Numerical Approximation of the In Situ Combustion Model Using the Nonlinear Mixed Complementarity Method
Abstract
:1. Introduction
2. Physical Problem Modeling
- A small part of the available space is occupied by fuel.
- Porosity changes in the reaction are negligible.
- The temperature of the solid and gas are the same (local thermal equilibrium).
- The gas velocity is constant.
- The heat loss is negligible.
- Pressure variations are small compared to the prevailing pressure.
3. Description of the FDA-MNCP Method for the Simple In Situ Combustion Model
4. Comparison of FDA-MNCP and FDA-NCP Methods
Algorithm 1: implementation FDA-MNCP |
Step 1. and Step 2. To obtain and , we apply the method to solve the mixed complementarity problem. Step 3. If , then END; else , and return to Step 2 |
5. Error Analysis
6. Conclusions
- We proposed solving the simple in situ combustion model using a numerical method based on an implicit finite difference scheme and a nonlinear mixed complementarity algorithm. We hypothesize that this approach may also be applicable to parabolic problems, which can be reformulated as mixed complementarity problems, as demonstrated for system (1).
- In this work, we demonstrated that the feasible interior point algorithm FDA-MNCP is an effective technique for numerically solving mixed complementarity problems.
- In the existing literature, the problem is formulated as a complementarity problem using two Hadamard products. However, this approach has the drawback of requiring the solution of large linear systems. In our formulation, only a single Hadamard product is used, resulting in smaller systems and, consequently, lower computational costs. This can be observed in the tables.
- We solved the in situ combustion model (1) using the nonlinear mixed complementarity algorithm and compared it to the FDA-NCP method. The results show that both solutions are very similar, as observed in Figure 1, Figure 2, Figure 3 and Figure 4. This suggests that the method can be applied to both parabolic and hyperbolic problems that can be formulated as mixed complementarity problems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chapiro, G.; Mazorche, S.R.; Herskovits, J.; Roche, J.R. Solution of the Non-linear Parabolic Problems using Nonlinear Complementarity Algorithm. (FDA-NCP). MecŃica Comput. 2010, 29, 2141–2153. [Google Scholar]
- Ferris, M.C.; Pang, J.S. Engineering and Economic Applications of Complementarity Problems; Society for Industrial and Applied Mathematics, SIAM: Philadelphia, PA, USA, 1997; Volume 39. [Google Scholar]
- Chapiro, G.; Mailybaev, A.A.; Souza, A.J.; Marchesin, D.; Bruining, J. Asymptotic approximation of long-time solution for low-temperature filtration combustion. Comput. Geosci. 2012, 16, 799–808. [Google Scholar]
- Ramirez Gutierrez, A. Application of the Nonlinear Complementarity Method for the Study of In Situ Oxygen Combustion. Master’s Thesis, Universidade Federal de Juis de Fora, Juiz de Fora, Brazil, 2013. [Google Scholar]
