water Interaction in Actual Water Pipe-Filling Processes. Water 2025, 17, 146. [Google Scholar] [CrossRef]
- Bonilla-Correa, D.M.; Coronado-Hernández, O.E.; Arrieta-Pastrana, A.; Pérez-Sánchez, M.; Ramos, H.M. Proposed Approach for Modelling the Thermodynamic Behaviour of Entrapped Air Pockets in Water Pipeline Start-Up. Fluids 2024, 9, 185. [Google Scholar] [CrossRef]
- Wiens, T. Correction Factors for the Use of 1D Solution Methods for Dynamic Laminar Liquid Flow through Curved Tubes. Fluids 2024, 9, 138. [Google Scholar] [CrossRef]
- Raj, M.K.; Chakraborty, J.; DasGupta, S.; Chakraborty, S. Flow-Induced Deformation in a Microchannel with a Non-Newtonian Fluid. Biomicrofluidics 2018, 12, 034116. [Google Scholar] [CrossRef]
- Anand, V.; David, J., Jr.; Christov, I.C. Non-Newtonian Fluid-Structure Interactions: Static Response of a Microchannel Due to Internal Flow of a Power-Law Fluid. J. Non-Newton. Fluid Mech. 2019, 264, 62–72. [Google Scholar] [CrossRef]
- Tanveer, A.; Salahuddin, T.; Khan, M.; Malik, M.Y.; Alqarni, M.S. Theoretical Analysis of Non-Newtonian Blood Flow in a Microchannel. Comput. Methods Programs Biomed. 2020, 191, 105280. [Google Scholar] [CrossRef] [PubMed]
- Rubio Martinez, A.; Chávez Castellanos, A.E.; Noguez Méndez, N.A.; Aragón Rivera, F.; Pliego Díaz, M.; Sigalotti, L.D.G.; Vargas, C.A. Flow Modeling of a Non-Newtonian Viscous Fluid in Elastic-Wall Microchannels. Fluids 2024, 9, 77. [Google Scholar] [CrossRef]
- De la Cruz-Ávila, M.; De León-Ruiz, J.E.; Carvajal-Mariscal, I.; Klapp, J. CFD Turbulence Models Assessment for the Cavitation Phenomenon in a Rectangular Profile Venturi Tube. Fluids 2024, 9, 71. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Li, T. Progress in the Understanding and Modeling of Cavitation and Related Applications. Fluid Dyn. Mater. Process. 2025, 21, 445–470. [Google Scholar] [CrossRef]
- Guzmán, E.; Hernández Pérez, V.; Aragón Rivera, F.; Klapp, J.; Sigalotti, L.D.G. Comparative Study of Air–Water and Air–Oil Frictional Pressure Drops in Horizontal Pipe Flow. Fluids 2024, 9, 67. [Google Scholar] [CrossRef]
- Hamied, R.S.; Ali, A.N.M.; Sukkar, K.A. Enhancing Heavy Crude Oil Flow in Pipelines through Heating-Induced Viscosity Reduction in the Petroleum Industry. Fluid Dyn. Mater. Process. 2023, 19, 2027–2039. [Google Scholar] [CrossRef]
- Gay, A.; Tangevelou, G.; Vidal, V. Pipe Formation by Fluid Focalization in Bilayered Sediments. Fluids 2024, 9, 66. [Google Scholar] [CrossRef]
- Gonzalez-Trejo, J.; Miranda-Tello, R.; Gabbasov, R.; Real-Ramirez, C.A.; Cervantes-de- la-Torre, F. Experimental Analysis of the Influence of the Sliding-Gate Valve on Submerged Entry Nozzle Outlet Jets. Fluids 2024, 9, 30. [Google Scholar] [CrossRef]
- Kinra, S.; Pal, R. Pipe Flow of Suspensions of Cellulose Nanocrystals. Fluids 2023, 8, 275. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.S.; Chanda, S. Cellulose Nanocrystal Based Composites: A Review. Compos. Part C Open Access 2021, 5, 100164. [Google Scholar] [CrossRef]