- Chapiro, G.; Ramirez, G.A.E.; Herkovits, J.; Mazorche, S.R.; Pereira, W.S. Numerical solution of a class of moving boundary problems with a nonlinear complementarity approach. J. Optim. Theory Appl. 2016, 168, 534–550. [Google Scholar]
- Bruining, J.; Marchesin, D.; Duijn, C.V. Steam injection into water-saturated porous rock. Comput. Appl. Math. 2003, 22, 359–395. [Google Scholar]
- Dake, L.P. Fundamentals of Reservoir Engineering; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole—CENGAGE Learning: Boston, MA, USA, 2010. [Google Scholar]
- Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Prentice-Hall: Hoboken, NJ, USA, 1983. [Google Scholar]
- Herskovits, J.; Mazorche, S. A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics. Struct. Multidiscip. Otimiz. 2009, 37, 435–446. [Google Scholar]
- Serre, D. Systems of Conservation Laws 1. Hyperbolicity, Entropies, Shock Waves; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Smoller, J. Shock Waves and Reaction-Diffusion Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1994; 327p. [Google Scholar]
- Zeldovich, Y.B.; Barenblatt, G.I.; Librovich, V.B.; Makhviladze, G.M. The Mathematical Theory of Combustion and Explosion; Consultants Bureau: New York, NY, USA, 1985. [Google Scholar]
- Mayers, D.; Morton, K. Numerical Solution of Partial Differential Equations; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Tannehill, J.C.; Anderson, D.A.; Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer; Minkowycz, W.J., Sparrow, E.M., Eds.; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
Symbol | Physical Quantity | Value | Unit |
---|---|---|---|
Initial reservoir temperature | 273 | [K] | |
Heat capacity of porous medium | 2 × 106 | [J/m3K] | |
Heat capacity of gas | 27.42 | [J/molK] | |
Thermal conductivity of porous medium | 0.87 | [J/(msK)] | |
Enthalpy of the fuel in | 4 × 105 | [J/mol] | |
Darcy speed for gas injection (200 m/dia) | 0.0023 | [m/s] | |
Activation energy | 58,000 | [J/mol] | |
Pre-exponential parameter | 500 | 1/s | |
R | Ideal gas constant | 8.314 | [J/molK] |
P | Prevailing pressure (1 atm) | 101,325 | [Pa] |
Initial molar density of fuel | 372 | [mol/m3] |
FDA-MNCP | FDA-NCP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | BL(t) | Iter | BL(t) | |||||||
0.001 | 0.401 | 33 | 1.0 | 43 | 34 | 0.194 | 20 | 1.0 | 43 | 40 |
0.002 | 0.411 | 34 | 0.8 | 44 | 35 | 0.194 | 20 | 1.0 | 43 | 40 |
0.003 | 0.406 | 34 | 1.0 | 43 | 35 | 0.199 | 20 | 1.0 | 43 | 40 |
0.004 | 0.386 | 32 | 0.8 | 41 | 33 | 0.184 | 20 | 1.0 | 43 | 40 |
0.005 | 0.385 | 32 | 0.8 | 41 | 33 | 0.178 | 21 | 1.0 | 45 | 42 |
0.006 | 0.406 | 34 | 0.8 | 43 | 35 | 0.198 | 21 | 1.0 | 45 | 42 |
0.007 | 0.395 | 33 | 0.8 | 42 | 34 | 0.193 | 21 | 1.0 | 45 | 42 |
0.008 | 0.403 | 33 | 0.8 | 43 | 34 | 0.229 | 21 | 1.0 | 45 | 42 |
0.009 | 0.390 | 32 | 0.8 | 42 | 33 | 0.169 | 21 | 1.0 | 45 | 42 |
0.010 | 0.405 | 33 | 0.8 | 44 | 34 | 0.173 | 21 | 1.0 | 45 | 42 |
FDA-MNCP | FDA-NCP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | BL(t) | Iter | BL(t) | |||||||
0.001 | 0.912 | 36 | 0.8 | 47 | 37 | 0.555 | 21 | 1.0 | 45 | 42 |
0.002 | 0.885 | 36 | 0.8 | 46 | 37 | 0.519 | 21 | 1.0 | 45 | 42 |
0.003 | 0.870 | 37 | 0.8 | 47 | 38 | 0.515 | 21 | 1.0 | 45 | 42 |
0.004 | 0.892 | 35 | 0.64 | 46 | 36 | 0.494 | 21 | 1.0 | 45 | 42 |
0.005 | 0.831 | 34 | 0.8 | 44 | 35 | 0.486 | 21 | 1.0 | 45 | 42 |
0.006 | 0.793 | 34 | 0.8 | 43 | 35 | 0.508 | 21 | 1.0 | 45 | 42 |
0.007 | 0.790 | 34 | 0.8 | 43 | 35 | 0.457 | 21 | 1.0 | 45 | 42 |
0.008 | 0.894 | 36 | 0.64 | 49 | 37 | 0.515 | 21 | 1.0 | 45 | 42 |
0.009 | 0.869 | 35 | 0.8 | 46 | 36 | 0.507 | 21 | 1.0 | 45 | 42 |
0.010 | 0.839 | 35 | 0.8 | 46 | 36 | 0.479 | 21 | 1.0 | 45 | 42 |
FDA-MNCP | FDA-NCP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | BL(t) | Iter | BL(t) | |||||||
0.001 | 1.771 | 36 | 0.8 | 47 | 37 | 3.223 | 21 | 1.0 | 45 | 42 |
0.002 | 1.852 | 38 | 0.8 | 48 | 39 | 3.185 | 21 | 1.0 | 45 | 42 |
0.003 | 1.969 | 37 | 0.8 | 46 | 38 | 3.129 | 21 | 1.0 | 45 | 42 |
0.004 | 1.995 | 38 | 0.8 | 47 | 39 | 3.245 | 21 | 1.0 | 45 | 42 |
0.005 | 1.771 | 37 | 0.8 | 46 | 38 | 3.143 | 21 | 1.0 | 45 | 42 |
0.006 | 1.785 | 37 | 1.0 | 45 | 38 | 3.122 | 21 | 1.0 | 45 | 42 |
0.007 | 1.787 | 37 | 0.8 | 47 | 38 | 3.205 | 21 | 1.0 | 45 | 42 |
0.008 | 1.778 | 37 | 0.8 | 47 | 38 | 3.241 | 21 | 1.0 | 45 | 42 |
0.009 | 2.001 | 36 | 0.8 | 46 | 37 | 3.346 | 22 | 1.0 | 47 | 44 |
0.010 | 1.685 | 35 | 0.8 | 45 | 36 | 3.396 | 22 | 1.0 | 47 | 44 |
FDA-MNCP | FDA-NCP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | BL(t) | Iter | BL(t) | |||||||
0.001 | 4.497 | 37 | 0.8 | 48 | 38 | 33.127 | 21 | 1.0 | 45 | 21 |
0.002 | 4.337 | 37 | 1.0 | 46 | 38 | 33.174 | 21 | 1.0 | 45 | 21 |
0.003 | 4.533 | 38 | 0.8 | 47 | 39 | 33.034 | 21 | 1.0 | 45 | 21 |
0.004 | 4.494 | 39 | 0.8 | 48 | 40 | 33.398 | 21 | 1.0 | 45 | 21 |
0.005 | 4.429 | 37 | 1.0 | 45 | 38 | 34.722 | 22 | 1.0 | 47 | 22 |
0.006 | 4.329 | 37 | 1.0 | 45 | 38 | 34.652 | 22 | 1.0 | 47 | 22 |
0.007 | 4.523 | 39 | 0.8 | 49 | 40 | 34.777 | 22 | 1.0 | 47 | 22 |
0.008 | 4.530 | 39 | 0.8 | 49 | 40 | 34.802 | 22 | 1.0 | 47 | 22 |
0.009 | 4.459 | 37 | 0.8 | 47 | 38 | 34.824 | 22 | 1.0 | 47 | 22 |
0.010 | 4.315 | 37 | 1.0 | 48 | 38 | 34.571 | 22 | 1.0 | 47 | 22 |
t | |||||
---|---|---|---|---|---|
0.00100000 | 0.07757130 | 0.02809022 | 0.00730451 | 2.76 | 3.85 |
0.00200000 | 0.12495960 | 0.04805076 | 0.01233415 | 2.60 | 3.90 |
0.00300000 | 0.12512590 | 0.05824369 | 0.01679689 | 2.15 | 3.47 |
0.00400000 | 0.15843617 | 0.07200921 | 0.02080162 | 2.20 | 3.46 |
0.00500000 | 0.19817638 | 0.08645161 | 0.02467447 | 2.29 | 3.50 |
0.00600000 | 0.19866653 | 0.09841438 | 0.02840411 | 2.02 | 3.46 |
0.00700000 | 0.22936049 | 0.10892940 | 0.03195340 | 2.11 | 3.41 |
0.00800000 | 0.24606770 | 0.11916519 | 0.03538988 | 2.06 | 3.37 |
0.00900000 | 0.25789027 | 0.12872004 | 0.03877097 | 2.00 | 3.32 |
0.01000000 | 0.28886846 | 0.13735367 | 0.04209700 | 2.10 | 3.26 |
t | |||||
---|---|---|---|---|---|
0.001 | 0.07753953 | 0.02808885 | 0.00730328 | 2.76 | 3.85 |
0.002 | 0.12490382 | 0.04804832 | 0.01233527 | 2.60 | 3.89 |
0.003 | 0.12507648 | 0.05824052 | 0.01679940 | 2.15 | 3.47 |