- Xu, J.; Wang, P.; Yuan, B.; Zhang, H. Rheology of Cellulose Nanocrystal and Nanofibril Suspensions. Carbohydr. Polym. 2024, 324, 121527. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Liu, Z.; Xu, W. Experimental Investigation on the Non-Newtonian to Newtonian Rheology Transition of Nanoparticles Enhanced Phase Change Material During Melting. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127432. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Z.; Cheng, S.; Wang, X.; Zhang, L.; Zheng, L.; Zhang, J. From Newtonian to Non-Newtonian Fluid: Insight into the Impact of Rheological Characteristics on Mineral Deposition in Urine Collection and Transportation. Sci. Total Environ. 2022, 823, 153532. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, K.; Malcherek, A. Enhancing Non-Newtonian Fluid Modeling. A Novel Extension of the Cross Flow Curve Model. J. Hydro-Environ. Res. 2024, 56, 17–27. [Google Scholar] [CrossRef]
- Krishnappa, R.B.; Subramanya, S.G.; Deshpande, A.; Chakravarthi, B. Effect of Serpentine Flow Field Channel Dimensions and Electrode Intrusion on Flow Hydrodynamics in an All-Iron Redox Flow Battery. Fluids 2023, 8, 237. [Google Scholar] [CrossRef]
- Abbaszadeh, H.; Norouzi, R.; Sume, V.; Kuriqi, A.; Daneshfaraz, R.; Abraham, J. Sill Role Effect on the Flow Characteristics (Experimental and Regression Model Analytical). Fluids 2023, 8, 235. [Google Scholar] [CrossRef]
- Rodríguez-Rivera, R.; Carvajal-Mariscal, I.; Torres-Peña, H.; De la Cruz-Ávila, M.; De León-Ruiz, J.E. Numerical Evaluation of the Flow within a Rhomboid Tessellated Pipe Network with a 3 × 3 Allometric Branch Pattern for the Inlet and Outlet. Fluids 2023, 8, 221. [Google Scholar] [CrossRef]
- Yu, H.; Li, T.; Zeng, X.; He, T.; Mao, N. A Critical Review on Geometric Improvements for Heat Transfer Augmentation of Microchannels. Energies 2022, 15, 9474. [Google Scholar] [CrossRef]
- Agoua, W.; Favier, B.; Morales, J.; Bos, W.J.T. A critical Transition of Two-Dimensional Flow in Toroidal Geometry. J. Fluid Mech. 2024, 988, A33. [Google Scholar] [CrossRef]
- Sigalotti, L.D.G.; Alvarado-Rodríguez, C.E.; Rendón, O. Fluid Flow in Helically Coiled Pipes. Fluids 2023, 8, 308. [Google Scholar] [CrossRef]
- Hardik, B.K.; Prabhu, S.V. Heat Transfer Distribution in Helical Coil Flow Boiling System. Int. J. Heat Mass Transf. 2018, 117, 710–728. [Google Scholar] [CrossRef]
- Çolak, A.B.; Akgul, D.; Mercan, H.; Dalkılıç, A.S.; Wongwises, S. Estimation of Heat Transfer Parameters of Shell and Helically Coiled Tube Heat Exchangers by Machine Learning. Case Stud. Therm. Eng. 2023, 42, 102713. [Google Scholar] [CrossRef]
- Sahin, H.E.; Ozturk, H.K. A Novel Model for U-Tube Steam Generators for Pressurized Water Reactors. Energies 2025, 1886, 1506. [Google Scholar] [CrossRef]
- Eckert, M. Pipe Flow: A Gateway to Turbulence. Arch. Hist. Exact Sci. 2021, 75, 249–282. [Google Scholar] [CrossRef]
- Avila, M.; Barkley, D.; Hof, B. Transition to Turbulence in Pipe Flow. Annu. Rev. Fluid Mech. 2023, 55, 575–602. [Google Scholar] [CrossRef]
- Mendes Quintino, A.; da Fonseca Junior, R.; Hernandez Rodriguez, O.M. Experimental Study of Liquid/Dense-Gas Pipe Flow. Geoenergy Sci. Eng. 2023, 230, 212179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigalotti, L.D.G. Special Issue: Pipe Flow: Research and Applications, First Edition. Fluids 2025, 10, 149. https://doi.org/10.3390/fluids10060149
Sigalotti LDG. Special Issue: Pipe Flow: Research and Applications, First Edition. Fluids. 2025; 10(6):149. https://doi.org/10.3390/fluids10060149
Chicago/Turabian StyleSigalotti, Leonardo Di G. 2025. "Special Issue: Pipe Flow: Research and Applications, First Edition" Fluids 10, no. 6: 149. https://doi.org/10.3390/fluids10060149
APA StyleSigalotti, L. D. G. (2025). Special Issue: Pipe Flow: Research and Applications, First Edition. Fluids, 10(6), 149. https://doi.org/10.3390/fluids10060149