0.004 | 0.15841526 | 0.07200834 | 0.02080540 | 2.20 | 3.46 |
0.005 | 0.19818512 | 0.08645353 | 0.02467944 | 2.29 | 3.50 |
0.006 | 0.19869586 | 0.09841770 | 0.02841001 | 2.02 | 3.46 |
0.007 | 0.22940100 | 0.10893437 | 0.03196011 | 2.10 | 3.41 |
0.008 | 0.24613384 | 0.11917200 | 0.03539747 | 2.07 | 3.37 |
0.009 | 0.25797041 | 0.12872819 | 0.03877948 | 2.00 | 3.32 |
0.010 | 0.28897837 | 0.13736335 | 0.04210642 | 2.10 | 3.26 |
t | |||||
---|---|---|---|---|---|
0.00100000 | 0.03656879 | 0.02183277 | 0.00451877 | 1.67 | 4.83 |
0.00200000 | 0.08417410 | 0.02792488 | 0.00819559 | 3.01 | 3.41 |
0.00300000 | 0.06717364 | 0.03432880 | 0.01103677 | 1.96 | 3.11 |
0.00400000 | 0.05513563 | 0.05046208 | 0.01381861 | 1.09 | 3.65 |
0.00500000 | 0.10897196 | 0.06002542 | 0.01653614 | 1.82 | 3.63 |
0.00600000 | 0.09771893 | 0.06361601 | 0.01887177 | 1.54 | 3.37 |
0.00700000 | 0.09347666 | 0.06753455 | 0.02105732 | 1.38 | 3.21 |
0.00800000 | 0.11948456 | 0.07350345 | 0.02332175 | 1.63 | 3.15 |
0.00900000 | 0.10838295 | 0.07908666 | 0.02560247 | 1.37 | 3.09 |
0.01000000 | 0.12663557 | 0.08343716 | 0.02775604 | 1.52 | 3.01 |
t | |||||
---|---|---|---|---|---|
0.001 | 0.03656752 | 0.02183277 | 0.00451876 | 1.67 | 4.83 |
0.002 | 0.08415103 | 0.02792385 | 0.00819578 | 3.01 | 3.41 |
0.003 | 0.06714517 | 0.03432836 | 0.01103751 | 1.96 | 3.11 |
0.004 | 0.05513010 | 0.05046448 | 0.01382034 | 1.09 | 3.65 |
0.005 | 0.10898570 | 0.06002658 | 0.01653867 | 1.82 | 3.63 |
0.006 | 0.09776211 | 0.06361489 | 0.01887480 | 1.54 | 3.37 |
0.007 | 0.09351854 | 0.06753575 | 0.02106120 | 1.38 | 3.21 |
0.008 | 0.11952653 | 0.07350797 | 0.02332674 | 1.63 | 3.15 |
0.009 | 0.10846255 | 0.07909222 | 0.02560830 | 1.37 | 3.09 |
0.010 | 0.12671978 | 0.08344353 | 0.02776237 | 1.52 | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustin Sangay, J.C.; Carranza, A.R.; Ponte Bejarano, J.C.; Ponte Bejarano, J.L.; Miranda Ramos, E.C.; Rubio, O.; Rubio-López, F. Numerical Approximation of the In Situ Combustion Model Using the Nonlinear Mixed Complementarity Method. Fluids 2025, 10, 92. https://doi.org/10.3390/fluids10040092
Agustin Sangay JC, Carranza AR, Ponte Bejarano JC, Ponte Bejarano JL, Miranda Ramos EC, Rubio O, Rubio-López F. Numerical Approximation of the In Situ Combustion Model Using the Nonlinear Mixed Complementarity Method. Fluids. 2025; 10(4):92. https://doi.org/10.3390/fluids10040092
Chicago/Turabian StyleAgustin Sangay, Julio César, Alexis Rodriguez Carranza, Juan Carlos Ponte Bejarano, José Luis Ponte Bejarano, Eddy Cristiam Miranda Ramos, Obidio Rubio, and Franco Rubio-López. 2025. "Numerical Approximation of the In Situ Combustion Model Using the Nonlinear Mixed Complementarity Method" Fluids 10, no. 4: 92. https://doi.org/10.3390/fluids10040092
APA StyleAgustin Sangay, J. C., Carranza, A. R., Ponte Bejarano, J. C., Ponte Bejarano, J. L., Miranda Ramos, E. C., Rubio, O., & Rubio-López, F. (2025). Numerical Approximation of the In Situ Combustion Model Using the Nonlinear Mixed Complementarity Method. Fluids, 10(4), 92. https://doi.org/10.3390/fluids10040092